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Abstract—Despite being studied extensively, the performance
of blind source separation (BSS) is still limited especially for the
sensor data collected in adverse environments. Recent studies
show that such an issue can be mitigated by incorporating
multimodal information into the BSS process. In this paper,
we propose a method for the enhancement of the target speech
separated by a BSS algorithm from sound mixtures, using visual
voice activity detection (VAD) and spectral subtraction. First, a
classifier for visual VAD is formed in the off-line training stage,
using labelled features extracted from the visual stimuli. Then
we use this visual VAD classifier to detect the voice activity of the
target speech. Finally we apply a multi-band spectral subtraction
algorithm to enhance the BSS-separated speech signal based on
the detected voice activity. We have tested our algorithm on the
mixtures generated artificially by the mixing filters with different
reverberation times, and the results show that our algorithm
improves the quality of the separated target signal.

Index Terms—Blind source separation, multimodal enhance-
ment, visual voice activity detection, multi-band spectral sub-
traction

I. INTRODUCTION

Many blind source separation (BSS) algorithms have been
proposed to recover the unknown source signals from their
mixtures, using techniques such as independent component
analysis (ICA) [1], [2]. However, in an adverse room envi-
ronment, audio mixtures collected at the sensors are usually
deteriorated by long reverberations and strong background
noise. The performance of BSS will be degraded considerably
in such an adverse situation. Denoising techniques for post-
processing can mitigate this problem and spectral subtraction
is an efficient and widely used method [3], [4]. To estimate the
spectral variance of noise from the noise-embedded signals,
inactive period (when the target speaker is silent), i.e., the
voice activity needs to be detected. However, the audio-domain
voice activity detection (VAD) is vulnerable to noise. For a
BSS-separated target speech signal, the existence of residual
interference from other speakers makes accurate VAD even
more difficult due to the nonstationarity of the interference.

However, the video signal associated with a target speaker
is not affected by acoustic noise, providing information com-
plementary to the audio speech. Studies have shown both the
production and perception of human speech are bimodal [5],
[6]. For example, in a cocktail party scenario, looking at the
speaker’s face, or more precisely the movements of the lip
region, helps one to comprehend the speech of interest. The
bimodal coherence of audio and visual stimuli was shown to

be useful for voice activity detection [7], [8], [9]. However,
the above visual VAD algorithms use either only static or
only dynamic features. Differences between speakers are not
considered either. Also, head rotations which are inevitable in
real video recordings, may greatly degrade the performance.
Therefore, aiming to address these limitations, we propose a
novel visual VAD method using adaboost [10] and then use it
for the enhancement of the target speech separated by a BSS
algorithm.

The main flow of the proposed system is as follows. First,
in the off-line training stage, we apply the adaboost training
algorithm to the labelled visual features, which are extracted
from the video signal associated with a target speaker. we
use the adaboost model for visual voice activity detection.
Then we apply the visual VAD to detect the silent periods in
the target speech, using the accompanied contemporary video.
Finally we apply the spectral subtraction algorithm to the
BSS-separated target speech signal, using the adaptive noise
spectrum estimated in the silent periods detected via the visual
VAD.

The remainder of the paper is organised as follows. Section
2 introduces the main flow of the proposed system. Section
3 presents the detailed visual VAD method using adaboost in
the off-line training process. BSS enhancement using visual
VAD and spectral subtraction is presented in Section 4. Ex-
perimental results are demonstrated in Section 5, followed by
the conclusion.

II. PROPOSED SYSTEM

Convolutive models are usually used to approximate the
room mixing process. For simplicity, we consider a 2 x 2
system:

x(n) = H(n) * s(n) + £(n), (1)

where x(n) = [z1(n),z2(n)]T are two observations mixed
by two sources s(n) = [si(n),s2(n)]T and * denotes con-
volution; H(n) is the mixing matrix whose entry hy(n)
represents the impulse response from source k to sensor p;
&(n) is the additive noise vector (omitted for convenience)
and n is the discrete time index. To recover the source signals
from their mixtures, beamforming techniques can be used if
we have prior information about the position of sensor array
and sources. An alternative is to solve this problem in the
frequency domain (FD) via ICA or time-frequency masking.



In our algorithm, we apply the frequency domain BSS where
the joint diagonalization [2] algorithm was used for each
frequency channel. To solve its associated permutation and
scaling problems, the correlation approach in [11] and the
minimum distortion principle [12] are applied respectively.
As mentioned earlier, the performance of conventional BSS
deteriorates in adverse environments, and the separated signals
may still contain a certain level of noise and interference from
other speakers. Suppose y;(n) is the target speech that we are
interested in, we can use multi-band spectral subtraction [4]
to enhance y; (n) provided that we can accurately estimate the
spectrum of the interference. To this end, we use the visual
voice activity detector to find the silent periods in sq1(n) and
then use it for spectrum estimation of the interference. Fig. 1
shows the system diagram of the proposed method.
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Fig. 1. The diagram of our proposed 2 X 2 system.

III. VISUAL VAD

Visual VAD is a classifier to determine whether a frame of
the visual signal is silent or not, which is formed in the off-line
training process based on the labelled visual features extracted
from videos of a specific speaker. Since the lip region is more
coherent with the audio speech, we use the following features:

dw (T = 1), o dw (=T), dy (=), da (=T)}",
where W () is the outer lip width at the ¢-th frame, H (¢) is the
outer lip height and A(¢) is the mean intensity of the rectangle

in parallel to the lip corners. In equation (2), the difference
feature dy (7) is defined as:

dw () = W(t) = W(t —7), 3)

2

where 7 is the frame offset. Likewise, we define dy(7) and
d (7). Those features can be obtained from some key points
of lip contours once the lip region is extracted. There are
many lip tracking algorithms available, using e.g. complex
statistical models [13] and active shape models [14]. We have
proposed a 12-points lip tracking algorithm combining the
snake algorithm with rotational template matching [15], which
copes with head rotations and works well for videos with low-
resolutions.

