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Abstract. Sequential Monte Carlo probability hypothesis density (SMC-
PHD) filtering has been recently exploited for audio-visual (AV) based
tracking of multiple speakers, where audio data are used to inform the
particle distribution and propagation in the visual SMC-PHD filter. How-
ever, the performance of the AV-SMC-PHD filter can be affected by the
mismatch between the proposal and the posterior distribution. In this pa-
per, we present a new method to improve the particle distribution where
audio information (i.e. DOA angles derived from microphone array mea-
surements) is used to detect new born particles and visual information
(i.e. histograms) is used to modify the particles with particle flow (PF).
Using particle flow has the benefit of migrating particles smoothly from
the prior to the posterior distribution. We compare the proposed algo-
rithm with the baseline AV-SMC-PHD algorithm using experiments on
the AV16.3 dataset with multi-speaker sequences.

Keywords: Audio-visual tracking, PHD filter, SMC implementation,
multi-speaker tracking

1 Introduction

Multi-speaker tracking for indoor environments has received much interest in the
fields of computer vision and signal processing [25]. An increasing amount of at-
tention has been paid to the use of audio-visual modalities [2, 15], which provide
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complementary information in addressing several challenges such as occlusion,
limited view of cameras, illumination change, and room reverberations.

Several approaches using multi-modal information have been proposed. One
such method is based on audio-visual diarization [19], which is only effective
when the speakers continuously face the cameras. Kılıç et al. [21] addresses
this problem in the framework of audio-visual speaker tracking using a particle
filter (PF) and a probability hypothesis density (PHD) filter based on sequential
Monte Carlo (SMC) approximation [20]. Different from the Bayesian approaches
(Kalman or PF filters) [3, 4, 27], prior knowledge such as the number of targets is
not required in the PHD filter. As for other SMC-PHD filters, the AV-SMC-PHD
filter in [20] uses particles to represent the posterior density. However, after some
updates, the prior distribution may not overlap with the target distribution [17].

Recently, the particle flow (PF) filter has been proposed for solving the non-
linear and non-Gaussian problem [5, 8, 9, 12]. In this method, particle flow is
created by a log-homotopy of the conditional density migrating from the prior to
the posterior. Several approaches have been proposed to create the particle flow
which can be categorized into five classes: incompressible flow [6], zero diffusion
exact flow [7], Coulomb’s law particle flow [13], zero-curvature particle flow [9]
and non zero diffusion flow [12]. The zero-curvature particle flow has been used
widely [18, 24, 30], as it is straightforward to implement.

Particle flow has been used to improve the accuracy of the particle filter [24],
and is denoted as the particle flow particle filter (PFPF). Different from con-
ventional particle filters, the PFPF uses a small number of particles to achieve
the similar accuracy as that for particle filters with a higher effective sample
size (ESS) [22]. However, for multi-target tracking, a dependent filter needs to
be applied to each target, which introduces the model-data association problem
[14]. In addition, prior knowledge of the number of targets is needed. In [30],
a Gaussian particle flow implementation of the PHD filter (GPF-PHD) is pro-
posed yielding good accuracy in a nonlinear tracking problem. However, in this
method, the particles are generated for each target, and the computational cost
could be high for a large number of targets and clutter. For non-linear and non-
Gaussian problems, the auxiliary particle PHD filter proposed in [1] has better
performance than the GPF-PHD filter in terms of Optimal Subpattern Assign-
ment (OSPA) [14], since it efficiently distributes the particles by maximizing the
accuracy of the cardinality estimate.

In this paper, we extend the AV-SMC-PHD filter presented in [20] by incorpo-
rating particle flow within the particle evolution in order to improve its tracking
performance. The major contribution of this paper is a novel particle flow SMC-
PHD filtering method for multi-speaker tracking, where the audio data are used
to compute the prior distribution and the visual data are applied to compute the
particle flow. The posterior distribution is calculated by the color histograms of
the visual image and adjusted by the position of the direction of arrival (DOA)
lines drawn from the targets. Using audio information, the computational cost
for generating the particle flow can be reduced, as only the relevant particles
surrounding the DOA line will be chosen; while the influence of the particles,
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that are likely from the clutter and distant from the DOA line, is mitigated. The
proposed method is shown to outperform the baseline AV-SMC-PHD based on
evaluations on the AV16.3 dataset.

The reminder of this paper is organized as follows: the next section introduces
the AV-SMC-PHD filter and particle flow. Section III describes our proposed
audio-visual particle flow SMC-PHD (AV-PF-SMC-PHD) filtering algorithm.
In Section IV, experiments on the AV16.3 dataset are presented to show the
performance of the proposed AV-PF-SMC-PHD algorithm as compared with
the baseline AV-SMC-PHD algorithm.

