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a b s t r a c t

Recent studies show that facial information contained in visual speech can be helpful

for the performance enhancement of audio-only blind source separation (BSS) algo-

rithms. Such information is exploited through the statistical characterization of the

coherence between the audio and visual speech using, e.g., a Gaussian mixture model

(GMM). In this paper, we present three contributions. With the synchronized features,

we propose an adapted expectation maximization (AEM) algorithm to model the audio–

visual coherence in the off-line training process. To improve the accuracy of this

coherence model, we use a frame selection scheme to discard nonstationary features.

Then with the coherence maximization technique, we develop a new sorting method to

solve the permutation problem in the frequency domain. We test our algorithm on

a multimodal speech database composed of different combinations of vowels and

consonants. The experimental results show that our proposed algorithm outperforms

traditional audio-only BSS, which confirms the benefit of using visual speech to assist in

separation of the audio.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Human speech perception is essentially bimodal as
speech is perceived by the interactions of auditory and visual
sensory processing [1,2]. Looking at the speaker’s lips
improves the intelligibility of human speech embedded in
cocktail party noise due to the contribution of the comple-
mentary visual information [2]. There is a complex non-
linear relationship between the auditory and visual streams,
usually referred to as the audio–visual coherence or correla-
tion [3]. In feature space, the coherence can be coded by
audio–visual atoms or dictionaries [4,5] with matching
pursuit [6] techniques, or characterized statistically with
ll rights reserved.

ac.uk (P. Jackson).
models such as Gaussian mixture models (GMM) [7].
Exploiting these cross-modal interactions, the visual stream
has proven a success in improving the robustness to noise in
many fields of applications, including automatic speech
recognition [8], speaker localization [4,9], speech enhance-
ment or audio filtering [10,11], and blind source separation
[3,5,12–16].

In traditional blind source separation (BSS) for audi-
tory mixtures, typically only audio signals are considered.
Under the framework of independent component analysis
(ICA) [17], the BSS problems have been extensively
studied and many classical algorithms have been pro-
posed for the instantaneous mixing model such as the
‘‘J–H’’ algorithm [18], JADE [19], Infomax [20], SOBI [21]
and FastICA [22] algorithms. For the more complex con-
volutive mixing model, one can apply either the time
domain deconvolution algorithms [23–25] or the fre-
quency domain separation algorithms [12–15,26–31],
which often suffer from the permutation and scaling
ambiguity problems.
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Considering the bimodal nature of human speech, we
could potentially improve the separation of the source
signals from their audio mixtures utilizing the audio–
visual coherence obtained by the integration of visual
speech. This is known as audio–visual or bimodal BSS
[3,5,12,13,15,16], a recent development in multi-modal
signal processing. Sodoyer et al. [3] addressed the
separation problem for an instantaneous mixture of
decorrelated sources, with no further assumptions on
independence or non-Gaussianity. Wang et al. [13] imple-
mented a similar idea by applying the Bayesian
framework to the fused feature observations for both
instantaneous and convolutive mixtures. Rivet et al. [12]
proposed a new statistical tool utilizing the log-Rayleigh
distribution for modeling the audio–visual coherence, and
then used the coherence to address the permutation and
scaling ambiguities in the spectral domain. Casanovas
et al. [5] detected temporal audio–visual structures repre-
sented by atoms taken from redundant dictionaries, and
extracted sources from a soundtrack. Naqvi et al. [16]
utilized beamforming in the frequency domain for moving
sources in the teleconference-like scenario, incorporating
the geometrical model derived on the basis of the beam-
forming theory.

Despite being promising, these approaches are also
limited in some situations. For example, the algorithm
proposed in [3] was designed only for instantaneous
mixtures. The method in [13] considered a convolutive
model with a relatively small number of taps for the
mixing filters. The approach in [12] modeled the audio–
visual coherence in a high dimensional feature space,
which often results in an over-fitting problem and there-
fore is sensitive to outliers. Cross-modal correlation was
not exploited in the separation stage in [5], where visual
information was used only for voice activity detection. In
[16], the video provided the position information about
the distance and azimuth angles between the moving
speakers and the microphone array, however, source
separation was still performed in the audio domain.