We then apply the adaboost algorithm over the labelled
features (samples) to obtain parameters for the adaboost model
(i.e., the strong classifier or the voice activity detector). In
each iteration, it selects one optimum weak classifier under
the current sample weights, and then updates the sample
weights for the next iteration by giving more weighting to
the misclassified samples. This weight update solves the re-
dundancy problem in the feature space caused by the similarity
between neighbouring frames. We use the same weak classifier
h;(v(t), m,p,®) as in Viola-Jones object detection algorithm
[16]. In the i-th iteration, the m-th element of v(¢), i.e. v,,(t)
is selected and compared with a threshold ¢ and a polarity of
p:

1, if pu,(t) > po
0, otherwise ’

(v, mop.0) = { @
The final strong classifier for visual VAD is a weighted voting
result over all the selected weak classifiers:

cvion={ o Sl wihi(v(0) > i w )

0, otherwise
where I is the total number of iterations, w; is the weighting
parameter, which is decided by the error rate of the i-th
selected weak classifier with the updated sample weights in
the ¢-th iteration. More details about the adaboost algorithm
can be found from [10].

IV. MULTI-BAND SPECTRAL SUBTRACTION

Spectral subtraction [3] is an effective method for noise
reduction. In our proposed system, the multi-band spectral
subtraction [4] algorithm is applied to suppress the non-
uniform spectrum of the interfering speech. Suppose Y (f,t)
is the spectrum of the target source obtained from BSS at
frequency bin f and time frame ¢ via short-time Fourier
transform, and D( f, ¢) is the spectrum of the interference, then
the enhanced power spectrum of Y., (f,t) is:

|Y€Tl(f’ t)|2 = ‘Yl(fa t)|2 - aiailD(fa t)|27

where «; and o; control the subtraction level at the frequency
band F;. «; is decided by the signal-to-noise ratio in F; and o;
provides an additional degree of control, which is empirically
determined to minimize speech distortion. We have used the
same frequency band division and parameter setup as in [4].

The interference from the other speakers is non-stationary,
therefore, we calculate and update D(f,t) frame by frame
from Y;(f,t) during the periods where the target speech is
silent. To solve the non-stationarity problem, an alternative
is to estimate the interference spectrum from the interfering
speech estimated by BSS, and calculate the subtraction levels
from periods where the target speaker is silent and the interfer-
ence speaker is active. This needs further activity information
about the interfering sources.

fer (6

V. EXPERIMENTAL RESULTS
A. Data Setup

1) Visual VAD: We downloaded a video clip of about
150 seconds available from http://www.youtube.com/watch?



v=zXBpWS8GCDtY and cut it to 140 seconds by trimming the
beginning two seconds and the end part of the signal. The
first 120 seconds audio and video stimuli were used for the
adaboost training, and the following 20 seconds were used
as a target speech source and a target video. In the adaboost
training process, we set 7' = 10, therefore the previous 10
frames and the next 10 frames also influence the activity
detection of a current frame. Since the sampling rate of the
video is 25 fps, about 800 ms (2 x T x 25) adjacent visual
frames were considered for the activity detection of each
frame. We set I = 100, that is, 100 weak classifiers were
boosted.

2) Mixing process: The target source signal is the truncated
speech of 20 seconds as mentioned above. The other source
signal is the concatenated audio snippets from XM2VTS
samples (each snippet lasts less than 20 seconds) available
from http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/. Both sig-
nals were resampled to 16 kHz. The two source signals are
shown in Fig. 2.
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Fig. 2. The two source signals (the upper one is the target speech).
We used convolutive mixing process to model the room
scenario, and two types of mixing filters were tested:

« Room impulse responses. Room impulse responses were
down-sampled to a quarter of the original sampling rate,
with a length of 8192 taps for each filter.

o Head related transfer functions (HRTFs). HRTFs were
down-sampled to half of the sampling rate with a length
of 64 taps for each filter.

The above filters are available in the synthetic benchmarks
[17]. We did not add any noise to the mixtures.

3) FD-BSS: The sliding Hamming window of 640 samples
with 37.5% overlap was used for the short time Fourier
transform, where the Fourier frame length of 640 samples was
applied.

B. Experimental Results

We first tested the filters with long taps, and the two
mixtures are shown in the right plot of Fig. 3(a). After the
FD-BSS, we obtained two source estimates shown in the
right plot of Fig. 3(b). Compared to the original sources, the
BSS-separated sources still contain a considerable amount of

noise and interference. Spectral subtraction was then applied
to the BSS-separated target speech, based on the visual VAD
obtained from the target video, the result is shown in the right
part of Fig. 3(c).

We then tested the algorithm when the mixing filters were
HRTFs. In this case, the reverberation time was shorter, and
FD-BSS perfectly recovers the original sources when there
is no additional noise (we can compare the original source
signals in Fig. 2 and source estimates in the left plot of Fig.
3(b)). In this example, the performance improvement using the
spectral subtraction, as shown in the left plot of Fig. 3(c), is
less apparent.

VI. CONCLUSION

In this paper, we have presented a system for the en-
hancement of BSS-separated target speech, using the speaker-
dependent visual voice activity detector obtained in the off-
line training stage. We have applied the visual VAD for the
noise and interference spectrum estimation, which is then
suppressed by the multi-band spectral subtraction algorithm.
The experimental results show that the system improves the
quality of the target speech estimated from the reverberant
mixtures.
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