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ABSTRACT 

Probabilistic models of binaural cues, such as the interau­
ral phase difference (lPD) and the interaural level difference 
(lLD), can be used to obtain the audio mask in the time­
frequency (TF) domain, for source separation of binaural 
mixtures. Those models are, however, often degraded by 
acoustic noise. In contrast, the video stream contains rele­
vant information about the synchronous audio stream that is 
not affected by acoustic noise. In this paper, we present a 
novel method for modeling the audio-visual (AV) coherence 
based on dictionary learning. A visual mask is constructed 
from the video signal based on the learnt AV dictionary, and 
incorporated with the audio mask to obtain a noise-robust 
audio-visual mask, which is then applied to the binaural sig­
nal for source separation. We tested our algorithm on the 
XM2VTS database, and observed considerable performance 
improvement for noise corrupted signals. 

Index Terms- Binaural source separation, interaural dif­
ference, audio-visual dictionary learning, matching pursuit, 
noise reduction. 

1. INTRODUCTION 

For binaural signals, exploiting the interaural cues IPD and 
ILD [1], we can statistically evaluate the probability of each 
time-frequency (TF) point of the audio mixture that belongs 
to each source, and therefore obtain TF-domain audio masks 
for source separation. However, the parameter estimation of 
an interaural statistical model is degraded by noise and long 
reverberation. To overcome this limitation, we propose a 
novel method exploiting both binaural and visual cues. 

Visual cues have the potential to improve the intelligibil­
ity of noise corrupted speech, since they are not affected by 
acoustic noise. Video focused on the mouth region has proved 
useful in separation matrix estimation for blind source separa­
tion (BSS) [2], mitigating the ambiguities of convolutive BSS 
[3, 4], and providing other information such as the activity 
information to assist the audio domain separation [5]. 

To exploit the additional information provided by the vi­
sual cues, we propose a novel audio-visual (AV) dictionary 
learning method. Each AV atom of the dictionary contains a 
short audio segment and a concurrent video segment that are 
bimodal-coherent [5, 6]. In other words, the occurrence of 
one modality (e.g., visual lip movements) often indicates the 
existence of the other (e.g., the utterance of words). 
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In this paper, we develop a dictionary learning method to 
capture the audio-visual coherence, which is then used as an 
additional cue to refine the TF mask obtained by the binaural 
cues. The source signal is reconstructed by applying the TF 
mask to the mixture spectrogram, followed by an inverse short 
time Fourier transform (STFT). 

2. BINAURAL SOURCE SEPARATION 

A source signal arrives at the left ear I (n) and the right ear 
r (n) (where n is the discrete time index) with different time 
delays T and attenuations, that can be obtained from the fol­
lowing equation: 

L(m,w)/R(m,w) = lOa(,;,ow) ejq,(m,w), (1) 

where L( m, w) and R( m, w) are the STFTs of l( n) and r ( n) 
respectively, at the TF point (m, w). a ( m, w) is the ILD and 

¢(m, w) is the IPD, which can be statistically modeled with 
two Gaussian distributions [1]: 

{ PIPD(m, wli, T) rv N(�iT(W); o"lAw)) 
PILD(m, wli) rv N(f-Li( w); 17;( w)) 

(2) 

where PIPD(m, wli, T) is the likelihood of ¢(m, w) being orig­
inated from source i at delay T, while PrLD(m, wli) is the like­
lihood of a ( m, w) being originated from source i, if the bin­
aural signals are mixtures of several sources. The parameter 
set { �iT (w), CJ;T (w), f-Li (w), 17; (w) } can be estimated via the 
expectation maximization (EM) method: 

• E step. Calculate the posterior probability of a TF point 
(m, w) coming from source i at delay T: 

(. I ) 
- PIPD(m,wli,T)PILD(m,wli)'PiT 

P t, T m, w - '\"' 
( I· ) ( I .) 

, 
�j PIPD m, w J, T PILD m, w J 'PjT 

where 'PiT is the overall probability of a TF point com­
ing from source i at delay T. 

• M step. Update the parameters. 

�iT (w) and CJ;T (w) are updated by the expectations over 
m, while f-Li (w) and 17; (w) are over m and T, and 'PiT 
is the expectation ofp (i, Tim, w) over m and w. 

Once converged after several iterations of EM, we can ob­
tain the TF mask for sourcei: Mi(m,w) = 2:TP(i,Tlm,w). 
Using this mask, we can estimate source i from either 

L(m, w) or R(m, w), by Si(m, w) = Mi(m, w)L(m, w). 
More details about this technique can be found in [1]. We 



denote TF mask that contributes to the reconstruction of the 
target speech as Ma (m, w ) . 

