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Abstract—In object-based spatial audio system, positions of the
audio objects (e.g. speakers/talkers or voices) presented in the
sound scene are required as important metadata attributes for
object acquisition and reproduction. Binaural microphones are
often used as a physical device to mimic human hearing and to
monitor and analyse the scene, including localisation and tracking
of multiple speakers. The binaural audio tracker, however, is
usually prone to the errors caused by room reverberation and
background noise. To address this limitation, we present a
multimodal tracking method by fusing the binaural audio with
depth information (from a depth sensor, e.g., Kinect). More
specifically, the PHD filtering framework is first applied to the
depth stream, and a novel clutter intensity model is proposed
to improve the robustness of the PHD filter when an object
is occluded either by other objects or due to the limited field
of view of the depth sensor. To compensate mis-detections in
the depth stream, a novel gap filling technique is presented to
map audio azimuths obtained from the binaural audio tracker to
3D positions, using speaker-dependent spatial constraints learned
from the depth stream. With our proposed method, both the
errors in the binaural tracker and the mis-detections in the depth
tracker can be significantly reduced. Real-room recordings are
used to show the improved performance of the proposed method
in removing outliers and reducing mis-detections.

Index Terms—Multi-person tracking, spatial audio, binaural
microphones, depth sensor, depth and audio, PHD filtering

I. INTRODUCTION

Object-based spatial audio [1]–[3] is becoming a trend for
future spatial audio production and reproduction, which pro-
vides the opportunity to deliver an immersive and interactive
listening experience. In object-based spatial audio, the original
sound scene is represented by a number of audio objects,
which can be transmitted and rendered at the reproduction
stage; each audio object contains metadata describing impor-
tant attributes and properties such as positions/trajectories of
the sound source. As a result, in a common indoor sound scene
involving several speakers, multi-person tracking needs to be
performed for metadata extraction.

To monitor and evaluate the producer-generated spatial
audio content as well as the rendered sound scene from a
listener’s perspective, binaural recordings are often collected
via a binaural microphone, which is formed of two micro-
phones located in the ears of a dummy head. The binaural
audio provides geometrical information of the source location
and thus can be exploited for metadata extraction. However,
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the tracking performance degrades in adverse acoustic environ-
ments involving multiple talkers due to the presence of com-
peting speech, room reverberation and background noise [4].
To address this problem, extra information obtained from other
sensors/modalities can be utilised, including colour (RGB)
images [5]–[8], audio streams [4], [9]–[11], wireless network
and mobile technologies [12], thermal infra-red sensors [13]
and recently depth sensors such as stereo cameras [14], laser
range finders [15] and RGB-depth (RGB-D) sensors [16]–
[19]. Cross-modality tracking has attracted much attention in
the last decade, mostly in the audio-visual domain [20]–[25],
the RGB-D domain [26]–[29], and the RGB-D and thermal
domain [30].

For our specific spatial audio applications in living room
environments, a Kinect depth sensor is used for person track-
ing for the following reasons. Firstly, Kinect skeletal tracking
offers the state-of-the-art real time performance in indoor
environments. For a successfully tracked person, an average
3D position error of 1.3 mm is observed at the range of
1.2 m, which grows within the optimal depth range and reaches
6.9 mm error at 3.5 m [31]. Errors of 1− 7 mm are tolerable
for listener-centred spatial audio applications. Secondly, it can
cope with poor illumination conditions where dimmed light is
often the only light source. Thirdly, Kinect devices are portable
and easy to setup.

The Kinect depth tracker, however, also suffers from several
limitations. Firstly, in the tracking results, there are outliers
inconsistent with the trajectory of a target. In addition, identi-
ties (IDs) of the tracked persons often get swapped with each
other in the presence of occlusions or noisy measurements.
Secondly, the depth sensor may fail to track a target and
thus yield mis-detections, especially when occlusions occur.
To address the above limitations, we propose a systematic
method based on modified probability hypothesis density
(PHD) filtering [32] and depth-audio fusion, leading to the
following main contributions.

PHD filtering is utilised in our system to mitigate outliers in
the depth tracker, which is a state-space approach for handling
multi-target tracking with unknown and varying number of
targets. Sequential Monte Carlo (SMC)-PHD [33], [34] is
used here, which avoids the prior Gaussian birth models
in the closed-form Gaussian mixture (GM)-PHD [35]. We
modify the SMC-PHD algorithm by integrating a novel clutter
intensity model, which is measurement-driven and takes the
depth sensor’s limitations into account, i.e. the depth sensor’s
limited field of view (FOV). Moreover, the occlusion problem
is also considered in the intensity model to prevent the SMC-
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PHD from converging to outliers erroneously associated with
occluded persons.

To compensate mis-detected frames, we incorporate com-
plementary information from the concurrent binaural audio
stream, which is robust to factors that affect the depth sensor
such as illumination conditions. The depth and audio streams
are fused together by imposing trajectory constraints on the
audio azimuth estimation, learned from the depth stream.

The remainder of the paper is organised as follows. We
briefly introduce the overall proposed system and justify our
specific system setup in Section II. Existing technologies and
related background knowledge at different stages of the pro-
posed tracking system are presented in Section III. Section IV
describes in detail our contributions, including the PHD mod-
ification, and depth-audio fusion. Experimental results are
presented and analysed in Section V. Finally, conclusions and
insights for future work are given in Section VI.

II. PROPOSED SYSTEM

A. System Overview
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Fig. 1: Flow of the proposed depth-audio person tracking method. The
single and double solid lines denote 1D and 3D data flow respectively,
while the dashed lines denote model parameters. Processing of depth,
audio and depth-audio modalities is represented by boxes with dots
crosshatch, white and solid grey respectively.

The diagram of the proposed system is shown in Fig. 1.
The head tracker is performed by the Kinect skeletal tracker
directly. However, in an adverse environment that involves a
high degree of occlusions, inconsistency is observed in the
depth head tracking results both spatially (clutters) and tem-
porally (mis-detections). Here, clutters are used to denominate
failure cases of outlying position detections. The PHD filtering
method is then applied to the head tracking results to remove
these outliers/clutters, which is followed by an ID association
scheme on a frame-by-frame basis, to address the remaining
problem that IDs of detected persons may get swapped or
assigned with new values. As introduced previously, mis-
detections (gaps) exist in the depth tracking results when
occlusions occur, which can be observed between consecutive
depth detections (segments).

In parallel with the depth tracking, the audio tracker is
applied to the binaural recordings collected by a head-and-
torso simulator (HATS, the manikin as shown in the bottom
left of Fig. 1). Audio azimuths of active speakers relative to

the HATS can be estimated via the audio tracker, which are
used to compensate mis-detections in the depth stream via
depth-audio fusion.