In this paper, we attempt to address some of these
limitations. Motivated by the work in [12,13], we follow a
similar two-stage framework which includes off-line training
and online separation. In particular, we consider a convolu-
tive mixing model and address the permutation problem
associated with the frequency domain BSS (FD-BSS). In the
off-line training stage, we build a model to statistically
characterize the audio–visual coherence in the feature space.
This coherence is built on the audio–visual features extracted
from the target speech. Mel-frequency cepstral coefficients
(MFCCs) are used as the audio features, and the lip width and
height as visual features, which are synchronized with the
audio features on a frame-by-frame basis before statistical
training. In the separation stage, coherence maximization is
applied for the alignment of the ICA-separated spectral
components. Different from [12,13], however, we have
proposed three new techniques to improve the training and
separation processes. First, a frame selection scheme is
proposed to remove the non-stationary features which con-
sequently improves the robustness and accuracy of the
estimation of the audio–visual coherence. Second, the classi-
cal expectation maximization (EM) algorithm is modified to
take into account the different influences of the audio
features, resulting in an adapted EM (AEM) algorithm, which
further improves the estimation of the joint audio–visual
probability. Third, a novel sorting scheme is proposed to
address the permutation problem. A preliminary version
of this work was presented in [15]. Different from [15], in
this paper, we have developed a robust feature selection
scheme for audio–visual modeling as mentioned above. In
addition, we have further improved the audio feature repre-
sentation as described in Section 3.1. Moreover, here we have
performed systematic evaluations on real recordings, and
compared the performance of the proposed method with the
state-of-the-art methods.

The remainder of the paper is organized as follows.
An overview of traditional frequency domain convolu-
tive BSS and the framework of the proposed audio–
visual BSS system are presented in Section 2. Then
Section 3 introduces the feature extraction and fusion
method for the modeling of the cross-model correlation,
including a new frame selection approach and an adapted
expectation maximization algorithm to improve the
accuracy of this model. The proposed de-permuta-
tion algorithm exploiting the audio–visual coherence
is presented in Section 4. The simulation results are
analyzed and discussed in Section 5, followed by the
conclusions.

2. BSS for convolutive mixtures

2.1. Convolutive model

BSS aims to recover sources from their mixtures with-
out any or with little prior knowledge about the sources
or the mixing process. Consider a cocktail party scenario,
the observation at each sensor is the sum of K filtered
source signals, which can be approximated by the con-
volutive model

xpðnÞ ¼
XK

k ¼ 1

Xþ1
m ¼ 0

hpkðmÞskðn�mÞþxpðnÞ,

xðnÞ ¼HnsðnÞþnðnÞ, ð1Þ

where hpk represents the room impulse response filter
from source k to sensor p. We denote xðnÞ ¼ ½x1ðnÞ, . . . ,
xPðnÞ�

T as the observation vector at the discrete time index
n; sðnÞ ¼ ½s1ðnÞ, . . . ,sK ðnÞ�

T the source vector and nðnÞ ¼

½x1ðnÞ, . . . ,xPðnÞ�
T the additive noise vector, where T is

vector transpose. H is the mixing matrix whose elements
are filters hpk and n denotes convolution.

Convolutive BSS aims to find a set of separation filters
fwkpg that satisfy

ŝkðnÞ ¼ ykðnÞ ¼
XP

p ¼ 1

Xþ1
m ¼ 0

wkpðmÞxpðn�mÞ,

ŝðnÞ ¼ yðnÞ ¼WnxðnÞ, ð2Þ

where W is the separation matrix whose entry wkp is the
impulse response filter from observation p to the estimate
of source k (yðnÞ or ŝðnÞ represents the estimated version
of sðnÞ). We consider a time-invariant system where both
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the mixing filter H and separation filter W are assumed to
be time-invariant. In practice, a finite impulse response
(FIR) filter is used to implement hpk and wkp.
2.2. Frequency domain BSS

Convolutive BSS can be directly performed in the time
domain [23–25] by deconvolution, but the computational
complexity is high especially when the mixing filters have
long taps. Based on the short-time stationarity of the
speech signals and the linear time-invariance of the
mixing process, an alternative is to perform convolutive
BSS in the frequency domain by applying the short-time
Fourier transform (STFT) to the observations. In each
frequency bin f, we get an instantaneous mixing model
ignoring the noise

Xðf ,tÞ ¼Hðf ÞSðf ,tÞ, ð3Þ

where Xðf ,tÞ ¼ ½X1ðf ,tÞ, . . . ,XPðf ,tÞ�T is the observation vec-
tor in frequency bin f and time frame t, and Hðf Þ is the
Fourier transform of H.

Then in each frequency bin f, separate ICA [17] algo-
rithms for instantaneous models are applied to obtain the
independent outputs Yðf ,tÞ ¼ ½Y1ðf ,tÞ, . . . ,YK ðf ,tÞ�T , assumed
to be the source estimates

Yðf ,tÞ ¼Wðf ÞXðf ,tÞ ¼ Ŝ ðf ,tÞ: ð4Þ

The technique of the frequency domain BSS is depicted in
the upper dashed box of Fig. 1. In this paper, a determined
system is considered, i.e., K ¼ P¼ 2.
Training audio 
stimulus

v (t)

a (t)

v (t)

s (n)
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x (n)
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Fig. 1. Flow of the proposed audio–visual BSS system. The upper dashed box

lower dashed box shows the training process, which aims to estimate the param

reconstruction of the recovered signals in the time domain, we resolve the per

the feature vectors aðtÞ and vðtÞ in dashed lines (with arrows).
2.3. Scaling and permutation indeterminacy