2 AV-SMC-PHD Filter and Particle Flow

In this section, the baseline AV-SMC-PHD filter and the particle flow filter are
introduced. For the discrete-time and non-linear filtering problems, we assume
that the target dynamics and observations are described as a Markov state-space
signal model:

m̃k = fm̃ (m̃k−1, τk) , (1)

where m̃k is the target state vector at time-step k and ˜ is used to distinguish
the target state from the particle state used later. In this paper, the state vector
mk = [xk, yk, ẋk, ẏk]T consists of the target positions (xk, yk) and the target
velocities (ẋk, ẏk), and the observation is a noisy version of the position. The
parameter vector τk denotes the system excitation and observation noise terms
and fm̃ is the transition density.

2.1 AV-SMC-PHD Filter

In the visual SMC-PHD filter [26], the surviving, spawned and born particles
are used to model the existing and new speakers. For detecting the new targets,
new particles need to be added randomly, leading to increase in the number of
particles and hence to increase in computational load. To address this problem,
the AV-SMC-PHD filter is proposed in [20].

Audio information is applied for re-locating existing particles around the
DOA lines, since the DOA information shows the approximate direction of the
sound emanating from the speakers. The movement distances of the particles d̂k
are calculated as [20]:

d̂k =
dk
‖dk‖1

� dk (2)

where dk is the perpendicular Euclidean distances between the particles and the
DOA line, ‖.‖1 is the l1 norm, and � is the element-wise product; d̂k is applied
to relocate the surviving and spawned particles ms,k around the DOA line [20]:

ms,k = ms,k ⊕ hkd̂k (3)
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where hk = [cos(θk), sin(θk), 0, 0] and θk is the angle from the DOA line. ⊕ is
the element-wise addition. As such, the particles are modified along the perpen-
dicular movement to the DOA line, and NΓ born particles are sampled from the
new born importance function,

mi
k|k−1 ∼ pk(·|Zk). (4)

where mi
k|k−1 is the i-th predicted particle state at time-step k.

Apart from that, audio information in the AV-SMC-PHD filter can be used to
detect the new speakers effectively and the particles are born in particular direc-
tions. This reduces the number of particles and hence computational complexity.
The DOA lines are determined by the relative delay between pairs of micro-
phone signals [29]. When detecting new targets, the filter compares the number
of DOA lines, ND, with the number of estimated speakers at time k−1, Nk−1. If
ND = Nk−1, the number of the speakers remains unchanged. If ND < Nk−1, the
speakers may walk out of the camera view, or be occluded by other speakers, or
the DOA line may not be detected. In this paper, if ND < Nk−1 and ND 6= 0, we
assume that the number of the speakers reduces to ND. If ND = 0, we assume
that the microphones do not detect the speakers successfully and the number
of speakers remains the same as Nk−1. If ND > Nk−1, a new speaker (or some
new speakers) may appear in the scene and hence new born particles should be
created. Since born particles are only generated when the detection of a new
speaker occurs via audio, the computational complexity is reduced.

The pseudo code of AV-SMC-PHD filter is given in Algorithm 1 where
{mi

k, ω
i
k}
Nk
i=1 is the set of the particle state vectors and weights at time-step

k; {m̃j
k, ω̃

j
k}
Ñk
j=1 is the target set and Ñk is the number of targets at the time-

step k; NΓ is the number of born particles, which is given as the initial value; Zk
contains observations at time-step k. The weights of the particles are predicted
and updated by

ωik|k−1 =


φk|k−1(mi

k|k−1,m
i
k−1)ω

i
k−1

qk

(
mi
k|k−1

|mi
k−1,Zk

) , i = 1, ..., N

γk(m
i
k|k−1)

NΓ pk(mi
k|k−1

|Zk)
, i = N + 1, ..., N +NΓ

(5)

ωik =

[
1− pD,k(mi

k) +
∑
z∈Zk

pD,k(mi
k)gk(z|mi

k)

κk(z) + Ck(z)

]
ωik|k−1 (6)

where

Ck(z) =

N+NΓ∑
i=1

pD,k(mi
k)gk(z|mi

k)ωik|k−1 (7)

in which ωik|k−1 is the i-th predicted particle weight at time-step k. φk|k−1(.|.)
is the analogue of the state transition probability with the previous state. qk(.|.)
is the proposal distribution. γk(.) is the probability of the born particle. Zk is
the observation set at time-step k. κk(z) denotes the clutter intensity of the
observation z at time step k. pD,k(.|.) is the probability of detection at time step
k. gk(.|.) is the likelihood of individual targets.
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Algorithm 1 AV-SMC-PHD Filter

Input: {mi
k−1, ω

i
k−1}

Nk−1

i=1 , NΓ , Zk and DOA line.

