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Abstract—Deep neural networks (DNN) have recently been
shown to give state-of-the-art performance in monaural speech
enhancement. However in the DNN training process, the per-
ceptual difference between different components of the DNN
output is not fully exploited, where equal importance is often
assumed. To address this limitation, we have proposed a new
perceptually-weighted objective function within a feedforward
DNN framework, aiming to minimize the perceptual difference
between the enhanced speech and the target speech. A perceptual
weight is integrated into the proposed objective function, and
has been tested on two types of output features: spectra and
ideal ratio masks. Objective evaluations for both speech quality
and speech intelligibility have been performed. Integration of our
perceptual weight shows consistent improvement on several noise
levels and a variety of different noise types.

I. INTRODUCTION

Recent advances in the speech processing field have wit-
nessed the deep neural network (DNN) [1] as a versatile and
effective tool in many applications, e.g. speech recognition [2]
and speech synthesis [3]. More recently, the DNN has been ap-
plied to speech separation [4]–[7] and enhancement/denoising
[8]–[10], particularly for monaural recordings [4]–[6], [8]–
[10]. When processing mixtures of target speech signals and
competing noise, speech separation may be considered as
speech enhancement.

In order to recover the underlying target speech embedded
in noise, most of the deep neural networks, either recurrent
[4], [5], [10] or feedforward [4], [6], [8], [9], [11], are trained
to optimize some objective functions such as the mean squared
error (MSE) between the true and predicted outputs. The
inputs to the DNN are often (hybrid) features such as time-
frequency (TF) domain spectral features [4]–[6], [8]–[10] and
filterbank features [4], [5], [11]; while the output can be the
TF unit level features that can be used to recover the speech
source, such as ideal binary/ratio masks (IBM/IRM) [4]–[6],
[11], direct magnitude spectra [9], [10] or their transforms
such as log power (LP) spectra [8].

However, existing methods employing the prevailing energy
minimization scheme have an essential limitation, that the
perceptual importance of each predicted component is not
considered, where each output unit often bears the same
importance in the DNN learning. Take the IBM output for
example, suppose there are two TF units both dominated

by the target speech: one is perceptually audible with high
energy and the other one is inaudible with very low energy.
The listener’s perception on the target speech may not be
considerably affected even if the inaudible unit is further
suppressed. However, if both units are mis-classified as noise-
dominated, the DNN optimization in the back-propagation
process will then use a gradient, where contributions from
both units are equally weighted. As representative components
possessing high energy are often more important to the lis-
tener’s perception than those with lower energy [12]–[14], the
current back-propagation process does not correctly reflect the
psychoacoustic findings on human listeners. To address this
issue, we attempt to integrate a novel perceptually-weighted
objective function into a feedforward regression DNN model.
The proposed weighting method takes both the groundtruth
and estimated speech signals into account. It intends to main-
tain the perceptually important TF units in the groundtruth,
while suppressing existing distortions in the estimated signal.

The remainder of the paper is organized as follows. Sec-
tion II introduces the overall proposed scheme, followed by
experimental results and analysis in Section III. Conclusions
and insights for future work are given in Section IV.

II. THE PROPOSED METHOD

Considering an additive model which assumes the micro-
phone picks up the signals from both the target speech and
the noise sources:{

Z(t, f) = S(t, f) +N(t, f),

z(t) = s(t) + n(t),
(1)

where Z, S and N are respectively the spectra of the mixture,
the target and the noise after applying short time Fourier
transform (STFT) to the time-domain signals, indexed by the
TF location (t, f); z, s and n are the spectra vectors at each
time frame. In order to recover the target speech, a five-layer
(L = 5, with three hidden layers) feedforward regression DNN
is utilized in our proposed system. The dimension, i.e. the
number of neurons, at the l-th layer is denoted as Dl. The
regression model has shown good performance in speech en-
hancement [8], using LP features ZLP(t, f) = log(|Z(t, f)|2)
where | · | is the modulus operator. At each time frame t, the
LP vectors associated with the mixture and target speech are



denoted as zLP(t) and sLP(t) respectively, both ∈ RNfft/2+1,
with Nfft being the FFT size.