However, the ICA algorithms can estimate the sources
only up to a permutation matrix Pðf Þ and a diagonal
matrix Dðf Þ

Ŝ ðf ,tÞ ¼ Yðf ,tÞ ¼ Pðf ÞDðf ÞSðf ,tÞ: ð5Þ

These are the so-called permutation (Pðf Þ) and scaling
(Dðf Þ) ambiguities, which present severe problems when
reconstructing the separated sources in the time domain.
The scaling ambiguity can be greatly mitigated by
the normalization of the separation matrices based on
the minimal distortion principle (MDP) [29] which is also
used here. In this paper, we only consider the permuta-
tion problem, where the order of the recovered source
components at each frequency bin may not be consistent

with each other (e.g. ½Y1ðf 1 ,tÞ
Y2ðf 1 ,tÞ� ¼ ½

S1ðf 1 ,tÞ
S2ðf 1 ,tÞ�,½

Y1ðf 2 ,tÞ
Y2ðf 2 ,tÞ� ¼ ½

S2ðf 2 ,tÞ
S1ðf 2 ,tÞ�,

½Y1ðf 3 ,tÞ
Y2ðf 3 ,tÞ� ¼ ½

S1ðf 3 ,tÞ
S2ðf 3 ,tÞ�, � � �Þ.

To address the permutation problem, many algorithms
[26–28,30–33] have been proposed. For example, the
approach in [26,30] utilizes the continuity of the spectral
components in adjacent frequency channels while [27,28]
use direction of arrival estimation, [31] combines both
previous techniques, and [32] utilizes statistical signal
models. However, the performance of these algorithms
can be degraded by acoustical noise. Information from the
video has been shown to be useful for improving the
performance of automatic speech recognition systems [8].
The potential of using visual information for audio source
separation problems, such as the permutation problem,
v (t)a (t)

p (a(t), v (t))

W (f)

Permutation 
alignment

IDFT

W (n)

Source estimates
ˆy (n) = s (n)

Audio-Visual 
coherence

Recorded visual 
stimulus

e BSS 

ain 

v (t)

-line training process 

illustrates the traditional audio-only BSS in the frequency domain. The

eters for the audio–visual coherence after audio–visual fusion. Before the

mutation indeterminacy by audio–visual coherence maximization using
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has not been fully investigated, which motivates this
study, as now discussed.
2.4. Overview of the proposed system

To address the permutation problem in FD-BSS, we use
an audio–visual BSS system, shown in Fig. 1. As men-
tioned in Section 1, the system contains two stages:
training stage and separation stage. The training stage is
shown in the lower dashed box of Fig. 1, which includes
feature extraction and feature fusion. First, we extract the
audio features aðtÞ from the training audio data s(t), and
some geometric-type features vðtÞ from the training video
stream v(t). Second, we use the GMM to statistically
characterize the audio–visual coherence pðaðtÞ,vðtÞÞ, and
then an AEM algorithm is applied to estimate the para-
meters of the GMM model. The separation stage is shown
in the upper dashed box, which is performed in the audio
domain. To address the permutation problem in the
separation stage, we use the information (i.e. the audio–
visual joint probability) obtained from the training stage.
Specifically, we align the permutations across the fre-
quency bands based on a sorting scheme which iteratively
re-estimates the audio–visual coherence probability from
the separated source components at each frequency bin
based on the trained audio–visual model.
3. Feature extraction and fusion

Our algorithm is based on the fact that there is a
relationship between the video signal and the corre-
sponding contemporary audio signal, which is the so-
called audio–visual coherence. We model the coherence
in the feature level, for which the features are extracted
from the audio and video data respectively. Since the two
types of signals are recorded with different sampling rates
and dimensions, we need to extract the features from
them separately.
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Fig. 2. The audio–visual features of four vowels /a/,/i/,/o/,/u/. The vowels are o

audio sequence in the data corpus. (a) Each curve corresponds to one time fra

therefore the audio feature is 5-dimensional. (b) The visual features last about
3.1. Extraction of audio and visual features

We take the Mel-frequency cepstral coefficients
(MFCCs) as audio features as in [13] with some modifica-
tions. The MFCCs exploit the non-linear resolution of the
human auditory system across an audio spectrum, which
are the Discrete Cosine Transform (DCT) results of the
logarithm of the short time power spectrum on a Mel-
frequency scale. We then apply a lifter for the reweighing
of cepstral coefficients and obtain a (Lþ1)-dimensional
MFCC vector ½c0ðtÞ,c1ðtÞ, . . . ,cLðtÞ�

T , where t is the time
frame index, as in Eq. (3). Compared to our early work
in [15], where the first component is the logarithmic
power, we remove the first coefficient c0ðtÞ to avoid the
influence of the magnitude, and obtain the L-dimensional
audio feature aðtÞ ¼ ½c1ðtÞ, . . . ,cLðtÞ�

T . For simplicity, we
denote the training audio feature vector as aðtÞ ¼ ½a1ðtÞ

, . . . ,aLðtÞ�
T .