Depth-audio fusion, as highlighted in the dashed box,
contains three steps. Firstly, during the time periods when
the depth tracker successfully tracks the targets and yields
consecutive depth detections, i.e. segment periods, trajectory
constraints for each detected target are learned via trajectory
plane fitting techniques, with the assumption that head po-
sitions from the depth tracker lie on a plane. Secondly, 3D
positions associated with each target obtained from the depth
tracker, can be mapped to 1D depth azimuths relative to the
HATS via depth azimuth mapping. Thirdly, during each time
period when the depth tracker fails to track a target, i.e. the
gap period due to mis-detections, audio azimuths are extended
to 3D locations using a proposed gap filling technique, where
the learned trajectory constraints and depth azimuths enclosing
this gap are enforced. Since there are no valid depth detections
during the periods of mis-detections, commonly used statistical
modelling of bimodal features is not a good choice here.

In the proposed system, our main contributions lie in the
modified PHD filtering with an adaptive clutter intensity
model, as well as the depth-audio fusion that contains tra-
jectory plane fitting, depth azimuth mapping and gap filling.

B. Setup Justification
In our system, we use a HATS as the binaural microphone

to mimic human listening, to monitor and evaluate the sound
scene from the listener’s point of view. The HATS is located
in the centre of the living room, such that 360 degree acoustic
scene can be captured. Binaural recordings in the centre of the
original sound scene provide immersive spatial perception of
surrounding audio objects. The Kinect depth sensor is located
at the edge of the sound scene, to ensure its optimal range
[17] covers as much the living room as possible. This is a
common Kinect setup. For instance, the Kinect sensor in Xbox
360 game console is suggested to be placed as a set top box,
i.e., above the TV screen, near the edge of the room [36].

This particular HATS and Kinect setup, as illustrated in
Fig. 2, enables range images to cover the indoor environment
to a large degree, as well as a whole view of the acoustic scene
comparable to that of the listener. In addition, since they are
located at different positions with different and complimentary
view angles, occlusions in one sensor can be compensated
by the other. Moreover, the geometric mapping between the
HATS’s angular coordinate system and the Kinect’s Cartesian
coordinate system is straightforward, since the head position
and orientation of the HATS can be directly obtained from
Kinect. If the HATS and the Kinect were located at the same
position, 1) the captured data would suffer from either a
limited range data or a partially-reduced view of the acoustic
scene; 2) their “shared view” would result in the concurrence
of depth occlusions and audio occlusions. Similar setups
with two modalities of sensors being located at two different
positions has been employed for person tracking, e.g. a visual
sensor and a compact microphone pair/array [22]–[25].

Traditional audio sensing for person tracking often in-
volves a microphone array with a number of (distributed)
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Fig. 2: Illustration of the Kinect depth sensor and the HATS in world
coordinates. The two sensors face each other, standing at a distance
with different height. The Kinect coordinates (dashed) are different
from the world coordinates (solid). The depth sensor tracks a person
with 3D position while the HATS gives the 1D azimuth of a talker.
From Kinect’s perspective, the HATS is also detected as a person.

microphones [4], [9]–[11]. Yet, besides issues of calibration
and synchronisation, a microphone array does not provide
binaural cues (i.e. interaural level difference and interaural
phase difference) as would by the HATS as required for
human-centred spatial audio production. Kinect also has a
built-in 4-microphone array. However, its shared position/view
with the depth sensor results in the aforementioned concurrent
occlusion problem. In addition, errors mapped from the audio
azimuth increase proportionally with the distance from the
target to the audio sensor, while an audio object might be
a few metres away. For instance, a 5 degree azimuth error
yielded by the Kinect built-in microphone array [37] maps to
35 cm error for a target that is 4 m away.

Other modalities of sensing could also be considered, such
as the commercially-used visual marker tracking [5] and
low-cost camera tracking [6]–[8]. However, these methods
are prone to the errors caused by challenging illumination
conditions in indoor environments. In addition, multiple Kinect
sensors [38], [39] could be used, which nevertheless involve
increased complexity in calibration and synchronisation [40],
[41]. Different from these alternatives, in our work, the use of
binaural and Kinect sensing offers the advantage in capturing
the listener centred spatial audio scene, and the convenience
in object localisation for metadata extraction from the scene.

The proposed system uses the binaural audio to compensate
mis-detections in the depth tracker. If no valid audio cues are
available such as in a silence period, the system degenerates
to depth-only tracking.

III. BACKGROUND

In this section, we provide the background knowledge to
help understanding the whole system in Fig. 1, including the
classic PHD filtering, ID association and the audio tracker.

A. SMC-PHD Filtering

The Kinect skeletal tracker is limited by occlusions and
FOV constraints, introducing outliers in the 3D head tracking
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Fig. 3: Two views of depth-based head tracking results containing
two participants in the second sequence of our recorded dataset [42].
The listener stands still in the centre (ID=5), highlighted by the cyan
diamond. The other person (ID=3) walks behind along a semicircle
as shown by the dotted trajectory. When this person gets occluded by
the static person in front, head tracking becomes invalid and outliers
are observed, as highlighted within these ellipses. The depth sensor
is at position [0, 0, 0]>, the z axis is depth and x is roughly aligned
with the horizon. The x-z plane is not necessarily parallel to the floor,
in the acquisition of our dataset the sensor was approximately 23◦

tipped downwards.

results, as highlighted in the ellipses in Fig. 3. To estimate the
target state in the presence of these outliers, filtering methods
can be used. The classic Bayesian filtering framework and
its relaxed models such as distributed Bayesian formulation
[43] and linear programming [44] propagate the multitarget
posterior, and this leads to increased computational complexity
for an increasing number of targets. PHD filtering addresses
the above limitation by propagating the first-order statistical
moment of the multitarget posterior instead. The moment
is also referred to as the probability hypothesis density or
intensity, “whose integral is the expected number of targets”
[32], i.e. the PHD (or intensity) models how densely the targets
are distributed. The SMC-PHD framework [34] is used here.

Assume mk persons are detected at the k-th frame, denoted
as the observation set Zk = {z1, · · · , zmk

}, where each
element z is a 3D position vector z = [x, y, z]> within
the Kinect coordinate system shown in Fig. 2. From the
noisy observation sequence Z1,Z2, · · · ,Zk that contains clut-
ters and mis-detections, we aim to estimate the real target
status Xk = {x1, · · · ,xnk

} at the k-th frame, where x
represents the position as well as the velocity of a target
x = [x, y, z, ẋ, ẏ, ż]>, and nk is the number of targets.

For a target at the (k− 1)-th frame, i.e. xk−1, it can either
survive with probability PS or disappear (die) with probability
1−PS at the next frame k. For a surviving/persistent target, its
new state xk evolves from xk−1 by following the single target
transition density π(xk|xk−1), which approximates the motion
model. Moreover, a new target might be born with intensity of
ν. The detection uncertainty is also considered when a target
might be mis-detected with probability PD. A successfully
detected target xk is related to the associated head tracking
result zk, with a single target likelihood function g(zk|xk).

