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ABSTRACT

Alzheimer’s disease (AD) is an incurable, progressive neuro-
logical disorder of the human brain related to loss of memory,
commonly seen in the elderly population. Accurate detection
of AD can help with proper treatment and prevent brain func-
tion damage. Existing CNN-based methods need to predeter-
mine informative locations in sMRI, which means the stage
of distinguishing lesions is separated from the later stages of
feature extraction and classifier construction. In this paper, a
novel “two-stage” framework based on a hierarchical 3D fully
convolutional network (H-3D-FCN) is proposed to automati-
cally identify discriminative local patches and regions in the
sMRI. We further optimize the diagnosis performance by con-
structing a multi-layer perceptron (MLP) model which com-
bines the multi-modal features (e.g., MMSE score, age, gen-
der, APOE 4) with the risk probability maps (RPMs) gener-
ated from the H-3D-FCN model. Experiments on three typi-
cal AD datasets, namely, ADNI, AIBL, and NACC, show that
our method achieves state-of-the-art performance as compared
with recent baselines.

Index Terms— Alzheimer’s disease diagnosis, H-3D-
FCN, Multimodality learning, Multi-layer perceptron

1. INTRODUCTION

Alzheimer’s disease (AD) is a severe form of mental demen-
tia. Around 640 million people worldwide continue to suffer
from AD and develop dementia symptoms that worsen over
time. Therefore, accurate diagnosis of AD is important since
treatment may be most effective if introduced as early as pos-
sible [1]. In practice, a standardized diagnostic process relies
on skilled clinicians, based on clinical history, psychometric
assessment such as Mini-Mental State Examination (MMSE),
and brain imaging such as structural magnetic resonance imag-
ing (sMRI). However, clinicopathological studies have shown
that clinicians’ diagnostic sensitivity ranged from 70.9% to
87.3%, and specificity ranged from 44.3% to 70.8% [2], the
wider range of sensitivity and specificity means that clinicians
have a relatively high risk of leading misdiagnosis and missed
diagnosis [3].
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Recently, AD diagnosis has been successfully applied to
the convolutional neural network (CNN) and shows promising
results [4, 5]. Preliminary studies, however, indicate that, due
to subtle structural changes in the brain, these approaches are
not successful in detecting early-stage AD [6]. To address this
challenge, either informative regions (e.g., hippocampus [7])
or patches (e.g., positioned by an anatomical landmark detec-
tor [8]) are determined using domain knowledge and expert
experience before applying CNN-based methods. That is, the
differential localization stage of brain lesions [9] is method-
ologically independent of the later stages of feature extraction
and classifier construction, which may hinder the effectiveness
of CNN in the diagnosis of AD [10].

In this study, we present a novel deep learning frame-
work to unify discriminant lesion location with feature extrac-
tion and classifier construction to improve the performance
for sMRI-based AD diagnosis. Specifically, a hierarchical
3D fully convolutional network (H-3D-FCN) is proposed to
enhance the feature representation of AD by automatically
identifying the differentiated locations in sMRI of the whole
brain. The framework of H-3D-FCN includes three modules,
namely, feature encoder, decoder, and classifier. In addition, a
“two-stage” training scheme is adopted to optimize the diag-
nosis performance by using multi-modal diagnosis features. In
stage 1, we use randomly-sampled sub-volume brain images
as input to train the H-3D-FCN model. Then, the full-sized
brain images are fed into the training model, and the whole-
brain risk probability maps (RPMs) are generated by softmax
to infer local patterns of the cerebral structure reflecting an
overall disease state.

Inspired by a reference indicator used by clinicians to di-
agnose AD, the RPMs generated above are integrated with
other modal features through a multi-layer perceptron (MLP)
in stage 2, such as specific psychometric assessment (MMSE
score [11]), demographic information (age, gender) and ge-
netic information for the therapeutic target of AD (APOE 4
[12]). Following training and internal testing on ADNI dataset
[13], we further validated the performances on AIBL [14],
and NACC [15]. Our method is shown to give an accuracy
of 94.1%, 95.3%, and 87.4%, respectively, on ADNI, AIBL,
and NACC, significantly better than three recent state-of-the-
art methods.