Unlike the appearance-based visual features used in
[8,13], which are sensitive to the lighting conditions, we
use the same front geometric visual features as in [3,12]:
the lip width (LW) and height (LH) from the internal labial
contour. The geometric features vðtÞ ¼ ½LWðtÞ,LHðtÞ�T are
low-dimensional and robust to luminance, which miti-
gates the over-fitting problem encountered in complex
systems with a large number of parameters and greatly
reduces the computational complexity. Fig. 2 shows the
typical features extracted from four vowels: /a/, /i/, /o/
and /u/, which were obtained from the multimodal
database, as depicted in Section 5, which is also used
in Figs. 3 and 4. After the feature extraction process, we
concatenate synchronized audio and visual features to
build the (Lþ2)-dimensional audio–visual space uðtÞ ¼
½vðtÞ; aðtÞ�, which will be used for training.
3.2. Robust feature frame selection

If someone utters an isolated speech sound such as /a/,
the visual features will likely be stationary with minimal
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fluctuation. However in the transition periods from one
phone to another in fluent speech, the visual parameters
fluctuate drastically with a large variance, which can
produce ambiguous visual features typical of another
speech sound or phone. For instance, in the transition
process from /a/ to /b/, several frames of the mouth
shape may look like the utterance of /o/. Also, these
transitions are not stationary in the audio signal. There-
fore, to improve the estimate of audio–visual coherence,
we propose a feature frame selection scheme based on the
dynamic characteristics [34] of the visual features.

At each time frame centered by the visual feature
vðtÞ ¼ ½LWðtÞ,LHðtÞ�T , we extract a short time period with
2Qþ1 frames, then calculate

gLWðtÞ ¼ sðLWðtÞÞþaLWJLWðtþQ Þ�LWðt�Q ÞJ, ð6Þ

where sð�Þ is the standard deviation and aLW is a weight-
ing coefficient, chosen between 0 and 1. Then we define a
Boolean variable to determine the stationarity of this
frame

F LWðtÞ ¼
def 1, gLWðtÞodLWLWðtÞ,

0 otherwise,

(
ð7Þ

where dLW is a comparison coefficient, typically chosen as
0.5, and LWðtÞ is the mean over the 2Qþ1 frames, defined
as LWðtÞ ¼ ð1=ð2Qþ1ÞÞ

PQ
q ¼ �Q LWðtþqÞ. Then, we smooth

the binary variable between adjacent frames

F s
LWðtÞ ¼F LWðt�1Þ3F LWðtÞ3F LWðtþ1Þ, ð8Þ

where 3 denotes disjunction, i.e., a logical OR operator. In
the same way, we can determine F s

LHðtÞ, and the final
decision is

F ðtÞ ¼F s
LWðtÞ4F s

LHðtÞ, ð9Þ

where 4 denotes conjunction, i.e., a logical AND operator.
If F ðtÞ ¼ 1, the frame will be chosen, otherwise it will

be discarded. The audio–visual features associated with
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two-dimensional visual feature vector at one time frame. After frame

selection, the transitions from one syllable to another have been

removed. In other words, the features are better clustered (denoted by

crosses), as compared to the original scatter plot of all the features

(denoted by dots).
the selected frames are used in both the training and
separation stages. Fig. 3 shows an example of the visual
features before (dot) and after (cross) selection. The
feature selection has essentially removed the redundant
unstable features and hence improves the spatial distri-
bution of the clusters of the lip features.

3.3. Feature-level fusion

The audio–visual coherence can be statistically char-
acterized by a GMM with I kernels:

pAV ðuðtÞÞ ¼
XI

i ¼ 1

giN ðuðtÞ9li,RiÞ, ð10Þ

where gi is the weighting parameter, li is the mean vector
and Ri is the full covariance matrix of the ith kernel. Every
kernel of this mixture represents one cluster of the audio–
visual data modeled by a multivariate normal distribution

N ðuðtÞ9li,RiÞ ¼
exp �1

2ðuðtÞ�liÞ
TR�1

i ðuðtÞ�liÞ

n o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞLþ29Ri9

q : ð11Þ

We denote li ¼ fgi,li,Rig as the parameter set, which
can be estimated by the expectation maximization (EM)
algorithm. In the traditional EM training process, all the
components of the training data are treated equally
whatever their magnitudes. Nevertheless, some compo-
nents of the audio vector with large magnitudes are
actually more informative about the audio–visual coher-
ence than the remaining components (consider, for
instance, the case of lossy compression of audio and
images using DCT where small components can be dis-
carded). For example, the first component of the audio
vector (a1ðtÞ) should play a more dominant role in deter-
mining the probability pAV ðuðtÞÞ than the last one. Also, the
components of the audio vector having very small magni-
tudes are likely to be affected by noise. Therefore, con-
sidering these factors, we propose an adapted expectation
maximization (AEM) algorithm.