At the input layer, we concatenate LP spectra in the
2M+1 neighboring frames as the input feature vector x(t) =
[zLP(t−M)T , .., zLP(t+M)T ]T where the superscript T denotes
transpose, such that the strong temporal correlation in speech
signals can be exploited [8]. At the hidden layers, rectified
linear units (ReLU) are employed, due to its simplicity in
gradient calculation and quick convergence in the training
process [15]. At the output layer, we have considered two
types of features as the output vector y(t): the LP spectra
sLP(t) as well as IRM of the target speech m(t) = s2(t)

s2(t)+n2(t) .
Linear units are used in the output layer if the target is the LP
spectra vector y(t) = sLP(t), and sigmoid units are employed
instead if the output is the IRM y(t) = m(t), such that the
mask value is confined in the range of (0, 1).

Hereafter, we omit the time index in these feature vectors
and denote the i-th element in y and ŷ as yi and ŷi respec-
tively. This notation also generalizes to other feature vectors.

Between each two neighboring layers l and l + 1, l =
1, ..., L− 1, there exist a transition matrix W(l) ∈ RDl×Dl+1

and a bias vector b(l) ∈ RDl+1 . The parameter set Θ =
{W(l),b(l)}l, l = 1, ..., L − 1, together with these neurons,
compose the mapping process f(x) := x ∈ RD1 → ŷ ∈ RDL .
In order to gain good speech quality, the DNN training
process needs to find the optimal parameter set such that
the predicted signal ŷ = f(x) is as close to y as possi-
ble. As introduced earlier, minimization of the MSE term
1
DL

∑DL

i=1(ŷi − yi)2 is very popular in conventional methods
in which the distortions caused by each element contribute
equally to the DNN convergence. However, the relationship
between the predicted speech quality and the MSE term is
not a simple linear mapping, thus a lower MSE does not
necessarily lead to a better quality. Speech quality is not
clearly defined, and many factors can affect speech quality
[16]. Yet, from the psychoacoustic point of view, auditory
perceptual models have been utilized in several audio quality
evaluation metrics [12]–[14], where signal components with
high energy often play more important roles than low-energy
components. These perceptual evaluation metrics spark us to
investigate and incorporate the energy-dependent perceptual
importance into the DNN learning. Therefore, we present a
new objective function:

fopt = argmin
f(·)
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QDL
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DL∑
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+
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 ,

(2)
where Q is the total time frame number, ŷ = f(x) and

ŝLP
i =

{
ŷi, if y = sLP,
2 log(ŷi) + zLP

i , if y = m.
(3)

The top row in Eq. (2) is the perceptually-weighted squared
error. The bottom row contains the penalty terms to mitigate
the overfitting problem, where ‖ · ‖1 and ‖ · ‖2 are l1 and l2
norm for sparsity and energy regularization terms, respectively.

In some existing perceptual evaluation metrics, high-energy
components play more important roles. For instance, in [12],
units with high-energy distortion will greatly affect the per-
ception; in [13], the quality measure is weighted by the in-
ternal representation energy of the degraded signal. Motivated
by this mechanism, we proposed a novel perceptual weight
wei(ŝ

LP
i , s

LP
i ) model that gives more priority to high-energy

components and distortions, based on the LP of both the
original target speech and the predicted one:

wei(ŝ
LP
i , s

LP
i ) = g(sLP

i ) + (1− g(sLP
i ))g(ŝLP

i ) (4)

where g(·) is a sigmoid function with a translated and scaled
argument

g(s) =
1

1 + exp(−(s− µ)/σ)
, (5)

which aims to approximate the perceptual importance of a
TF unit. Note that, since a defined mathematical formulation
between the perceptual importance and signal energy does not
exist, the perceptual importance function g(·) used here is an
empirical balance between boosting high energy components
and suppressing low energy components.

Our proposed weight model wei(ŝ
LP
i , s

LP
i ) contains two parts,

which are a trade-off between the following two extreme
scenarios:
• When the target speech signal sLP

i is perceptually impor-
tant, i.e. g(sLP

i )→ 1, we have wei(ŝ
LP
i , s

LP
i ) ≈ g(sLP

i )→ 1,
and any distortion between ŝLP

i and sLP
i will be taken into

account in the DNN learning.
• When the target speech signal sLP

i is perceptually unim-
portant, i.e. g(sLP

i )→ 0, we have wei(ŝ
LP
i , s

LP
i ) ≈ g(ŝLP

i ). If
the predicted unit g(ŝLP

i )→ 0, which means the distortion
is treated as if it does not affect perception, then the
overall weight is suppressed. Otherwise, the distortion
has caused perceptual change in the predicted data that
we want to avoid, thus the overall weight is maintained.