Fig. 1. The proposed “two-stage” AD diagnostic framework is composed of three modules, namely, a feature encoder, a decoder
and a classifier. In stage 1, the AD status corresponding to the individual subject is used as the output of the classification model.
In stage 2, subject-specific brain risk probability maps (RPMs) are generated, then 200 fixed locations are selected from RPMs
and passed to the multi-layer perceptron with multi-modal information for further binary classification of the disease status.

2. PROPOSED METHOD

Our proposed hierarchical 3D-FCN framework is shown in
Fig. 1, which includes three modules, i.e., an Encoder, a
Decoder, and a Classifier. Meanwhile, referring to the refer-
ence indicators of clinicians for AD diagnosis, the “two-stage”
training scheme is adopted to boost the diagnosis performance
by utilizing multi-modal diagnosis features.

2.1. Network architecture

Encoder The gray shadow in Fig. 1 shows the encoder,
consisting of five successive stages of convolution and down-
sampling that operate at different resolution of 3D feature.
Each stage, shown in Fig. 2, consists of two sub-modules,
namely, the residual module (RM) and down-sampling mod-
ule. The RM, inspired by He et al. [16], is designed using a
residual function to obtain better features without increasing
the receptive field, as shown in the bottom dashed box in Fig.
2, where the features from the upper layer are processed by a
series of convolutional layers with a 3 × 3 × 3 kernel applied
with stride 1 and padding 1. The processed convolutional
features are fused with the original input by element-wise op-
eration, which result in outputs of equal size as the inputs.
After that, the fused features are down-sampled using the 3D
max-pooling operation, defined as Fds, which reduces the size
of the input and increases the receptive field of the features
calculated in the subsequent network layer. In detail, we de-
fine the k-th feature map of the (l-1)-th stage as F l−1

k , which
is connected with the j-th feature map of the l-th stage. To

Fig. 2. Each stage in Encoder contains two sub-modules:
residual module (RM) and down-sampling module. “Conv3d”
stands for Conv3d-BN-PReLU, [X, Y, Z, C] represents the size
of 3D feature and its channels.

simplify the formula, we consider one convolutional layer in
the residual module before applying the down-sampling mod-
ule. Therefore, the procedure of each stage of the encoder is
defined as:

F l
j = PReLU

(
Conv3d3×3×3(F

l−1
k )

)
⊕ F l−1

k (1)

F ds = PReLU
(
Maxpooling2×2×2(F

l
j)
)

(2)

Decoder The yellow shadow in Fig. 1 shows the decoder,
consisting of four stages, which aim to extract features, and
expand the spatial support of lower resolution feature maps,
and to obtain semantic information of features. Each stage,
depicted in Fig. 3, consists of three sub-modules, namely,
up-sampling module, the fine-grained module (FGM), and the
residual module (RM), same as in the encoder. Specifically,



a 3D dilated convolution operation is employed in the up-
sampling module to increase the size of inputs and support the
exponential expansion of the receptive field without loss of
resolution or coverage. The parameters of each stage in this
module are shown in the table of Fig. 3. The FGM (shown in
blue arrow in Fig. 1) aims to improve the quality of the feature
representation, indicated in the dashed frame in the right cor-
ner of Fig. 3. More specifically, a concatenation operation is
utilized to integrate the shallower layers with detailed features
in the encoder and the deeper layers with abstract features in
the decoder. Afterwards, the concatenated features are input
into a 3D convolutional layer to retain the same channels with
next stage, and then, as input to the residual module. In detail,
we define the i-th feature map of the (l-1)-th stage as F l−1

i ,
which is connected with the h-th feature map of the l-th stage.
To simplify the formula, we also consider one convolutional
layer in RM before applying the up-sampling module. Each
stage of the decoder is defined as:

F concat = Conv3d1×1×1

(
Concat(F l−1

h ,F l
j)
)

(3)

F l
h = PReLU (Conv3d3×3×3(F concat))⊕ F l−1

h (4)

F upsample = PReLU
(
Dilated3×3×3(F

l
h)
)

(5)

Classifier The blue shadow in the right of Fig. 1, shows
the classifier, consisting of six convolutional blocks. Each of
the first four convolutional blocks contains a 3D convolutional
layer with a 3 × 3 × 3 kernel applied with stride 1, appended
with 3D max-pooling (kernel = 2, stride = 1, padding = 0), 3D
batch-normalization, PReLU, and Dropout (P = 0.5). Different
from the first four convolutional blocks, the kernel sizes have
been changed to 6 and 1 in the last two convolutional blocks re-
spectively. Finally, two channels’ features are generated by the
classifier, a softmax function is adopted to predict the specific
mental status (AD/NC).