I. Initialize the parameter set {li} with the K-means algorithm.

II. Run the following iterative process:

i. Compute the influence parameters bið�Þ of uðtÞ for i¼ 1, . . . ,I:

biðuðtÞÞ ¼ 1�
JuðtÞ�liJPI

j ¼ 1 JuðtÞ�ljJ
, ð12Þ

ii. Calculate the probability of each cluster given uðtÞ:

piðuðtÞÞ ¼
gipGðuðtÞ9li ,RiÞbiðuðtÞÞPI

j ¼ 1 gjpGðuðtÞ9lj ,RjÞbjðuðtÞÞ
: ð13Þ

iii.Update the parameter set {li}:

li ¼

P
tuðtÞpiðuðtÞÞP

tpiðuðtÞÞ
, gi ¼

P
tpiðuðtÞÞP

t1
,

Ri ¼

P
tðuðtÞ�liÞðuðtÞ�liÞ

T piðuðtÞÞþcfRpgiP
tpiðuðtÞÞþc

, ð14Þ

where J � J denotes the squared Euclidean distance, and c

is a constant chosen to be proportional to the number
of samples and fRpgi is the penalty term. Different from
the traditional EM algorithm, we have added an influence
parameter biðuðtÞÞ in the expectation step of the AEM
algorithm, where biðuðtÞÞ takes into account the various
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distance between the sample (i.e. the vector uðtÞ) to
different kernel centers, similar to the idea used in the
classical K-means algorithm. Therefore, the different dis-
tances between the vector uðtÞ and a candidate cluster li

will have a different impact on the probability pAV ðuðtÞÞ. In
addition, unlike our preliminary work in [15], we have
added the penalty term Rp to avoid the covariance matrix
becoming singular, which can occur when a kernel
converges on one or two sample points (typically out-
liers). This has a similar effect to a variance floor. Without
such a safeguard, the probability would approach infinity
in such cases, leading to numerical stability problems
in practical implementation. The parameter Rp can be
chosen as a diagonal matrix and the subscript p denotes
penalization.

Fig. 4 shows the audio–visual kernels for the vowels
used in Fig. 2. It can be observed that the visual kernels of
/o/ and /u/ overlap with each other, but the related audio
kernels differ greatly. On the other hand, the audio
kernels of /i/ and /u/ look similar, but their visual kernels
do not have overlap at all. This implies that the audio and
visual features are complementary to each other.

4. Resolution of permutation problem

As yk(n) is the estimate of sk(n), yk(n) will have a
maximum coherence with the corresponding video signal
vk(t). Therefore we can maximize the following criterion
in the frequency domain to address the permutation
problem:

P̂ðf Þ ¼ arg max
Pðf Þ

X
t

XK

k ¼ 1

pAV ðukðtÞÞ, ð15Þ

where ukðtÞ ¼ ½akðtÞ; vkðtÞ� is the audio–visual feature
extracted from the profile Ŝkð�,tÞ ¼ Ykð�,tÞ and the recorded
video associated with the kth speaker. If we are only
interested in an estimate of s1ðnÞ from the observations,
we can get the first separation vector pðf Þ by maximizing

p̂ðf Þ ¼ arg max
pðf Þ

X
t

pAV ðu1ðtÞÞ: ð16Þ
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Fig. 4. The audio–visual kernels for four vowels: /a/, /i/, /o/ and /u/. (a) Distribu

one standard deviation (bar). (b) The visual kernels show the spacial distributi
Since the permutation problem is the main factor in
the degradation of the recovered sources, we focus on
permutation indeterminacy cancelation for a two-source
two-mixture case (i.e., K ¼ P¼ 2). Assuming the spectral
analysis window employs an fast Fourier transform (FFT)
size of N samples from the audio mixture signal, based on
the symmetry property, we will only need to consider the
positive M¼N=2 bins. We denote v1ðtÞ as the visual
feature that we have extracted from the recorded video
signal associated with the target speaker. We also gen-
erate a complementary variable Yy1ðf ,tÞ spanning the same
frequency and time-frame space as Y1ðf ,tÞ. The proposed
sorting scheme for the alignment of the permutation
is summarized in the following table, and also shown
in Fig. 5.

Input: spectral components Yðf ,tÞ, separation matrix Wðf Þ, GMM

parameter set flig, and visual feature v1ðtÞ.