III. EXPERIMENTS

Here we evaluate our proposed algorithm on large-scale
data, and analyze the experimental results. Considering either
LP spectra or IRM as the DNN output, we have two baselines
(denoted as “DNN-LP” and “DNN-IRM”) and two algorithms
with the proposed perceptual weight (denoted as “DNN-LP-w”
and “DNN-IRM-w”).

A. Data and setup

The Harvard sentences [17] uttered by 8 speakers (5 male,
3 female) were used to generate the noise-corrupted mixtures
with a sampling rate of 16 kHz. A total of 1598 sentences
were prepared, of which 80% were used for training and
20% for testing, respectively. As for the noise, we used the
100 Nonspeech Sounds [18], which were downsampled to
16 kHz. We considered three different signal to noise ratios



(SNR), [0, 5, 10] dB. At each SNR level, we randomly chose
10 different noise sequences for each training speech sentence
to generate 10 additive mixtures. In total, approximately 40-
hour training and 10-hour testing data were generated.

To extract training features, each mixture was normalized
thus that its maximum magnitude was 1, while the associated
target and noise were equally scaled with the same value. Then
512-point STFT (Nfft = 512) with half-overlapped Hamming
window was applied. At each frequency bin, the LP features
were further normalized with mean and variance calculated
from all the mixtures. We chose M = 5 such that in total 11
frames covering around 200 ms were used to extract the input
feature vector. The training data contained pairs of vectors
(x ∈ R2827,y ∈ R257), such that the input and output layer
dimensions were D1 = 2827 and D5 = 257 respectively. We
set the three hidden layers with 3000 neurons for each layer. Of
the training dataset, 80% was used for training (32 hours) and
the remaining 20% for validation. In the objective function,
we set λ1 = 100 and λ2 = 1000 for the regularization terms,
and µ = −7 and σ = 0.5 for the perceptual weight (Eq. (5)).
Fig. 1 illustrates the proposed perceptual weight over the LP
spectra associated with the dry speech signals. The cumulated
weights, i.e., integral of the product of distribution and the
weight, for band [0 1] kHz, band [7 8] kHz, and overall band
are respectively 82%, 41% and 59%.

Fig. 1: Distributions of the LP features (left axis) from
normalized clean speech signals and the proposed perceptual
weight (right axis), at different bands. In the low-frequency
band [0 1] kHz, most features have high energy, and only
12% data has reduced weights lower than 0.5. However, the
high frequency band [7 8] kHz is dominated by low-energy
features and thus 67% data has greatly suppressed weights.
Overall, 38% data has suppressed weights lower than 0.5.

In the backpropagation of DNN training, we chose to use
root mean square propagation optimization (RMSProp) [19],
for its learning rate adaptation. The dropout was set to 0.5.
Mini-batches spanning 4096 frames lasting about 1 minute
were used for each update, and 50 mini-batches lasting about
1 hour were used for each iteration. The order of the training
data were randomized after each epoch.

B. Results and analysis

We first show the convergence rate in Table I using the
loss ignoring the regularization terms, i.e. the top-row value

in Eq. (4). The losses were calculated on the validation dataset
and were normalized such that losses at the 0-th iteration are
with unit values.

TABLE I: Normalized loss over iterations, with (in gray) or
without the perceptual weight.

Normalized
loss

Iteration number
5 10 20 50 100 converged

DNN LP w 0.11 0.10 0.09 0.08 0.07 0.07
DNN LP 0.13 0.12 0.11 0.11 0.10 0.09

DNN IRM w 0.26 0.22 0.20 0.17 0.15 0.12
DNN IRM 0.38 0.35 0.35 0.28 0.26 0.24

From Table I we notice that LP-based DNN methods have a
much faster convergence rate than IRM-based methods. Note
that, the converged values for the LP-based DNN methods are
smaller than these by the IRM-based DNN methods, which
means LP features yield global minimum values that might
introduce a higher gradient in the backpropagation, which
is also proved by their quick convergence rate. However, it
may not mean that LP features are better than IRM features
for enhancement. Considering only LP features or only IRM
features, we notice that methods with the perceptual weight
converged to lower loss values, consistently for all iteration
numbers. In other worlds, the converged model using a per-
ceptual weight yields a much reduced error proportional to
the initial weighted error. An example of using the above
four algorithms is shown in Fig. 2. It can be observed that
more details are maintained exploiting the perceptual weight
(left bottom two). However using the conventional methods,
some spectral components/regions with high energy are more
suppressed (right bottom two).