In SMC-PHD, the target intensity at time k is represented
by Nk particles x

(n)
k with weights w(n)

k , n = 1, 2, · · · , Nk.
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Algorithm 1: FRAMEWORK OF SMC-PHD.
Input: Measurement set Zk, particles from the previous

frame {(x(n)
k−1, w

(n)
k−1)}Nk−1

n=1

Output: Particles {(x(n)
k , w

(n)
k )}Nk

n=1, state Xk

1 % Prediction step
2 foreach n = {1, 2, · · · , Nk−1} do
3 Draw x

(n)
k|k−1 ∼ π(·|xk−1)

4 w
(n)
k|k−1 = PSw

(n)
k−1

5 foreach z ∈ Zk do
6 Draw Mb new particles ∼ N (·|z,Σ), with equal

weight of ν
mkMb

7 % Update step
8 foreach n = {1, 2, · · · , Nk−1 +mkMb} do
9 if n <= Nk−1 then

10 w
(n)
k|k =

(1− PD)w
(n)
k|k−1 +

∑
z∈Zk

PDg(z|x(n)
k|k−1)w

(n)
k|k−1

L(z)

11 else

12 w
(n)
k|k =

∑
z∈Zk

w
(n)

k|k−1

L(z)

13 where
L(z) = κ(z) + ν +

∑Nk−1

j=1 PDg(z|x(j)
k|k−1)w

(j)
k|k−1

14 % Resampling
15 Resample {(x(n)

k|k, w
(n)
k|k)} to obtain {(x(n)

k , w
(n)
k )}.

16 % State estimation
17 Cluster particles for the final state Xk estimation.

The new-born target intensity ν is represented by mk groups
of Gaussian-distributed particles, with each group centred at
one detected person containing Mb new-born particles. κ(z)
is the clutter intensity [32], [45], whose integral over z is the
expected number of clutters in the current frame. SMC-PHD
propagates over time with recursive prediction and update
steps, whose principles are summarised in Algorithm 1.

To estimate the final positions, a simple clustering method
can be applied as follows. Particles in the proximity of a
measurement z, i.e. whose distances to z are smaller than
a pre-defined threshold ζ0, are grouped as a cluster. If the
accumulated weight is greater than 0.5, then we consider that
there exists a target at z.

B. ID Association

Although the outliers can be mitigated with the PHD
filtering, a problem persists in the head tracking results, that
the IDs of detected targets sometimes get swapped or assigned
with new values when the head tracker re-detects a person,
introducing inconsistent IDs as illustrated in Fig. 4.

We proposed in our early work in [46] an ID association
scheme with short- and long-term analysis. The principle
for the short-term analysis is to keep the consistency and
continuity of a target’s movements within a small time interval.
The long-term analysis exploits the common scenario when a
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Fig. 4: Applying Kinect head tracking to the third sequence involving
three people in our recorded dataset [42]. The static person and Person
1 are close to the sensor, which often occlude Person 2. This results
in inconsistent IDs being assigned to Person 2. It can be observed that
the detected trajectory for Person 2 is represented with three different
patterns (IDs), which means the ID for Person 2 changed at least
twice, of which one is shared with the static person in the centre. For
illustration purposes, the original detected points are down-sampled.

person gets occluded by the persons in front and is therefore
mis-detected, whose ID is inaccurately assigned when this per-
son is re-detected. Both the PHD filter and the ID association
scheme are performed on a frame-wise basis, thus they can be
combined together at each frame.

C. Audio Tracker

Time delay of arrival (TDOA) cues have been widely used
in audio tracking [4], [9]–[11], which are calculated by com-
paring the difference between a pair of microphones. TDOA
cues are often obtained via finding the peak positions from the
generalised cross correlation (GCC) [47] function based on
the maximum likelihood (ML) principle. The phase-transform
GCC (PHAT-GCC) function provides more robustness against
noise. Suppose Lk(ω) and Rk(ω) are the short time Fourier
transform (STFT) of the two audio segments at time frame k.
The PHAT-GCC function can be calculated as:

C(τ) =

∫ ∞
−∞

Lk(ω)R∗k(ω)

|Lk(ω)R∗k(ω)|
ejωτ dω, (1)

where the superscript ∗ is the conjugate operator. For practi-
cal implementation, its discrete version, i.e. summation over
frequency bins, is employed.

If the microphone pair is a binaural microphone, e.g.
a HATS, the TDOA cues become interaural time differ-
ence (ITD) introduced by binaural room impulse responses
(BRIRs). TDOA cues provide information about the bilateral
azimuth or input angle of the speaker relative to the micro-
phone pair. The relationship between the azimuth α versus
the TDOA τ varies between different binaural microphone
models. From three sets of BRIRs recorded with different
HATSs in different rooms, we found a similar pattern in
the relationship, as illustrated in Fig. 5, that the relationship
between α and τ can be approximated with a third-order
polynomial:

τ = T (α) = p1α+ p3α
3, (2)
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Fig. 5: Illustration of the relationship between different azimuths and
the yielding TDOA cues, obtained from three BRIR datasets. The first
dataset is recorded by Cortex MK2 HATS in five different rooms with
RT60 of [0, 320, 470, 680, 890] ms, denoted as Anechoic, Room A,
Room B, Room C and Room D respectively. The distance between
the sound source and the HATS is fixed at 1.5 m [48]. The second
dataset is recorded with a Brüel & Kjær HATS denoted as SBSBRIR,
with the fixed distance of 2.1 m [49]. The third dataset is recorded
by Cortex MK2 HATS denoted as VML with the fixed distance of
1 m [42]. The relationship is consistent with different binaural head
models, distances and reverberation levels. The dash-dotted line is
fitted on the first dataset with a third-order polynomial. The TDOA
features are shifted for illustration purposes and the average fitting
error is calculated over the above three datasets.

with α being the azimuth in front of the binaural microphone
in degree ([−90, 90]) and τ in millisecond. For an azimuth that
is from the back of the HATS ([−180,−90) and (90, 180]),
it should be first mirror-symmetrically mapped to the front to
calculate the resultant delay, due to the front-back ambiguity
of the binaural microphone.

Note that, there are some essential limitations to the audio
cues, especially in complex environments with high reverber-
ation and strong background noise. However, the biggest chal-
lenge is the dynamic nature of an acoustic environment and
nonstationarity of speech signals such as the varying number
of speakers and energy fluctuations during a conversation.