Output: {m̃j
k, ω̃

j
k}
Ñk
j=1, and {mi

k, ω
i
k}
Nk
i=1.

Run:
Predict existing targets.
if DOA exists then

Calculate distances dk.
Calculate movement distances d̂k by Eq. (2).
Concentrate ms,k around the DOA line by (3).
if new speaker then

Born NΓ particles uniformly around the DOA line by (4).
end if

end if
Predict the weights of the particles ωik|k−1 by Eq. (5).
(Optional) Update the states and the weights of the particles by the particle flow.

Update the weights of the particles ωik|k by Eq. (6) and calculate Ñk =
∑Nk
i=1 ω

i
k|k.

Get {m̃j
k, ω̃

j
k}
Ñk
j=1 by the k-means method and get {mi

k, ω
i
k}
Nk
i=1 by re-sampling.

2.2 Particle Flow

There are several particle flow algorithms. Here we use the zero diffusion exact
flow [24], since it is straightforward to implement. Daum and Huang define the
flow of the logarithm of the conditional probability density function with respect
to step size λ [11]:

log(ψk(m, λ)) = log(hk(m)) + λ log(gk(m)) (8)

where λ takes values from [0,4λ, 24λ, · · · , Nλ4λ], where Nλ4λ = 1. gk(.) is
the likelihood function. At the start of the flow (λ = 0), ψk(mk, λ) represents the
prior density, hk(.). At the end of the flow (λ = 1), ψk(mk, λ) is translated into
the normalized posterior density. This flow simulates the motion of the physical
particles as Brownian movement [5] from the prior to the posterior density.

When the prior and the likelihood are unnormalized Gaussian probability
densities, the exact solution for the particle flow is given as [10]:

dm

dλ
= A (λ)m+ b (λ) (9)

where

A(λ) = −1

2
PHT

(
λHPHT +R

)−1
H, (10)

b(λ) = (I + 2λA)
[
(I + λA)PHTR−1z +Am̄

]
(11)

in which m̄ is the mean of the particle and R is the covariance matrix of the
observation noise. For nonlinear problems, the observations need to be linearized
for each particle (analogous to an extended Kalman filter). P is the covariance
matrix of the particles. H is computed as the Jacobian matrix.
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3 Proposed AV-PF-SMC-PHD Filter

In the AV-SMC-PHD filter as already summarised in Section 2.1, the particles
need to be drawn from a proposal distribution. However, it may not be well
matched to the posterior density because of the particle degeneracy issue [7]. To
mitigate this problem, we add an adjustment step between the prediction step
and update step, where the particle flow Eqs. (9)-(13) are applied to adjust the
states and weights of the particles by smoothly migrating them from the prior
to the posterior density.

In our proposed filter, audio information is used to calculate the number of
particle flows. As in other multi-speaker particle filters, the particles need to
be labeled [24] or cluttered [15] before updated. However, the prior information
about the number of targets and the association between the targets and parti-
cles of the visual SMC-PHD filter is unknown and time-varying in multi-target
tracking. In our method, such information could be provided by the DOA lines.
We assume that the number of particle flows is the same as the number of DOA
lines ND. Then the particles are classified to ND sets based on the Euclidean
distance between the particles and the DOA lines. These particles are denoted
as {mi

k|k−1, ω
i
k|k−1}i∈Λ(z), where Λ(z) is a subset of E = [1, · · · , N + NΓ ]. In

practice, some particles are created due to clutter and noise. To account for the
noise effect, we assume that each flow will only be influenced by the particles in
the neighborhood of the DOA lines within a certain distance d.

The mean m̄(z) and covariance P (z) are calculated based on different par-
ticle flows. The states of particles are adjusted by Eq. (9) and the weights of the
particles also need to be adjusted as

ωik|k−1 :=
qk(mi

k|k−1|m
i
k−1, z)

qk(ḿi
k|k−1|m

i
k−1, z)

ωik|k−1 (12)

where ḿi
k|k−1 is the updated value of mi

k|k−1 by particle flow.
The pseudo-code of the adjustment step of the PF-SMC-PHD filter is pre-

sented in Algorithm 2. The observation of particle flow z is calculated by the
color histogram matching [16]. The reference histogram v is updated with the
estimate from the previous time step k − 1. Note that m in Eq. (9) should be
represented with mi

k|k−1, and

H =

[
cos (θ) −sin (θ)
sin (θ) cos (θ)

]
(13)

where θ = arctan(m(2)
m(1) ), and m(1) and m(2) are the first and second element

of m, respectively.