However, the binaural cues of IPD and ILD are seriously 
affected by acoustic noise. To address this limitation, we in­
corporate the visual information through bimodal coherence 
modeling based on AV dictionary learning. 

3. AUDIO-VISUAL DICTIONARY LEARNING 

We aim to capture the bimodal-coherent parts of an AV se­
quence, but not to code the whole sequence. Using a similar 
bimodal dictionary learning framework described in [6], we 
develop a new AV dictionary learning method. We denote an 
AV sequence as follows 

'I/J = ('l/Ja; 'l/JV) 
where a and v denote audio and visual modalities, and 

'l/Ja = (1j;a(m)) E RM,'l/Jv = (1j;V(y, X, I)) E RYxxxL 

in which m is the time frame index of the short-term energy 
function 1j;a (m) derived from the audio stream, I is the im­
age frame index, and y, x denote the pixel coordinates. Simi­
larly, we define the AV atom in the redundant [5, 6] dictionary 
V = {1>k},k = 1,2, ... ,K as 1>k = (1)'k;1>'k) where 1>'k = 

(¢'k(m)) E RM and 1>% = (¢%(y,x,l)) E RYxXxL. We also 
define an AV segment taken from 'I/J as if;m = (if;in; if; � 'I') yx 
which has the same dimension as 1>k> and if;in = [1j;a(m + 
1), ... , 1j;a(m+M)]T E RM and if;�'I' 

= 'l/JV(f;+l : f;+Y, x+ yx 
1 : x + x,i + 1 : [+ L) E RYxXxL, where m and f;,x,i 
indicate the locations of the segment on the AV sequence, and 
the superscript T means transpose. 

Using the atoms chosen from the dictionary V and their 
translations I , the AV sequence can be coded as: 

N (1j;a(m) ) � (Ci¢b' (m - mi) ) 
1j;v (y, x, I) 

� 8 ¢'b,(y - Yi, x - Xi, I - Ii) 
(3) 

where 'I/J is approximated by the combination of multiple 
atoms indexed by bi and their translations parameterized 
by mi, Yi, Xi, Ii, and Ci is a scaling factor for approximat­
ing the audio sequence. To synchronize audio and visual 
sequence, Imdf: - ldf�1 < l/f� is enforced, assum­
ing f� < f:, where f: and g are respectively the frame 
rates of the audio and visual sequences. The parameter set 
n = {bi, Ci, mi, Yi, Xi, ld, i = 1, ... , N can be found by the 
matching pursuit (MP) technique [7]. In the i-th iteration of 
MP, bi-th atom 1>bi is chosen to fit 'I/J the best. 

To find these parameters, we define the matching criterion 
as follows, which measures how good atoms 1>ks are to fit 'I/J: 

rbi, mi, Yi, Xi, Ii] = 

argmax ( 1< .1.0; A,.a > 1 · e( -(..p�5[<t>'y/(Jn . v".) (4) , 'Pm' 'Pk yxl ' [k,m,y,x,/] 
where m, f;, x, [ are all the possible temporal and spacial shifts 
of 1>k over 'I/J. (Tv is a weighting constant. Vyxi is the temporal 
variance of if;� 'I" i.e., the mean value of the variances of if;� 'I' yx yx 

I N is the number of used atoms and the translated versions of these 
atoms. In practice. N > K. 
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over the third (temporal) dimension. 1<'" >1 is the inner 
product modulus and the overline calculates the mean value 
over all elements. After the i-th iteration, contributions of 1>b, 
to 'l/Ja will be removed: 

'l/Ja(mi + 1: mi + M) +-if;r:n, - Ci1>b, , (5) 

where Ci is the audio coefficient calculated as 1< if;r:ni , 1>b, > I · 
In equation (4), the first term evaluates how 1>'k fits 'l/Ja 

segment; the second term exponentially computes the simi­
larity between 1>% and 'l/Jv segment; the third term promotes 
dynamic atoms, to avoid visual atoms converging to static 
background. The dictionary can be learnt by two steps iter­
atively: 

Input: A training AV sequence 'IjJ = ('ljJa; 'ljJV) 
Output: An AV dictionary D = {<pd, k = 1,2, ... , K 
f'oreach iter = 1 : Max! ter do 

- Coding step 

f'oreach i = 1 : N do 
• Find {bi' Ci, mi, Yi, Xi, li} to maximize the criterion 

(4) using MP. 
• Calculate audio residue with equation (5). 

end 
- Learning step 

f'oreach k = random permute(l : K) do 

end 
end 

Ik = {i}, subject to bi = k and i = 1,2, ... , N. 
• <Pk update. 