IV. OUR CONTRIBUTIONS

A. PHD with A Novel Clutter Intensity Model

In SMC-PHD filtering in Algorithm 1, the clutter intensity
κ(z) plays a critical role in the convergence. When the overall
clutter intensity is bigger than 1, the weights of all particles
(new-born or not) decrease. When it is small, e.g. 0.1, the
weights of new-born targets dramatically increase. Instead of
using the uniform distribution as in [34], [35], here we present
a novel measurement-driven clutter intensity model that takes
into account the depth sensor’s FOV as well as occlusion
detection:

κ(z|Z) = κ+ κ1(z) + κ2(x, z) + κ3(z|Z). (3)

In the above equation κ is the clutter intensity for a mea-
surement in the FOV of the depth sensor. κ1 is the clutter

intensity increment for a measurement which is out of the
sensor’s person tracking range, i.e. the near range rn = 0.5 m
and far range rf = 4.5 m [17].

κ1(z) =


rn − ‖z‖

rn
cn, if ‖z‖ < rn

‖z‖ − rf
rf

cf , if ‖z‖ > rf

(4)

where ‖ · ‖ is the Euclidean norm. cn and cf determine how
quickly the intensity increases when a target is out of range.
κ2(x, z) is the clutter intensity increment based on the depth
sensor’s FOV. Kinect2 has a wide view angle of 70.6◦ in the
horizontal (x-z) plane, and we define

κ2(x, z) = 1, if |x| > tan(35.3◦)|z|, (5)

where | · | is a modulus operator. An increment of 1 in κ2

attenuates all particles out of the FOV. κ3(z|Z) considers the
case that a detected target zi is likely to occlude z, if it is closer
to the sensor (i.e. to the origin) than z, i.e. ‖zi‖ < ‖z‖. The
motivation is to increase the clutter density for the observation
z if it is under the occluded area of other detected targets.
The occlusion-based clutter function was then defined with a
Gaussian mixture model:

κ3(z|Z) =
∑

zi∈Z,‖zi‖<‖z‖

w exp

(
−d2

i ‖zi‖2

2δ2‖z‖2

)
, (6)

where w determines the increment amount. δ is the half-
width of zi. Scaled by the Euclidean relative distance, the half
occluded width by zi is ‖z‖‖zi‖δ at the distance ‖z‖, centred by
the line connecting the origin and zi, and di is the distance
from z to this line.

B. Trajectory Plane Fitting

The audio azimuth with respect to the HATS extends over
a conical surface, known as the cone of confusion. To locate
the 3D position, a simple and effective solution is to use
the fact that a person’s head tends to move on trajectories
that are roughly parallel to the ground plane. With this prior
information, the search space is greatly simplified, as the
cone of confusion becomes a pair of lines on a 2D plane.
With a further distance constraint learned from the depth
trajectory, azimuths enable the estimation of 3D trajectories
during periods of occlusion.

A person’s head trajectory can be approximated by a plane,
if the person does not engage complex movements such as
jump and bending over. This is usually the case in most
tracking applications, such as surveillance in public spaces.
The plane of possible head positions for the i-th person can
be represented by:

ax+ by + cz + di = 0, (7)

where [a, b, c]> is the normal vector of the plane, which is
the same for all the persons, and di is related to the height. If
the sensor’s principal axis is orthogonal to the x-axis, we can
enforce a = 0, which is standard for depth sensors developed
for games. Ignoring the velocity in the state vector from the
PHD-filtered results, and assuming xk to be the position for
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the i-th person at the k-th frame, the plane parameters can be
found as follows.

Denoting x̄k as the 3D position associated with one target
after subtracting the mean x̄ from xk, we apply eigenvalue
decomposition (EVD) to the expectation of X̄X̄>, where the
columns of X̄ are x̄k at different frames. The normal vector
equals the eigen vector corresponding to the minimum eigen
value, and di = [a, b, c]x̄. This plane is parallel to the floor,
and thus, floor detection from the depth map can also be
exploited to estimate the normal vector, though this is not
trivial in cluttered environments. Although most of the outliers
have been removed from the PHD filtering, there are still
some residue outliers that might affect EVD. To address this
limitation, we employ a bootstrap plane-fitting method, by
iteratively choosing 95% of the data that best match the plane
and then applying EVD.

C. Depth Azimuth Mapping

With the prior information of the 3D microphone position
and orientation in the Cartesian coordinate of the depth
sensor, we can calculate the 1D azimuth of each person
relative to the HATS. To avoid the issue caused by the height
difference between the person and the HATS, we map the
HATS to the plane associated with the person, denoted as
x0 = [x0, y0, z0]>. Ignoring the velocity, the person detected
at x = [x, y, z]> yields the depth azimuth

α(d)=


arctan

x0−x√
(y0−y)2+(z0−z)2

, if z0≥z[
180−arctan

x0−x√
(y0−y)2+(z0−z)2

]180

−180

, otherwise,

(8)
where [·]180

−180 maps the angle into the range of [−180, 180]. The
above depth azimuth mapping process depends on the setup
of the Kinect and the HATS, which face each other in this
paper. Different geometric mapping from 3D positions to 1D
azimuths can be built flexibly for other setups.

If the depth azimuth α(d) equals the real audio azimuth
α, it should be related to the TDOA feature τ with Eq. (2).
However, the HATS might be slightly rotated, which results
in an azimuth shift ∆:

τ = T (α(d) + ∆). (9)

This azimuth shift ∆ can be calculated by minimising the
difference between the associated TDOA feature τk from the
audio stream with the analytical TDOA from the depth stream:

∆̂ = argmin
∆

∑
k

‖τk − T (α
(d)
k + ∆)‖2. (10)

Note that, at each time frame k, there might be several
TDOA features and several depth detections, and we need
to choose only these matched pairs for optimising ∆. The
direct association between the audio and the depth streams
becomes a speaker diarisation problem [50]. Even if the
audio features are not continuous in all the frames during the
segment periods, e.g. a speaker might stop talking, ∆ can still
be statistically derived given enough concurrent depth+audio

pairs, for aligning the audio and depth information. When the
depth stream is missing but audio is available, ∆ will be used
in the gap filling stage, introduced as follows.

D. Gap Filling

During the segment periods when the depth tracker success-
fully tracks the involved targets, our proposed method will use
the 3D tracking results from the PHD-filtered head tracker.
However, gaps are observed when the depth tracker fails to
detect the target. Take a gap spanning the time period between
t1 and t2 for example. We aim to estimate the person’s azimuth
at each frame k s.t. [t1fd] < k < [t2fd] from the concurrent
audio and then map it to 3D space, where [·] rounds a number
to its nearest integer and fd is the depth stream sampling rate.
Suppose the two points enclosing this gap (beginning and end
points) yield the depth azimuths of α(d)

1 and α(d)
2 respectively,

which are equivalent to the audio azimuths α1 = α
(d)
1 +∆ and

α2 = α
(d)
2 + ∆. We further denote L1 and L2 as the distances

of the enclosing points to the HATS. Note that, for the gap
in the beginning or end of each sequence, we have only one
point enclosing this gap.