The framework uses a “two-stage” training scheme to in-
corporate multi-modal features to improve diagnostic perfor-
mance. Considering the small scale of the sMRI dataset of
AD, we employed a patch-wise data augmentation strategy in
stage 1, in which 3000 samples (sub-volume is 47 × 47 × 47
voxel) were randomly selected from each whole-brain sMRI as
input, and trained the binary classification model by generating
two channels’ features with volume 1 × 1 × 1. In stage 2, the
full-sized sMRI (227×263×227) are then fed into the training
model in stage 1 to yield a 3D tensor of size 46× 55× 46 with
two channels, which can be translated to risk probability maps
(RPMs) by a softmax function. As shown at the bottom of Fig.
1, RPMs can be used to infer the local pattern of brain structure
and estimate the overall disease state. Then, the whole-brain
RPMs of sMRI were generated for all subjects using the model
we trained in stage 1. In addition, as a reference indicator used
by clinicians for AD diagnosis, demographic information and
clinical characteristic of the subjects are related to the state of
illness. Therefore, using these multi-modal features can fur-
ther improve the classification performance.

Fig. 3. Each stage in Decoder contains three sub-modules re-
spectively, up-sampling module, fine-grained module (FGM),
and RM. “Dilated 3d” stands for Dilated 3d-BN-PReLU, [X,
Y, Z, C] represents the size of 3D feature and its channels,
the specific parameters of each stage of “Dilated 3d” are also
shown in the table, where the parameter “Type” represents ker-
nel size, stride, and dilation.

2.2. MLP model

As shown in Fig. 1, we use a multi-layer perceptron (MLP) to
fuse the multi-modal features, including an input layer, two
hidden layers and an output layer. Among them, principal
component analysis (PCA) is employed in the hidden layers
to decompose the feature space. The activation function and
loss function used are ReLU and softmax cross-entropy with
logits, respectively. More precisely, we selected RPM voxels
from 200 fixed locations which have higher Matthew’s corre-
lation coefficient values, and use the feature vectors extracted
from these locations, combined with other modal features, as
input to the MLP for classification. Specifically, the feature
vectors from RPM, MMSE, age, gender, and APOE 4 are used
as inputs of the MLP for binary classification of the final men-
tal status of the subject.

3. EXPERIMENTS AND RESULTS

This section presents performance evaluations of our proposed
method and comparisons with existing methods.

3.1. Datasets and Subject Selection

Three typical AD datasets used in our experiments are, ADNI
[13], AIBL [14], NACC [15]. Some subjects are selected from
these three datasets in terms of the following criteria. Firstly,
age should be 55 or above. Secondly, 1.5 T with T1-weighted
MRI scans taken with ±6 months need to be diagnosed with
AD or normal condition (NC). Thirdly, subjects with mixed
dementia, non-AD dementia, history of severe head trauma,
severe depression, history of stroke and brain tumor, and major
systemic diseases are excluded. According to these criteria,
415, 381, and 543 subjects were selected from ADNI, AIBL,
and NACC, respectively. Meanwhile, the specific information
of MMSE score, gender, age and APOE 4 of each subject was
obtained from these datasets.



Table 1. The performance of our method on ADNI test, AIBL,
NACC (%)

Dataset Model ACC SEN SPEC
ADNI test *sMRI 85.2±2.2 82.1±2.4 89.2±1.5

AIBL *sMRI 90.4±1.4 70.3±2.0 94.2±1.2
NACC *sMRI 85.7±3.1 81.3±2.6 88.4±3.3

ADNI test +MLP 94.1±1.9 96.2±2.3 96.5±2.4
AIBL +MLP 95.3±2.8 89.8±1.6 95.3±2.3
NACC +MLP 87.4±4.0 93.7±1.5 89.5±4.4

Table 2. The comparison of performances on NACC (%)