* f'oreach i E Ik do 
I 'ljJa(mi + 1 : mi + M) +- if;::ni + Ci<Pk' 

end 
* Apply singular value decomposition (SVD) to q,k 
whose columns are if;::n" i E Ik. 
* Update <Pk with the first left singular vector. 

* Update Ci, i E Ik with elements in the first right 

singular vector multiplied by the first singular value. 

* f'oreach i E Ik do 
I 'ljJa(mi + 1: mi + M) +- if;::n, - Ci<Pk' 

end 
• <Pk update. 

<Pk = �iEIk if;�,x,lj �iEIk 1. 

The average scaling factor for the k-th atom is: 

Ck = LiEIkCb) LiEIk1, (6) 

which is for the visual mask generation in the next section. 

4. VISUALLY CONSTRAINED TF MASK 

Once V is obtained, the testing sequence 'I/J can be mapped 
onto V to obtain their coding coefficients. As the audio test 
sequence 'l/Ja is obtained from mixtures of speech sources 
contaminated by noise, we will only map the visual sequence 
'l/Jv, and then use the coherence and synchrony between audio 
and visual sequence to predict the audio sequence ,(j;a which 
is then used to generate a visual mask Mv(m). The visual 
mask is further integrated with the audio mask Ma (m, w ) 



based on a non-linear function. 
First, we decompose 'ljJv using visual atoms from V via 

maximizing the following criterion using MP: 

[b y. x l ]  = argmax (e( -(..pgx[-4>'fY/<Jn . V ,) (7) 2, z, z, to "  fj5;l ' 
[k,j),x,l] 

which is the product of the last two terms in equation (4). 
y, X, [ are all the possible localization parameters of 1>% over 

'ljJv. Using N translated atoms, the bimodal-coherent part (pv 
of'ljJv can be approximated as 

,(j;V(y,x,l) = L�l¢bi(Y - Yi,X - xi,l - li), (8) 

Due to the synchrony and coherence of the AV atoms, the 
audio sequence (pa for the target speaker can be predicted by 

,(j;a(m) = L�lcbi¢b,(m - mi), (9) 

where mi = round(li * f� / f�). By comparing 1jJa(m) (taken 
directly from the binaural mixtures) and ,(j;a(m), we can gen­
erate a frequency-independent visual mask: 

otherwise, 
(10) 

which is then integrated with the audio mask Ma (m, w) as 
follows. 

In the E step of the first iteration of EM for binaural pa­
rameter estimation, we update the posterior probability as­
suming the first output is the target signal: 

p(l,Tlm,w) +-- p(l,Tlm,w)Mv(m). (11) 
This essentially removes components not coming from the 
target speech. As a result, in the M step, the estimation of the 
parameters associated with the target speech becomes more 
accurate. 

After the audio mask Ma (m, w) and the visual mask 
Mv (m) are both obtained, we apply the power law trans­
formation to Ma(m, w), where the frequency-independent 
power coefficients r are determined on the basis of Mv(m), 
as shown in Fig. 1: 

Mav(m,w) = Ma(m,wr(Mv(m)). (12) 
Several of the power coefficients (e.g., r(l) = 4, r(0.25) = 
2 ... ) are fixed, and the rest r(Mv(m)) can be obtained via 
curve fitting techniques, e.g., spline interpolation. With this 

: 1'(0.50) = 1.0 

: r(O.75) = 0.6 

: 1'(1}=0_3 
o �'-'=--'-':::�---i--­

o IMa(m,w) o 0.25 0.5 0.75 IMv(m) 

Fig. 1. Visually constrained TF mask generation. 

power law, Mav (m, w) will be amplified when the Mv (m) 
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is high (> 0.5), otherwise, it will be attenuated. Finally, we 
apply the AV mask to either L(m,w) or R(m,w), to obtain 
the separated source in the TF domain, e.g. 81 (m, w) = 
Mav(m, w)L(m, w). which can be transformed back to the 
time domain to obtain the audio-visual separated signal. 

5. EXPERIMENTAL RESULTS 

5. 1. Data setup 

The audio-visual data used in our experiments were from the 
XM2 VTS database [8]. We selected 4 sequences of a target 
speaker (subject ID: 38) reading digits in two different ses­
sions. Three of them were concatenated for training the AV 
dictionary, lasting about 56 seconds with L = 1442 frames in 
total. The remaining one was used for testing. The sampling 
rates for audio and video were 16 KHz and 25 Hz, respec­
tively. We first manually cropped a rough mouth region of 
86 x 140(Y = 86, X = 140) pixels for each frame as 'ljJv. 
The audio energy vector 'ljJa was extracted from 400 ms over­
lapping Hamming window with 300 ms overlap. The audio 
resolution became f� = 100, while f� = 25. 