During the gap period [t1, t2], we implemented a single-
target particle filtering method to the associated audio TDOA
features, to robustly track the audio azimuths. The linear
Gaussian state-space model, as used in Kalman filtering [51]
is exploited here. The TDOA measurements reflect velocity
changes and the angular velocity for each particle is evolving
with time using the employed motion model. The weights of
the particles that follow the velocity changes will be increased.
For particles that are not adaptive to the velocity changes, their
weights will be attenuated. The two enclosing audio azimuths
α1 and α2 are used for initialisations and thresholding the
particles. The audio tracker can detect only active speakers
and if there is no valid audio, due to the lack of both depth
and audio data during the gap period, the proposed method
cannot re-track the mis-detected target and hence will fail in
this case. However, in spatial audio systems, metadata (e.g.
the positions of the speakers) are only required for the active
speakers.

To map this 1D azimuth to 3D position, we calculate the
distance at the j-th frame as Lj = L1 + (L2−L1)

J (j − 0.5) with
a linear assumption. The 3D position for the j-th frame is x0 + Lj cos(αj + 90◦)

y0 − Lj sin(αj + 90◦) c√
b2+c2

z0 − Lj sin(αj + 90◦) b√
b2+c2

 . (11)

As for the special occasion at the beginning or end of
each sequence, where the beginning point or the end point
is missing, we analyse the trajectory as follows. Line fitting
is applied to the valid segment enclosing the gap on the
associated plane, and the fitted line is extended during the gap
period, which we refer to as the depth line. As a contrast, the
audio line starts from the HATS, and exhibits the current audio
azimuth αj , i.e. crosses the HATS as well as a point defined
in Eq. (11) with any length Lj (e.g. Lj = 1). The intersection
between the depth and audio lines is the estimated position.
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Fig. 6: Norm of the speed calculated from the depth sensor for Person
2 in Fig. 3. Outliers have been removed for speed calculation. Gap
periods where there is no valid depth detection are indicated by gray
areas. Rapid speed changes can be observed.

An alternative is to use the velocity calculated from the
depth stream for gap filling. However, in a confined living
room with multiple moving persons, both the speed and
direction might change quickly. For instance, using the depth
trajectory of Person 2 in Fig. 3, the speed is plotted in Fig. 6.
The standard deviation is obtained as 0.1 m/s, which is very
high, as compared to the mean speed of 0.12 m/s. As a
result, the velocity is un-predictable during gap periods, thus
gap filling or trajectory recovery with velocity information
obtained from the depth sensor is not reliable. However, this
problem is mitigated in our system due to the use of audio
information, e.g. via the associated TDOA measurements.
We will now evaluate our proposed algorithm on real-room
recordings, and analyse the experimental results.

V. EXPERIMENTS

A. Data Recording Setup

We recorded a dataset1 for spatial audio production in living
room conditions, where each speech signal is an audio object.
The data were recorded on a set constructed in a TV/film
studio built following professional media production standards.
The room had furnitures and a size of 244× 396× 242 cm3,
which is very similar to that of a typical living room. As
with typical TV/film production sets, its ceiling and one of
the walls were missing, though this set was assembled inside
a larger room. The reverberation time of this room is about
430 ms. The binaural microphone, i.e. Cortex MK2 as the
HATS, was located in the centre of the room with ear height
of 165 cm. The depth sensor, i.e. Kinect2, faced Cortex MK2
at the distance of 329 cm just outside the openside wall of the
recording room to get a full view, at the height of 170 cm. We
could have set the depth sensor overhead or with a much more
tilted angle to reduce the amount of occlusions. However, we
used a skeletal tracking method that relies on the supervised
learning method of [18], which was trained for horizontal
view angles (as in the view from a set top box). This Kinect
setup was obtained from a pilot test of skeletal tracking before
recording the dataset, which is a trade-off between the optimal

1Data underlying the findings are fully available without restriction at
http://cvssp.org/data/s3a.
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Fig. 7: Setup for data recordings.

Fig. 8: A sample image in Sequence 3 from Kinect’s viewpoint. Actor
(only the head can be partially seen) stands on the back corner while
Actress stands in front. An additional subject is clapping his hands
for synchronisation of the depth and audio streams.

range that the Kinect SDK can successfully apply skeletal
tracking and occlusion issues. The overall setup is illustrated
in Fig. 7.

Four sequences were recorded which in total last about 10
minutes, involving two actors denoted as Actor and Actress,
with height of about 190 cm and 160 cm respectively. The
audio materials contain 120 phonetically-balanced transcripts
from the TIMIT corpus, which is a large scale speech database
widely used in speech processing research [52]. In Sequence 1,
Actor started at the position highlighted by the small circle
in Fig. 7, facing the centre (i.e. the HATS), walking slowly,
sideways, along the circular trajectory anti-clockwise while
reading the audio materials. After completing one circle, he
returned clockwise back to the starting point. In Sequence 2,
Actress repeated this process with a faster pace. In Sequence 3,
Actor walked back and forth along the L-shaped path high-
lighted with the single solid line. At the same time, Actress
walked along the L-shaped curve in the double solid line.
They walked independently from each other, both at their
preferred pace and facing forward. Fig. 8 shows a sample
image at the beginning of Sequence 3 from the viewpoint of
the depth sensor. In Sequence 4, Actor walked along the single
dashed line while Actress along the double dashed line at
their preferred pace, both facing the centre of the room (where
the HATS was located) while reading concurrently. The two
engaged subjects in our recordings were not walking naturally,
as they were restricted by the hardware such as the tripod and
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Fig. 9: Head tracking results from the depth stream for the 4
sequences, down-sampled for better visualisation. Note that there
are short trajectories in each sequence, e.g. these crossed and dotted
“tails” in Sequence 1, which are caused by a person leaving and
entering the scene in the beginning and end of the sequence to
synchronise the audio and depth streams with hand claps.

lifted cables while they read and walk concurrently, and they
also had to follow fixed trajectories which were designed to
facilitate ground-truth labelling.

The depth and audio streams were recorded with different
hardware and software, with sampling rates of 30 Hz and
44.1 kHz respectively. We used hand clapping at the beginning
and end of each recording session to synchronise these two
streams. This was done by an additional subject who entered
the scene, standing in front of the depth sensor and clapping
his hands. The hand clap is used for synchronisation, which
can be detected from both the audio recordings and the depth-
based head tracking results.

B. Parameter Setup

1) PHD filter: parameters for the SMC-PHD filter are set
empirically as follows. The survival rate was set to PS = 0.98.
We also employed an adaptive detection probability PD, which
was set to 0.9 when the depth stream detected any person,
and 0.2 when there was no person detected. This avoids the
situation when the depth sensor fails to process a frame during
consecutive frames. Measurement-centred new-born targets
were drawn with a Gaussian distribution whose covariance
matrix Σ equals to the identity matrix times 0.02. The birth
intensity ν = 0.1 and the particle number per persistent or
new-born target was Mp = Mb = 400. The measurement
likelihood followed g(z|x) = N (‖z−x‖2|0, 0.02). The clutter

intensity in Eq. (3) κ = 0.5 and cn = 4 and cf = 2
in Eq. (4). In Eq. (6), we set w = 0.3 and δ = 0.2 m,
which is approximately the half shoulder width. The clustering
threshold was set ζ0 = 0.5 m. The above parameters were
determined based on a validation subset from Sequence 3.