Output: aligned Wðf Þ and Yðf ,tÞ.

Initialize the degree of frequency division Imax ¼ 5.

For each i¼ 1;2, . . . ,Imax, do

Equally divide M bins into 2i�1 parts.

For each j¼ 1, . . . ,2i�1, do
(1) Let the jth frequency band F j span

ff
ðM=2i�1

Þðj�1Þþ1 , . . . ,f
ðM=2i�1

Þj
g. For f 2 F j , let Yy1ðf ,�Þ ¼ Y2ðf ,�Þ; otherwise,

Yy1ðf ,�Þ ¼ Y1ðf ,�Þ.

(2) Extract the audio feature a1ðtÞ and ay1ðtÞ from Y1ð�,tÞ and

Yy1ð�,tÞ, respectively. Let u1ðtÞ ¼ ½a1ðtÞ; v1ðtÞ�, uy1ðtÞ ¼ ½a
y

1ðtÞ; v1ðtÞ�.

(3) Calculate the audio–visual probability pAV ðu1ðtÞÞ and

pAV ðu
y

1ðtÞÞ respectively, based on the GMM model in equation (10)

and the parameter set flig that has been estimated by the AEM

algorithm.

(4) If
P

tpAV ðu1ðtÞÞ4
P

tpAV ðu
y

1ðtÞÞ, do nothing; otherwise, swap

the rows of Wðf Þ and Yðf ,�Þ for f 2 F j.

End j

End i

This scheme can reach a high resolution, which is
determined by the number of partitions 2Imax�1 at the
final division, and the larger the number Imax, the higher
the resolution. However, most permutations occur con-
tiguously in practical situations, therefore even if we stop
running the algorithm at a very ‘coarse’ resolution
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Fig. 6. Spectrograms of the sources (a), the mixtures (b) and the estimated sources without permutation alignment (c) where SINR¼0.48 dB and the

estimated sources by the proposed algorithm (d) where SINR¼7.91 dB. The upper sub-plot in (a) is the target signal.
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(corresponding to a small Imax), the permutation ambi-
guity can still be substantially reduced (e.g. stop the
iteration when the algorithm has divided the positive
frequency bins into 16 parts, i.e. Imax ¼ 5 and a frequency
band of 500 Hz).
5. Experimental results

5.1. Data, parameter setup and performance metrics

Very similar to the database used in [3,12], the corpus1

used in our research contains sequences of ‘‘V1-C-V2’’,
1 Thanks to Bertrand Rivet in GIPSA-Lab for providing us with this

multimodal database.
where ‘‘V1’’ and ‘‘V2’’ are vowels from /a/, /i/, /o/, /u/, and
‘‘C’’ stands for the consonant from /p/, /t/, /k/, /b/, /d/, /g/
or no plosive (in the case of no plosive, the sequences
are ‘‘V1–V2’’). There are 112 combinations recorded twice,
one for training and another for testing. The audio
sequences are sampled at 16 kHz in mono, 16 bit PCM
wave files, while the video sampling rate is 50 Hz and the
associated visual features are extracted by a chrome
based system with 2496 frames for training and another
2547 frames for testing.

In our experiment, the audio data were obtained by
concatenating independent sequences, with each sequence
lasting an integer multiple of 20 ms. We concatenated the
112 isolated sequences to obtain approximately 50 s audio
for training. In the same way, we chose the beginning 400
frames (approximately 8 s) of the testing data to demonstrate
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Fig. 7. Global filters in the frequency domain obtained by the FD-BSS without permutation alignment (a) and the audio–visual alignment (b). The same

mixtures and parameters as those in Fig. 6 were used. The permutation ambiguities occur in many frequency bands in (a). Therefore, the spectrum of the

recovered signal y1ðtÞ contains distortions from the other source signal s2ðtÞ, which can also be observed in Fig. 6(c). With audio–visual alignment, the

permutation ambiguities have been significantly reduced, as shown in (b) as well as Fig. 6(d).
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our algorithm. About 128 ms sliding Hamming window
(2048 taps) with 108 ms overlap (20 ms step size, to be
synchronized with the visual features) was applied in STFT.
Five-dimensional (L¼5) MFCCs as audio features were com-
puted from 24 Mel-scaled filter banks, thus the audio–visual
feature was 7-dimensional. We set the FFT size as 2048 (i.e.,
M¼1024). In the frame selection process, we reserved 62% of
features by assigning dLW ¼ 0:35,dLH ¼ 0:5, Q¼2, and aLW ¼

aLH ¼ 1. For simplicity, we only used 20 (I¼20) kernels to
approximate the audio–visual coherence.