Method ACC SEN SPEC
Qiu et al. [17] 84.3±4.7 90.1±2.4 80.5±4.3
Feng et al. [5] 80.3±3.6 82.3±5.9 86.3±5.9

Korolev et al. [18] 76.4±4.2 83.3±3.7 82.4±3.5

Ours: *sMRI 85.7±3.1 81.3±2.6 88.4±3.3
Ours: +MLP 87.4±4.0 93.7±1.5 89.5±4.4

3.2. Data Preprocessing

The sMRI data from the three datasets are all in NIFTI for-
mat. We preprocessed the data with alignment, registration,
and intensity normalization, respectively. Firstly, we conduct
Anterior Commissure (AC)-Posterior Commissure (PC) align-
ment and re-sample the data to 227×263×227 via the MIPAV
Software [19]. Then, the HAMMER algorithm [20] is utilized
to spatially register the sMRI data with respect to the MNI152
template using the FSL package [21]. Finally, we normalize
tissue intensities inhomogeneity using the N3 algorithm [22].

3.3. Evaluation Metric

For evaluation, we use three performance metrics, namely, ac-
curacy (ACC), sensitivity (SEN), and specificity (SPEC) [17].
We perform five independent tests, and present the mean and
standard deviation over these tests.

3.4. Implementation Details

Following training and internal testing on ADNI which ran-
domly split it in the ratio of 3:1:1 for training, validation, and
testing, and we further validated the performances on AIBL,
and NACC. Specifically, in stage 1, the training set of ADNI
was used to train our proposed method for 3,000 epochs. We
choose Adam optimizer for optimization and categorical cross
entropy as the loss function [23]. Meanwhile, batch size was
set to 40 and base learning rate was set as 0.0001 for the first
1000 epochs and then fixed at 0.001 for the rest. In stage 2,
a gradient descent algorithm [24] is applied to train the MLP
model and identify the weights and biases of each layer during
the back-propagation process.

Fig. 4. The RPMs of two specific subjects with AD and NC
from ADNI (left), and the RPM of this AD patient on axial,
coronal, and sagittal planes (right).

3.5. Experimental Results and Analysis

Table 1 shows the results of the our method on the three se-
lected datasets. Specifically, two models are tested, respec-
tively, the model of merely sMRI as input (*sMRI) and the
model appended with MLP (+MLP). The average accuracy in
terms of *sMRI on ADNI test, AIBL, and NACC are 85.2%,
90.4%, and 85.7%, respectively. For the +MLP model, the av-
erage accuracy on ADNI test, AIBL, and NACC are 97.1%,
95.3%, and 87.4%, respectively. It can be seen that the +MLP
model is much better than the *sMRI model, illustrating that
the fusion of multi-modal clinical features can further improve
the performance of AD diagnosis. Meanwhile, the sensitivity
and specificity of ours based on the +MLP model is clearly
higher and has smaller range fluctuation than clinicians [2].

Furthermore, for making a fair comparison, we unified
the criterion for data selection, then we compared the per-
formances of previous promising methods with ours on these
three datasets. Our experimental results have shown that our
method is much better than these baseline methods among
three datasets. We list the specific results on a more challeng-
ing dataset, NACC, as shown in Table 2, manifests our method
performs more effective.

Finally, we visualize the RPMs generated by our method
for two specific subjects with AD and NC from the ADNI
dataset, shown in the left of Fig. 4. Some potential sick brain
areas can be seen clearly from the RPMs of AD in Fig. 4 such
as temporal lobes, hippocampus, cingulate cortex. We also vi-
sualize the RPMs of this AD subject on axial, coronal, and
sagittal planes on the right of the Fig. 4, showing the distribu-
tion of the potential risk of illness.

4. CONCLUSION

In this paper, “H-3D-FCN” has been proposed for automatic
identification of discriminative local patches and regions in the
whole-brain sMRI for AD diagnosis. Meanwhile, the “two-
stage” training scheme combined with multi-modal features is
adopted to improve the diagnosis performance by employing
the multi-layer perceptron (MLP). Experimental results vali-
date the effectiveness of the proposed method, which offers
promising results on ADNI, AIBL, and NACC datasets.
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