2) Depth-audio fusion: to extract the audio TDOA features,
we first applied STFT to the recordings with the window
size of 4096 samples overlapped at 2626 samples between
neighbouring windows. Thus the audio features were extracted
with the same temporal resolution as the depth stream, i.e.
30 Hz. The PHAT-GCC function in Eq. (1) was then employed
to each frame and the candidate delays τ were set between
[−1, 1] ms with a resolution of 0.05 ms. The above candidate
delays cover the maximum interaural time difference for the
HATS, and their fine resolution supports accurate azimuth
localisation. At each frame, we extracted at most two TDOAs
as the audio feature. To avoid the influence of high-frequency
noise, we modified Eq. (1) by summing over only the voiced
frequency band of [300, 3400] Hz, instead of the whole
frequency band. The extracted TDOA features correspond to
bilateral azimuths with Eq. (2). Trained on the BRIR dataset
[48], we obtained p1 = 9.72× 10−3 and p3 = −2.19× 10−7.

C. Results

1) PHD filtering: in the original depth head tracking results
as shown in Fig. 9, a large number of outliers were observed.
As a contrast, after applying the proposed PHD filtering
method, the majority of these outliers have been filtered out,
as shown in Fig. 10. Note that the HATS stands at the
centre to mimic a real listener, and it sometimes occludes the
other subjects. To mimic a virtual listener and mitigate the
introduced occlusions, more compact binaural microphones
such as a dummy head with built-in microphones can be used.

Although the outlier problem was greatly mitigated, there
might still be some remaining outliers, as can be observed
in Sequence 2. These points were grouped to Actress during
the period when she was occluded by the HATS. Since these
points had a large population and they remained in consistent
positions for several seconds, the PHD filtering method did not
classify them as outliers, but associated them with the target.
This also happened to several points in Sequence 3.

To quantitatively evaluate the PHD filtering method, we
established the ground truth by manually labelling each head
position as either a valid detection or an outlier as follows.
We mapped each 3D head position associated with a target
onto the associated depth image. If it fell in the centre
of the associated person’s head, it was labelled as a valid
detection, i.e. true positive (tp); otherwise, it was labelled as
an outlier, i.e. false positive (fp). If a frame didn’t output
a valid detection associated with the engaged person, this
frame was labelled as false negative (fn), which included
both the conditions when the detection was inaccurate and
when the target was mis-detected. We used the precision &
recall as evaluation metrics, where precision= #tp

#tp+#fp , and

recall= #tp
#tp+#fn . Note that, since Actor and Actress were

engaged throughout these sequences, #tp + #fn equals the
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Fig. 10: Applying the proposed PHD filtering method with the ID
association scheme to the head tracking results in Fig. 9. The PHD-
filtered results are down-sampled here.

frame number of each sequence. Localisation accuracy such
as RMSE in mm was not used, since it is difficult to manually
label the 3D position on the depth image without errors up to
a few centimetres, while errors 1 − 7 mm have already been
reported in [31] in the range of 1.2 m to 3.5 m for Kinect
skeletal tracking. The performance based on precision & recall
is summarised in TABLE I.

Several competing methods were implemented. The first
one is the SMC-PHD filter with a uniform clutter intensity
κ(z|Z) = 0.5, where the adaptive detection probability is
also employed, denoted as “PHD-U”. The second one is a
Bayesian random finite set (RFS) filtering method, denoted as
“RFS”, with the same principle as used in [4]. However, due
to the complex and explicit association involved, its computa-
tional complexity becomes extremely high with the increasing
number of targets. Since the HATS was also detected as a
person by Kinect, we employed “RFS” only for Sequences 1
and 2 where only two targets were detected most of the time.
For Sequences 3 and 4 where three targets were detected in
most frames, “RFS” lacks the mathematical formulation for
the explicit association and thus fails to work. The third one is
the Kalman filtering method [51], denoted as “Kalman”. Note
that, “Kalman” cannot deal with the complex data association
problem in multi-person tracking. As a result, we extracted
all the depth measurements related to Actor and Actress in
advance, which requires prior information. Moreover, to deal
with frames without any associated depth data, we freeze the
filtering process and set the output as empty until new depth
data coming. The tracking results on Sequence 1 for “PHD-
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Fig. 11: Applying “PHD-U” (a), “RFS” (b) and “Kalman” (c) to
Sequence 1. IDs of “RFS” and “Kalman” are manually corrected to be
consistent with PHD-filtered results. Results related to each sequence
are down-sampled with the same sampling rate as in Fig. 10 (a),
compared to which “PHD-U” and “Kalman” have more outliers;
“RFS” has fewer valid detections, which can be observed from its
sparse pattern. This is further validated by the lower precision for
“PHD-U” and “Kalman”, as well as significantly lower recall for
“RFS” in TABLE I.

U”, “RFS”, “Kalman” are presented in Fig. 11.
From TABLE I, we first analyse the evaluation results in

terms of recall. We notice that the two PHD filtering methods,
“proposed” and “PHD-U” greatly increased the recall for
all sequences, which means the valid detections after PHD
filtering out-numbered that of the original data. This is because
we employed an adaptive detection probability PD, which
mitigated the problem when the head tracker failed to process a
frame of the depth image and output nothing. “RFS” however
suffered from poor performance in terms of recall. In other
words, some valid detections in the original depth tracking
results were filtered out. This is because the particle weights
are dramatically reduced for “RFS” during the frames for
which the head tracker fails to process, and it takes several
frames for these particle weights to recover to the required
level for convergence. “Kalman” obtained a similar recall as
compared to the original data, since it cannot estimate mis-
detected positions when no depth data is available, neither can
it effectively correct outliers due to the lack of the mechanism
to detect outliers.

Following we analyse the results in terms of precision. For
the two PHD-based algorithms, “PHD-U” and “proposed”,
very high precision of almost 1 was obtained for Sequences 1
and 3, which means most of the false positives, i.e. outliers,
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TABLE I: Quantitative evaluations of the proposed PHD filtering
method in terms of precision & recall.