Objective quality and intelligibility of the signals enhanced
by the four approaches were evaluated respectively using
signal to distortion ratio (SDR) and perceptual evaluation of
speech quality (PESQ) [12], and short-time objective intelligi-
bility (STOI) [20]. The same evaluations were performed on
the input signals without processing as well, whose average
results were denoted as “Input”. For each SNR scenario, the
average results from 3200 simulated mixtures were calculated,
as shown in Fig. 3. We notice that overall IRM-based meth-
ods (“DNN IRM w” and “DNN IRM”) outperform LP-based
methods in terms of SDR. However, “DNN LP w” gains the
best performance in PESQ. One reason is that the above
methods introduce different levels of distortion components
such as artifact and interference, which have different impact
on the perceptual evaluation [14]. The STOI results show
a similar trend as the SDR results, with reduced difference
between the two types of features. However, the two LP-
based methods suffer in STOI as compared to the input signals
without processing at 10 dB SNR noise scenarios. This is
because the speech intelligibility is high in such low-noise
conditions, and the LP-based DNN models have introduced
extra artifacts that degrade speech intelligibility. Most impor-
tantly, our proposed perceptual weight shows advantages over
the conventional methods over all the evaluation metrics, and
consistent improvements can be observed over all SNR levels.



Fig. 2: An example of normalised LP spectrograms of the
groundtruth speech (top) and its corrupted mixture by siren
noise at 0 dB SNR (second row), and the enhanced LP by
DNN models converged from the four approaches. Note that
the groundtruth and enhanced LP are associated with the
highlighted part in the groundtruth and mixture.

On average, 0.18 improvement in PESQ, 1.6 dB improvement
in SDR and 0.03 improvement in STOI were obtained. This
advantage is more significant when we consider LP as the
DNN output. To test the statistical significance of our proposed
scheme, we also ran a t-test as follows. For each of the three
evaluation metrics (PESQ, SDR, STOI) and the two types of
DNN output (LP, IRM), we performed the paired-sample t-
test to 9600 (3200 samples, 3 SNR levels) pairs of evaluation
results. For each of the above conditions, the p-value< 10−100

was obtained. A p-value less than a threshold (e.g. 0.05) rejects
the null hypothesis that, there is no performance difference
with or without the perceptual weight. As a result, statistically
significant results are justified and thus prove the effectiveness
of our proposed weight model.

IV. CONCLUSIONS

We have proposed a new perceptual weight model that can
be integrated into DNN frameworks for enhancing speech
from monaural recordings. The perceptual weight model takes

0 5 10 Overall
1

1.5

2

2.5

3

3.5

4

P
E

S
Q

 (
-0

.5
~

4
.5

)

Input

DNN_IRM

DNN_IRM_w

DNN_LP

DNN_LP_w

0 5 10 Overall
0

5

10

15

20

S
D

R
 (

d
B

)

Input

DNN_IRM

DNN_IRM_w

DNN_LP

DNN_LP_w

0 5 10 Overall

Input SNR (dB)

0.7

0.75

0.8

0.85

0.9

0.95

1

S
T

O
I 
(0

~
1
)

Input

DNN_IRM

DNN_IRM_w

DNN_LP

DNN_LP_w

Fig. 3: Objective evaluations using PESQ, SDR and STOI at
different SNR levels.

psychoacoustic characteristics into account. Having tested on
a feedforward regression DNN, the proposed approach showed
consistent improvement in both objective speech quality and
intelligibility for the enhanced signals, as compared to the
conventional methods with uniform weights. In the future,
we plan to investigate the speech perception mechanisms
at feature levels to further improve the objective function.
Also, the optimal choice of the shift and scale parameters in
the proposed weight model may be made more flexible. For
instance, frequency-dependent parameters could be employed.
In addition, we will consider generalization to other DNN
structures such as recurrent neural networks.
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