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Abstract—In existing audio-visual blind source separation
(AV-BSS) algorithms, the AV coherence is usually established
through statistical modelling, using e.g., Gaussian mixture models
(GMMs). These methods often operate in a low-dimensional
feature space, rendering an effective global representation of the
data. The local information, which is important in capturing
the temporal structure of the data, however, has not been ex-
plicitly exploited. In this paper, we propose a new method for
capturing such local information, based on audio-visual dictio-
nary learning (AVDL). We address several challenges associated
with AVDL, including cross-modality differences in size, dimen-
sion and sampling rate, as well as the issues of scalability and
computational complexity. Following a commonly employed boot-
strap coding-learning process, we have developed a new AVDL
algorithm which features, a bimodality balanced and scalable
matching criterion, a size and dimension adaptive dictionary, a
fast search index for efficient coding, and cross-modality diverse
sparsity. We also show how the proposed AVDL can be incorpo-
rated into a BSS algorithm. As an example, we consider binaural
mixtures, mimicking aspects of human binaural hearing, and
derive a new noise-robust AV-BSS algorithm by combining the
proposed AVDL algorithm with Mandel’s BSS method, which
is a state-of-the-art audio-domain method using time-frequency
masking. We have systematically evaluated the proposed AVDL
and AV-BSS algorithms, and show their advantages over the
corresponding baseline methods, using both synthetic data and
visual speech data from the multimodal LILiR Twotalk corpus.

Index Terms—Audio-visual coherence, blind source separation,
convolutive mixtures, dictionary learning, noisy mixtures.

I. INTRODUCTION

A. BSS and AV-BSS

I N complex auditory scenes, humans with normal hearing
ability are generally capable of listening selectively to a par-

ticular sound source from a mixture of sounds including com-
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peting sound and background noise. This is known as the cock-
tail party problem [1]. To replicate such capabilities with ma-
chines is however extremely challenging, and a popular method
for addressing this challenge is to model the problem under the
framework of blind source separation (BSS), where themixtures
are usually assumed to be convolutive (or reverberant), in order
to model the surface reflections of sounds in an enclosed room
environment [2]. Many algorithms have been developed to re-
cover the original unknown source signals from such mixtures
[3]–[12] Independent component analysis (ICA)[3]–[6] exploits
the statistical independence between source signals to address
the BSS problem. Beamforming techniques separate sources by
exploiting the geometric information of source positions, as-
suming a far- and free-field propagation model [7], [8] for the
acoustic environment. With the sparsity assumption in an aux-
iliary transform domain, masking techniques [9]–[12] can be
applied to separate sources by evaluating various cues such as
inter-aural phase difference (IPD) and inter-aural level differ-
ence (ILD) [11]–[13].
Even though the above methods achieve good performance

in near ideal conditions, i.e., noise free or low noise level with
relatively low level reverberation, they degrade steadily in ad-
verse conditions, e.g., in the presence of a high level of noise
and reverberation and interfering sounds. To improve the intel-
ligibility of noise corrupted speech, it is beneficial to introduce
additional information that is robust to acoustic noise. One such
type of information comes from visual cues (visual movement
or lip-reading) associated with the concurrent sound source pro-
duction and its perception. Studies show that human brains in-
terconnect auditory with visual cues instead of dealing with
the sound in isolation [14]–[18], which considerably improves
speech intelligibility in a noisy environment. Such a relation-
ship, known as audio-visual (AV) coherence, has been exploited
to improve the performance of automatic speech recognition
[19], identification [18] and source separation [20]–[28] in a
noisy environment. Using the AV coherence to enhance BSS
is known as AV-BSS [20]–[28].
One key challenge however is to model reliably the AV coher-

ence, which, in AV-BSS, is established by two levels of fusion
approaches:
• Decision level fusion. The source signals are first localised
using visual tracking, then the characteristics of the sepa-
ration filters are analysed based on either beamforming or
convolutive BSS [24]–[26].

• Feature level fusion AV sequences are mapped into the
feature space, and a statistical model is applied for AV fea-
ture fusion. Coherence maximization techniques are used
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to assist BSS, via directly estimating the separation matrix
[20], [21], or overcoming the limitations of traditional BSS
such as permutation ambiguities [22], [27], or providing
audio activity information [29].

In the above methods, the AV coherence is modelled from
the ‘global’ point of view across all observation frames, as-
suming the sampling distribution exhaustively represents all the
AV information. However, the ‘local’ representation that ex-
ploits the temporal structures, i.e., the interconnection between
neighbouring samples, is not considered. As a consequence of
ignoring local features, essential information that locally de-
scribes a signal, is lost. Yet, this information plays an important
role in speech perception. For instance, several consecutive vi-
sual frames focusing on a region with the mouth opening widely
and sustaining for 200 ms (i.e., 5 frames) may indicate a long
open vowel utterance, such as /a/; the presence of only one wide
open frame of the above visual snippet more likely indicates a
short vowel or a transition. To address this limitation, a better
representation method for capturing the AV coherence should
be considered, using e.g., dictionary learning (DL), as discussed
next.