5.1.1. AV dictionary learning and visual mask 

We set the dictionary size K = 10, the audio atom length 
M = 48 and the video atom size Y x X x L = 60 x 120 x 12. 
IterMax = 100 iterations were run. At most N = 96 ;::::: 
(0.8 x 1442) / L atoms and their translations were used to rep­
resent the audio-visual signal, where 0.8 denotes the sparsity. 
After the AV dictionary learning, the bimodal-coherent parts 
were learnt. Three of the learnt atoms are shown in Fig. 2. 

AE---- : 
v 

Fig. 2. The AV atoms obtained by the dictionary learning. 

Then we can decompose the test video 'ljJv using the MP 
method with equation (7) and reconstruct {pa using equation 
(9). Comparison between {pa and the ground truth is shown 
in Fig. 3, for an 8-second signal. 

5.1.2. Binaural signals 

We used the Aachen Impulse Response (AIR) database [9] to 
generate the binaural mixtures. We chose the 'stairway' envi­
ronment with a dummy head. The target speaker was in front 
of the dummy head, and we gradually changed the azimuth 
ex of the competing speaker on the right side from 0° to 75° 
with an angle increment of 15°. We varied the distance d be­
tween the speakers and the dummy head (l m, 2 m and 3 m), 
introducing different direct-to-reverberant ratios (DRRs). 



0.8 
Q) � 0.6 
'", 
I 04 

-- Reconstrction 
""'-"--'-""--''-.l..L-'---L....:II....-J..U.L---'''----''''---ll.LLlL-'--.J''-'1..J1 - - - Ground truth 

4 
Time (sec) 6 8 

Fig. 3. Reconstructed audio sequence (solid) against the ref­
erence from the clean audio sequence (dashed). 

The competing speech was randomly chosen from the 
other audio sequences of the XM2VTS database, composed 
of digits or other continuous speech. Gaussian white noise 
(GWN) was added at different signal to noise ratios (SNRs). 

5.2. Performance comparison 

We compared our method with the benchmark method pro­
posed in [1]. The signal to distortion ratios (SDRs) were used 
as the performance metric. To investigate how the reverbera­
tions influence the performance, we first evaluated the results 
by varying d with respect to a. For each a, we randomly 
chose 5 different competing speech signals for separation, and 
produced the average result for the target speech signal. No 
noise was added and we used 8-second long signals for the 
evaluation. With the increase of the distance, the performance 

a: 3 
o (f) 2 

d=1m 

, 
" 

o --+- Audio -2.5 

d=2m 

-1 
LL-=A=:=:- P=CO,=PO=..o�----:::� -3 LL==:=:��:--::c-� 

o 15 � 45 M � 0 
a 

-1r---�-�--' 

-1.5 \ 
A 

Fig. 4. The SDRs at different source-microphone distance. 

improvement increased as well, but still only very modest im­
provement was achieved, about 0.5 dB on average. 

We then tested the influence of the noise levels on the per­
formance. GWN was added at [-505 10] dB, and the distance 
was fixed at 1 m. Results were still averages over 5 randomly 
chosen interfering speakers. The robustness to acoustic noise 
was much more obvious in Fig. 5, especially in a high noise 
environment. We found that when the speech signal was em­
bedded in noise (SNR= -5 dB), our method showed an 1.71 
dB improvement over all angles. However, when the noise 
level is low, e.g. SNR= 10 dB and noise free cases, our 
method shows only 0.42 dB and 0.53 dB respectively. 

6. CONCLUSIONS 

A binaural source separation method based on AV dictionary 
learning is proposed, where visual information is used for the 
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- e -SNR=-5d8 
-----8-- SNR = 0 dB 
- * -SNR=5dB 
---+- SNR = 10 dB 

a 

Fig. 5. The SDRs at different SNR levels. 

initialization of binaural parameter estimation, as well as tun­
ing the audio masks. The visual information is obtained via 
the bimodal-coherent AV atoms, learnt with a novel AV dic­
tionary learning method. The proposed algorithm has been 
tested on the XM2VTS database, and an average of 1.7 dB 
improvement is achieved in high noise levels, which demon­
strates the potential use for noise reduction. However, this 
dictionary is speaker-dependent, and to learn a more general 
dictionary from various speakers, we need much more train­
ing data, and a more robust visual feature might be extracted 
to replace the high-dimensional visual data. 
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