Performance Actor Actress
precision recall precision recall

Se
q

1

original 0.9612 0.8597

N/Aproposed 0.9976 0.9130
PHD-U 0.9945 0.9134

RFS 0.9950 0.6746
Kalman 0.9591 0.8573

Se
q

2

original
N/A

0.9166 0.7891
proposed 0.9360 0.8407
PHD-U 0.9269 0.8410

RFS 0.9341 0.5621
Kalman 0.9273 0.7979

Se
q

3 original 0.9848 0.8243 0.9998 0.9123
proposed 0.9969 0.8657 1.0000 0.9690
PHD-U 0.9967 0.8660 1.0000 0.9688
Kalman 0.9824 0.8219 1.0000 0.9118

Se
q

4 original 1.0000 0.7147 0.9304 0.8111
proposed 0.9660 0.7737 0.9318 0.8599
PHD-U 0.9653 0.7737 0.9307 0.8605
Kalman 1.0000 0.7141 0.9826 0.8003

were removed from these sequences. In Sequence 2, the above
two methods converged to a group of inaccurate detections
lasting several seconds as mentioned earlier, which resulted in
a relatively low precision. However in Sequence 4, the preci-
sion of Actor is worse after the PHD filtering. This doesn’t
mean the PHD filtering methods have converged to some
irrelevant data points and thus introduced new clutters. This
was caused by another subject (the rectangle “tail” in Fig. 10)
being mis-identified as Actor. This also happened towards
the end when this subject was mis-identified as Actress (the
dotted “tail” in Fig. 10), which resulted in the relatively low
precision. Ignoring mis-identifications, the precision for Actor
and Actress is almost 1 for both PHD filtering methods in
Sequence 4. “RFS” gained slightly higher precision than PHD
filtering, however at the cost of very low recall. “Kalman” still
does not show an advantage over the original head tracker for
most conditions. Since “Kalman” employs a linear Gaussian
time state model, where the linear motion model does not
consider the chance for a data point being a clutter, thus
“Kalman” will gradually converge to outlying positions where
outliers emerge during a continuous time slot.

We notice that “proposed” and “PHD-U” outperform the
other filtering methods for both recall and precision. They are
both PHD-based approaches, with the only difference lies on
the clutter intensity, where measurement-driven and uniform
clutter intensities were used respectively. The “proposed” PHD
modification gives a similar recall to the one by “PHD-
U”, i.e. same numbers of valid detections were retained.
However, “proposed” performs better than “PHD-U” in terms
of the measure of precision, which increases from 96.90%
to 97.14% on average. The improvement is relatively small
for the following two reasons. Firstly, the number of outliers
related to the two targets is not significant, which is reflected
by the very high precision in the original data. Secondly,
outliers related to the other engaged subjects were not included
yet. Considering each sequence as a whole and ignoring mis-
identifications, we calculated the total number of outliers and
compared it over (1) the total number of detections and (2) the

TABLE II: Outlier evaluations as a percentage for each sequence.

Evaluation in percentage Seq 1 Seq 2 Seq 3 Seq 4 Avg

#outliers
#detections

original 2.17 4.77 1.55 0.28 2.19
proposed 0.12 3.15 0.30 0.17 0.94
PHD-U 0.28 4.13 0.43 0.17 1.25

#outliers
#frames

original 3.98 8.96 4.25 0.62 4.45
proposed 0.22 5.81 0.85 0.40 1.82
PHD-U 0.51 7.69 1.20 0.40 2.45

total frame number in TABLE II. Particularly, the total number
of outliers over the total frame number, i.e. the outlier rate,
is a direct quantification of the chance of each frame being
affected by occlusions.

From TABLE II, it can be seen that “proposed” outperforms
“PHD-U” in terms of outlier rate, which reduces from 2.45%
to 1.82% on average. To analyse whether the improvement
is statistically significant, we performed a one-way ANOVA
test [53]. If the resultant p-value is less than a threshold (i.e.
the significance level, which is often set as 0.05), it rejects
the null hypothesis that different groups are drawn from the
same distribution. For our specific case, the null hypothesis
that the two algorithms have no performance difference is
rejected if p < 0.05, i.e. statistically significant results are
therefore justified (either positive or negative). We repeated
“proposed” and “PHD-U” 50 times respectively, with different
initialisations and random particle re-sampling and creation
processes. Comparing “proposed” and “PHD-U” using the
average outlier rate between sequences, a p-value of 0.00 was
obtained, suggesting that our proposed method outperforms
“PHD-U” with statistical significance.

In summary, our proposed filtering method shows advan-
tages over the competing methods for the following reasons.
Firstly, our filtering method employed the “PHD” framework,
which propagates the first-order statistical moment of the
multiple target posterior, and therefore avoids the complex data
association problem in multiple target scenarios. As a contrast,
“RFS” cannot cope with more than two target situations; while
prior information is required to apply “Kalman” to associate
the observed data to each target. In addition our proposed
method used an adaptive detection probability to deal with
the situation when the depth sensor fails to process a frame
during consecutive frames. “RFS” does not have a mechanism
to maintain the weights of particles associated with targets in
such a condition and needs several frames to recover, thus
suffers from a low recall. Secondly, the novel clutter intensity
that takes into account the Kinect’s limited FOV as well as
occlusions were used. This provides the opportunity to classify
observations constrained by sensor limitations as outliers. Also
the filtering method is less likely to converge to a person
being occluded due to the higher clutter intensity exhibited
if the person falls in the occluded area. “PHD-U” employed
a uniform clutter intensity, which cannot effectively reduce
the weights of the particles related to outliers, especially in
the occluded period where groups of outliers exist and still
show temporal-spatial continuity. As a result, “PHD-U” is
more likely to converge to persistent outliers as compared to
the proposed method.
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2) Depth-audio fusion: the depth stream sometimes fails
to detect the target, and thus the depth detection related to each
target is composed of several segments (see, e.g. Fig. 10(b)).
To fill in a gap between two adjacent segments where a
target was mis-detected, audio features extracted from the
simultaneous audio stream were integrated.

The 1D audio azimuth of the active speaker w.r.t. the HATS
yields the audio TDOA feature, as described in Eq. (2).
The TDOA features are affected by interference from both
competing speakers and background noise, as well as the
nonstationarity of speech signals, thus they consist of outliers.
If we directly employ the inverse process of Eq. (2) to TDOA
features, 1D audio azimuths are obtained with noise. Tested
on Sequence 1 that contains one active speaker, approximately
51% frames have the TDOA features yielded by azimuths
within ±5◦ deviation from the groundtruth, and 85% frames
fall in the range of ±10◦ deviation. Heavier noise can be
observed in more challenging multiple speaker scenarios, as
shown in Fig. 12. To mitigate the noise in audio cues, particle
filtering as mentioned in Section. IV-D is applied to the TDOA
features.