4 Experimental Results

In this section, the proposed algorithm is compared with the visual SMC-PHD
algorithm, the baseline AV-SMC-PHD algorithm in [20] using the AV16.3 dataset
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Algorithm 2 Adjustment Step of the AV-PF-SMC-PHD Filter

Input: {mi
k|k−1, ω

i
k|k−1}

Nk
i=1, Zk, v and the DOA line

Output: {mi
k|k−1, ω

i
k|k−1}

Nk
i=1.

Run:
for each DOA line do

Calculate z by the reference histogram v and input image Zk
for λ ∈ [0,4λ, 24λ, · · · , Nλ4λ] do

Calculate H via Eq. (13) and A and b by Eq. (10) and Eq. (11), respectively.

Evaluate flow
dmi

k|k−1

dλ
by Eq. (9) and mi

k|k−1 = mi
k|k−1 +4λ

dmi
k|k−1

dλ
.

end for
Update the particle weights by Eq. (12).

end for

[23]. In the visual SMC-PHD filter, the born particles are created randomly in
the tracking area but the number of particles is the same as other filters. AV16.3
consists of sequences where speakers are walking and speaking at the same time.
Those actions are recorded by three calibrated video cameras at 25 Hz and two
circular eight-element microphone arrays at 16 kHz. The audio and video streams
are synchronized before running the algorithms. The size of each image frame is
288x360 pixels. All the algorithms are tested with all the three different camera
angles of four sequences: Sequences 24, 25, 30 and 45, which correspond to the
cases of two and three speakers and are the most challenging sequences in term
of movements of the speakers and the number of occlusions.

As in [20], the OSPA metric [28] is employed for measuring the tracking
performance. The OSPA is able to evaluate the performance on target number
estimation as well as the position estimation, which is suitable for multi-target
tracking. A low OSPA implies a better performance. All experiments are run on
a computer with Intel i7-3770 CPU with a clock frequency of 3.40 GHz and 8G
RAM.

The parameters for the SMC-PHD filter are set as: pD = 0.98, pS = 0.99 and
σc = 0.1. The uniform density u is (360280)−1 and the number of particles per
speaker is 50. The parameters for particle flow are set empirically as: 4λ = 0.01,
P = [5, 5, 1, 1] and d = 30. The OSPA metric order parameter a is 2.

Due to page limit, we only show part of the results obtained. First, the OSPA
results for Sequence 24 camera 1, as an example, is shown in Figure 1. The green
dotted line is the OSPA for the visual SMC-PHD fitler, the blue dotted line is
the OSPA for the AV-SMC-PHD filter, and the red solid line for the AV-PF-
SMC-PHD filter. From frame 400 to frame 600 and from frame 800 to frame
1000, there is no occlusion. At most of time such as from frame 350 to frame
700, OSPA for the AV-PF-SMC-PHD filter is the lowest among the three filters.
Compared with audio information, the targets can be more quickly tracked with
a lower OSPA as compared with the visual filter, especially when a new target
appears, such as from frame 0 to frame 350. However, from frame 750 to frame
800, the error of the AV-PF-SMC-PHD filter is larger than that of the AV-SMC-
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PHD filter, since it is the end of the occlusion, and the particles are modified
to the wrong direction by the visual information of the occluded speakers in the
previous frame.

Frame Number
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Fig. 1: Performance comparison of the visual SMC-PHD filter, the AV-SMC-PHD filter
and the proposed AV-PF-SMC-PHD filters in terms of the OSPA error.

Other sequences are also used in the tests and the results of different methods
are given in Table I. The average errors for the visual SMC-PHD filter, the AV-
SMC-PHD filter and the AV-PF-SMC-PHD filter are 36.97, 22.75 and 20.14
respectively. With the same number of particles, the visual filter gives a higher
OSPA than the audio-visual filters, which means audio information can improve
the tracking accuracy of visual SMC-PHD filters. Apart from that, with the
particle flow, 12.47% reduction in tracking error has been achieved. However,
for the Sequence 24 camera 1, the computational cost has increased from 112 to
703 seconds. The computational cost for the AV-PF-SMC-PHD filter will also
increase with the number of particles and targets. For example, the execution
time for the Sequence 45 (1034s) is larger than that for Sequence 24 (153s).

5 Conclusion

We have presented a novel AV-PF-SMC-PHD filter for multi-speaker tracking,
by adding an adjustment step to smoothly migrate the particles. The proposed
algorithm has been tested on the AV16.3 dataset, where the number of speakers
varies over time. The experimental results show that the AV filters offer a higher
tracking accuracy than the visual filter with the same number of particles. The
proposed particle flow method can improve the tracking accuracy over the AV-
SMC-PHD filter, with a modest increase in the computational cost.
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