The algorithm was tested on convolutive mixtures
synthesized on computer. We used the real room recordings
from the binaural room impulse response database (i.e. AIR
database) [35] for the mixing filters. The measurements were
recorded with or without dummy head in a low-reverberant
studio booth, an office room, a meeting room and a lecture
room respectively, of which we chose the meeting room
scenario.2 For a 2�2 mixing system, we chose two positions
for two source signals, and used the corresponding room
impulse responses as mixing filters. As a result, C2

5 ¼ 10
2 In the meeting room scenario, a dummy head was placed on a

fixed position and the room impulse responses were captured for five

different positions opposite of the head. Each room impulse has 10,923

taps (approximately 700 ms) where sampling frequency is 16 kHz, and

the reverberation time (T60) is about 300 ms.
combinations of mixing filters were used in the following
performance evaluations. The two source signals, one was the
previously mentioned 8-s truncated segment from the test
audio, and another source signal3 was continuous speech
from the XM2VTS database [36]. Gaussian white noise was
added to both mixtures at different signal-to-noise ratios
(SNRs). Fig. 6(a) shows the source signals used in our
experiments (note that only 2 s are shown here).

In the frequency domain we use the global filters and
signal to interference and noise ratio (SINR) as criteria to
evaluate the performance of our bimodal BSS algorithm at
different signal to noise ratios (SNRs). Suppose s1ðnÞ is the
target source, then in the 2�2 case

Gðf Þ ¼
G11ðf Þ G12ðf Þ

G21ðf Þ G22ðf Þ

" #
¼Wðf ÞHðf Þ, ð17Þ

SINR¼ 10 log
Ps1

Pŝ1�s1

¼ 10 log

P
nJ
PP

p ¼ 1 w1pnhp1ns1ðnÞJP
nJŝ1ðnÞ�

PP
p ¼ 1 w1pnhp1ns1ðnÞJ

: ð18Þ
3 The source signals can also be chosen from a same dataset as done

in our work [15].
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5.2. Experimental results

5.2.1. An example

In the first experiment, we show the effectiveness of our
algorithm by comparing it with the FD-BSS method without
any permutation alignment (denoted as ‘‘No Alignment’’).
For the FD-BSS, the joint approximate diagonalization
method proposed in [30] is used for source separation at
each frequency bin. Note that the same ICA algorithm was
used here for the contrast methods [30,33] in our compar-
isons in Section 5.2.2. In addition, the scaling problem is
addressed based on the minimal distortion principle [29] for
all these methods before performing the permutation align-
ment. We used the same parameter set-up as described in
Section 5.1. The room impulse responses obtained from the
AIR database are used as mixing filters, where the sources
are placed respectively on the first and fourth position of the
meeting room. Each filter has 10,923 taps, and the rever-
beration time (T60) of the meeting room is about 300 ms.
We set N¼2048 and Imax ¼ 5. No noise is added to the
mixtures. The generated mixtures are shown in Fig. 6(b).
Fig. 6(c) and (d) shows the separated sources from the
mixtures without and with our proposed algorithm respec-
tively, where it can be clearly observed that the audio–
visual approach has improved the quality of the separated
speech.
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Fig. 8. The plot of 9G119 � 9G229�9G129 � 9G219 for the noise-free case, when no per

Audio-only1 (b) in [30], Audio-only2 (c) in [33] and the audio–visual approach (

0, if the permutations across the frequency bins are correctly aligned.
Fig. 7 shows typical global filters obtained from this
experiment. Ideally the global filter should be an identity
matrix for each frequency bin. From this figure, it can also
be seen that the permutation problem is well addressed by
the audio–visual approach, as the magnitudes of G12 and G21

have been reduced considerably. Alternatively, based on the
diagonal property of the global filter matrix, we can also use
the criterion 9G119 � 9G229�9G129 � 9G219 to evaluate the con-
sistency of the permutations across the frequency bins, as
shown in Fig. 8. By comparing Fig. 8(d) with Fig. 8(a), it can
be observed that our algorithm successfully corrected the
permutation ambiguities at most frequency bins, as the
values of 9G119 � 9G229�9G129 � 9G219 are consistently positive
across the frequency bins. In addition, our algorithm per-
forms better than the two baseline methods shown in
Fig. 8(b) and (c). To observe the effect of noise on the
permutation errors, we have also plotted the quantity 9G119 �
9G229�9G129 � 9G219 for the case where 10 dB white Gaussian
noise was added to the mixtures, as shown in Fig. 9, both
the audio-only methods failed to group the spectral com-
ponents accurately in the frequency band between approxi-
mately 1700 Hz and 3000 Hz, which lies in the range of
frequencies that are essential to human intelligibility of
speech. The audio–visual method provides more accurate
alignment in this case. The results and comparisons in terms
of SINR measurements are provided in the next section.
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mutation alignment is conducted (a) and the permutations are aligned by

d). 9G119 � 9G229�9G129 � 9G219 should be consistently larger or smaller than
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Fig. 9. The plot of 9G119 � 9G229�9G129 � 9G219 for the case where 10 dB Gaussian white noise was added to the mixtures. The meanings of the sub-plots

correspond similarly to those in the noise-free case shown in Fig. 8. (a) No alignment. (b) Audio-only1. (c) Audio-only2. (d) Audio–visual.