The 1D audio azimuths can be further mapped to the 3D
positions as introduced in Section IV-D. Extra constraints
learned from the depth stream that trajectories of each person
lie on a plane, as discussed in Section IV-B, are enforced
in the mapping process. Each plane can be represented by a
normal vector plus a scalar in Eq. (7), which can be iteratively
calculated by data clustering and parameter estimation. Take
Sequence 1 after the PHD filtering as an example, the top 98%
of points that best fit the converged plane associated with Actor
have an average fitting error of 1.25 cm, which also confirms
that the plane assumption is valid. When multiple targets are
involved, the planes related to the engaged targets are assumed
to be parallel to each other. We need to stress that the audio
stream and the depth stream might not be spatially aligned,
as shown in Fig. 13. In such conditions, we need to tune one
modality before applying the fusion to mitigate this difference.

To rectify erroneous IDs, we have applied an ID association
scheme (top right corner in Fig. 1) [46], which can be applied
to the PHD-filtered results directly. However, there were still
some remaining ID errors, as shown in Sequences 3 and 4 in
Fig. 10, where the entering subject (tail) was mis-identified
as one of the other subjects. Before applying the gap filling,
we manually corrected the remaining ID errors, such that the
segments enclosing each gap are associated with the same
speaker. The final tracking results after integrating the audio
cues are shown in Fig. 14. It can be observed that the estimated
positions successfully filled the gap between adjacent depth
segments. Moreover, outliers that did not fit onto the target
plane were removed.

To better illustrate the gap filling in the temporal domain,
we also plotted audio azimuths of the engaged targets relative
to the HATS over time in Fig. 15, where targets have consistent
colours as in Fig. 14. Each azimuth trajectory is composed by
different segments and gaps can be observed between them.
During the above gap periods, audio azimuths were calculated
via the proposed gap filling method, and these audio azimuths
matched very well with the designed trajectory.

(a) TDOA feature, 3D view

(b) Audio azimuth, 2D view

Fig. 12: TDOA features related to the peaks in the GCC-PHAT
function are extracted from the binaural audio recordings during a
gap period in Sequence 3. The first peak in each frame is highlighted
in triangles at the top plot. These TDOA features can be directly
converted to audio azimuths (highlighted in triangles in the bottom
plot), however exhibiting heavy noise. The converted audio azimuths
are wrapped between −90◦ and 90◦. By applying particle filtering to
the TDOA features, the noise is mitigated, and more accurate audio
azimuths are obtained, as shown by the red dots.

We then quantitatively evaluated the tracking results with
precision & recall, as shown in TABLE III. The ground truth
during gap periods was manually established in the same
way as the one used for PHD evaluations in Section V-C1,
by mapping 3D positions from the associated depth images.
The precision was almost 100% for most sequences. This is
because the outliers that did not fit onto the plane were further
rectified. Moreover, the new detections from the audio stream
accurately tracked the mis-detected target, resulting in a very
high recall, as compared to the PHD-filtered results in TABLE
I. Take Actor in Sequence 3 as an example. Previously, of
the 4491 frames, there were 3888 valid detections and 12
outliers associated with Actor as well as 591 frames where
Actor was mis-detected. After gap filling, the 12 outliers were
further rectified, and extra 494 new detections successfully
tracked the target from the above mis-detected frames. Thus
both the precision and recall were greatly improved. The recall
improvement is more significant for Actress in Sequence 4,
where it can be observed in Fig. 15 that a long gap exists in



12

Time (s)

0 2 4 6 8 10 12 14 16

A
z
im

u
th

 (
d

e
g

re
e

)

-100

-50

0

50

100

150

Audio azimuth

Depth azimuth

Fig. 13: The HATS might be tilted and thus not synchronised with the
Kinect coordinate system. The audio azimuth is lower than the depth
azimuth, which means the HATS is tilted to the right ear direction.
As a reference, we calculated the HATS rotation from Kinect SDK,
and obtained the head orientation of 1◦, which is consistent with
our estimated angle shift 0.45◦. The audio and depth azimuths are
down-sampled here for better visualisation.

TABLE III: Precision & recall after integrating the audio cues.

Seq 1 Seq 2 Seq 3 Seq 4
Actor Actress Actor Actress Actor Actress

Precision 1.0 1.0 1.0 0.9936 0.9892 0.9865
Recall 0.9781 0.9391 0.9784 0.9722 0.9348 0.9138

the beginning for Actor. During the gap period particle filtering
tracked 300 (lasting in total 10 s) frames, of which 292 frames
have valid detections.

VI. CONCLUSIONS

We have presented a multi-person tracking system for
object-based spatial audio production, combining the binaural
audio recordings and the concurrent depth stream. The depth-
based head tracker gives positions in 3D. Yet, it suffers from
outliers and mis-detections, which are often introduced by
occlusions in multi-person scenarios. To remove outliers, we
introduced a modified PHD filtering method with adaptive
clutter intensity. To mitigate mis-detections when the depth
stream fails to track a person, the binaural recordings originally
collected for spatial audio evaluations are utilised. Applied to
real room recordings, we have compared our proposed PHD
filtering method with several other baseline filtering meth-
ods. Quantitative evaluations in terms of precision and recall
show our proposed method can effectively remove outliers,
and the integration of extra audio information successfully
compensates mis-detections; showing advantages over depth-
only tracking, particularly when there are multiple people with
a significant amount of occlusions.

As future work, improvements may be obtained by incorpo-
rating more advanced motion models, e.g., taking periodicity
in people’s trajectories. Insights from Yan et al. [54] may
be helpful if batch processing is allowed. Tracklets can be
combined using a shortest path search approach, though Yan
et al.’s method will have to be adapted for multiple target
tracking. In addition, the proposed method may be applied

0
1.5

1

2

1

z (m)

3

1

y
 (

m
)

4

0.5

0.5

x (m)

5

0

0

-0.5

-1

-0.5

Actor

HATS

Gap filling

(a) Sequence 1

0
1.5

1

2

1

z (m)

3

1

y
 (

m
)

4

0.5

0.5

x (m)

5

0

0

-0.5

-1

-0.5

Actress

HATS

Gap filling

(b) Sequence 2

0
1.5

1

2

1

z (m)

3

1

y
 (

m
)

4

0.5

0.5

x (m)

5

0

0

-0.5

-1

-0.5

Actor

Actress

HATS

Gap filling

(c) Sequence 3

0
1.5

1

2

1

z (m)

3

1

y
 (

m
)

4

0.5

0.5

x (m)

5

0

0

-0.5

-1

-0.5

Actor

Actress

HATS

Gap filling

(d) Sequence 4

Fig. 14: Depth-audio fusion applied to the PHD-filtered results in
Fig. 10, to fill the gaps between valid depth detections using the
audio stream and the planar constraint. The data points are down-
sampled for illustration purposes. Trajectories associated with Actor
and Actress are plotted, and filled detections using the audio stream
are highlighted in red dots. The HATS is highlighted in the centre
with a cyan circle. Actor and Actress are shown with consistent
patterns between different sequences.

to more challenging scenarios, for example, involving more
subjects and occlusions, and compared with other state-of-the-
art methods.
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