Table 1
The effect of the choice of Imax on the separation performance measured

by SINR in dB.

Imax 3 4 5 6

SINR (dB) 6.39 8.98 8.21 6.40
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The magnitude spectra in Figs. 7–9 appear somewhat
peaky, which implies that a certain amount of scale
ambiguity remains despite having applied the MDP-based
post-processing to the unmixing filters. However, our
informal listening tests show that the effect of the
peakedness of the frequency spectrum on the perceptual
quality of the recovered speech signals is negligible. In
other words, we did not observe strong distortions of the
signal as a result of the residual spectral peaks.
5.2.2. Comparisons

First, we compare the effect of different frequency
partitions (i.e. the choice of Imax) on the performance of
the proposed method for permutation alignment. To this
end, we used the same experimental set-up as described
in Sections 5.1 and 5.2.1, except the following two
changes. First, we change the values of Imax by selecting
it from [3 4 5 6]. Second, we perform 10 experiments
in each of which the mixing filters were selected from the
10 sets of the room impulse responses described in
Section 5.1. The average results over the 10 different sets
of mixtures are shown in Table 1. From this table, it can
be observed that the different number of frequency
partitions does influence the separation performance.
In general, Imax ¼ 4 or 5, which corresponds to 8 or 16
partitions respectively, gives reasonably good perfor-
mance. More partitions however do not increase the
system performance. We choose Imax ¼ 5 for subsequent
performance comparisons.
We then compare our algorithm with other de-permu-
tation methods using only audio signals. We use the
method in [30] (denoted as ‘‘Audio-only1’’) and the
approach in [33] (denoted as ‘‘Audio-only2’’) as contrast
algorithms for permutation alignment. Audio-only1 inte-
grates information across different frequencies with the
assumption that signal profiles in different bins undergo
interrelated changes, even for distant frequency channels.
Audio-only2 exploits the cross-frequency correlation
between neighboring frequency bands based on a hier-
archical structure.

We evaluate the performance of our algorithm and the
above baseline algorithms with respect to different signal
to noise ratios (SNRs) and different FFT sizes. First, we fix
the parameters as used in above sections, and only change
the values of FFT size among [512 1024 2048 4096]. For
each FFT size N, 10 independent tests were run on the 10
different sets of mixtures for each of the algorithms under
comparison. No noise was added to these mixtures. The
average SINR (dB) results are shown in Table 2. From this
table, it can be observed that the choice of N has impacts
on the separation performance. For example, a smaller N,
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Table 2
SINR measurements for different FFT size (i.e. N).

N 512 1024 2048 4096

No alignment 2.19 1.85 3.53 3.87

Audio-only1 4.23 6.36 6.12 7.55

Audio-only2 2.38 2.76 8.69 8.88
Audio–visual 4.15 4.56 8.21 8.98
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such as N¼512, gives relatively lower performance for
almost all the tested algorithms. Our proposed algorithm
offers competitive performance in all the test cases.
N¼4096 appears to offer better performance for the
majority of the algorithms. However, a higher computa-
tional cost is usually involved for a larger N when
performing permutation alignment.

Then, we changed the SNR level from 5 dB to 30 dB
while maintaining N¼2048, Imax ¼ 5, and other para-
meters as set in the above two sections. For each SNR,
again 10 independent sets of tests were run for each of the
algorithms under comparison. The average results mea-
sured by SINR are shown in Fig. 10. It is shown from this
figure that the proposed algorithm tends to offer better
performance for a higher noise level. For example, when
SNR¼10 dB, our algorithm provides 0.73 dB improve-
ment over Audio-only1 and 1.75 dB over Audio-only2.
For the noise-free case (not plotted on this figure), our
algorithm gains 2.08 dB improvement over Audio-only1,
but is 0.48 dB lower than Audio-only2. This suggests that
the advantage of the audio–visual method is more promi-
nent for noisy mixtures than the noise-free ones.

6. Conclusions

We have presented a new audio–visual convolutive BSS
system. In this system, we have used the MFCCs as audio
features, which were combined with geometric visual fea-
tures to form an audio–visual feature space. We have
considered using some dynamic features in video for robust
feature selection in audio–visual space. An adapted EM
algorithm has been proposed by exploiting the different
influences of the audio features for statistically modeling
the audio–visual coherence. A new recursive sorting scheme
based on the maximization of the audio–visual coherence has
also been developed to solve the permutation problem.
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