B. Dictionary Learning (DL) and Audio-Visual DL

Inspired by the AV fusion framework in [23], [30], we use
an AV dictionary to model the AV coherence, where each atom
in the dictionary has a bimodality-informative temporal-spatial
(TS) inseparable [31] structure, which contains coherent events
in both modalities, e.g., a visual lip movement lasting for several
frames and a concurrent audio utterance, and the term ‘spatial’
denotes a position in the visual data. The new framework fo-
cuses on the structure of local features that might occur at any
TS location of an AV sequence, rather than the sample char-
acteristics of the whole AV sequence. Therefore, our AV fu-
sion framework, to some extent, resembles locality-constrained
linear coding (LLC) [32].
As opposed to using some pre-defined dictionary such as the

Haar wavelets and the Fourier basis, our dictionary is adapted
for a specific scenario, e.g, a person speaking, which needs to be
learned via dictionary learning. DL is closely linked to sparse
representation, whose aim is to describe a signal with a small
number of atoms chosen from a redundant dictionary, where
the number of atoms in the dictionary is greater than the di-
mension of the input signal. In other words, DL aims to find
the optimal dictionary that best fits the input data [30], [31],
[33]–[37], with a high level of sparsity and a low level of error.
DL methods often employ a bootstrap process iterating between
two stages: sparse coding and dictionary updating [31], [33],
[34]. Firstly, the coding coefficients are obtained given the data
and the dictionary via e.g., greedy techniques such as matching
pursuit (MP) [38], orthogonal matching pursuit (OMP) [39], and
convex relaxation methods such as basis pursuit [40]. Secondly,
the dictionary atoms are updated to fit the input data via e.g.,
the least squares solutions to optimal directions [41], iterative
gradient descent [42], singular value decomposition (K-SVD)
[35], and more recently simultaneous codeword optimisation
(SimCO) [43].
The above methods have been successfully applied to

monomodal data such as images. Yet, little work has been
undertaken for multimodal data, e.g., AV data as considered
here. Tropp [36] proposed a simultaneous orthogonal matching

pursuit method for multi-sensor data of the same type, which
however is unsuitable for audio and visual streams that have
different dimensions and temporal resolutions. Monaci et
al. [37] proposed an iterative bootstrap coding and learning
process between audio and visual streams with de-correlation
constraints. This algorithm is fast and flexible. However, it may
result in spuriousAV atoms, i.e., physically-meaningless atoms.
They proposed an improved audio-visual matching pursuit al-
gorithm [30], with a more consistent joint coding process, and
successfully applied it to speaker localisation in the presence
of acoustic interference and visual distractors. This method is
nevertheless constrained by the following limitations. Firstly,
the weights of the two modalities used in the objective function
may be unbalanced. Secondly, due to the high-dimensional
data used for learning AV atoms, it is prone to errors induced
by outliers including convolutive audio noise, and may result
in over-fitting. Thirdly, the computational complexity is very
high. To overcome these limitations, we propose a more robust,
efficient and size-adaptive audio-visual dictionary learning
(AVDL) method, which we then use to derive a new AV-BSS
algorithm based on probabilistic time-frequency masking [11].

C. Our Contributions

1) AVDL: We build upon the DL approaches in [30],
[35]–[37], [41], [42] and our method is also a bootstrap
coding-learning process. With a similar AV structure as in [30],
each AV atom in our dictionary contains an audio atom and a
coherent visual atom spanning the same temporal length. The
audio atom is the magnitude spectrum of a snippet of an audio
signal, which is robust to convolutive noise (as observed in our
experiments in Section V). The visual atom is composed of
several consecutive frames of image patches, focusing on the
movement of the whole mouth region, rather than highlighting
the activity of a small part of the lips as used in [30]. The
preliminary version of our work has been presented in [28],
and we have the following main contributions:
• A new generative model and a new objective function are
proposed to balance the audio and visual modalities, and to
accommodate the different size, dimension, sampling rate,
and the degrees of sparsity for the two modalities.

• The AV training sequence is mapped into a low-dimen-
sional space to avoid the over-fitting problem and to im-
prove the robustness of the AVDL algorithm to convolu-
tive audio noise.

• A fast scanning and thresholding scheme is proposed for
the coding stage to reduce the computational complexity
of the dictionary learning algorithm.

2) AVDL-Incorporated BSS: We also demonstrate how the
proposed AVDL algorithm can be used to improve the perfor-
mance of BSS algorithms for audio mixtures corrupted by noise.
To this end, we consider binaural auditory mixtures, mimicking
aspects of human binaural hearing. Mandel’s state-of-the-art
method [11] is used for this purpose, where the spatial cues of
IPD and ILD are exploited to generate an audio mask for source
separation in the time-frequency (TF) domain. To improve the
confidence of the audio mask in adverse conditions, we incorpo-
rate the AVDL into Mandel’s method by re-weighting each TF
point of the mask, to derive a noise-robust AV-BSS algorithm,
whose framework is introduced in the next section.
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Fig. 1. The flow of our proposed AV-BSS system: AVDL-incorporated BSS.
It contains two parallel mask generation processes: an audio mask generation
process via a conventional audio-domain BSS, and a visual mask generation
process via matching the corrupted AV sequence to the AV dictionary, which is
learned in the off-line training stage via AVDL, thereby aiming to model the AV
coherence. The integration of the above two masks is used to separate the target
speech from the mixtures.

The remainder of the paper is organised as follows. Section II
introduces the overall framework of our proposed AV-BSS.
Section III describes in detail our proposed AVDL method
for modelling the AV coherence, which is used in the off-line
training stage of our AV-BSS method. Section IV explains in
detail the separation stage of AV-BSS. Experimental results are
shown in Section V, followed by the conclusions.

II. THE OVERALL SYSTEM

We present the block diagram of our proposed AV-BSS in
Fig. 1, which contains the off-line training stage (upper shaded
box) and the separation stage (lower shaded box).
In the training stage, we apply the proposed AVDL to the

training AV sequence associated with a target speaker, and the
learned dictionary is then used to model the AV coherence. The
challenges in this stage include dealing with the cross-modality
differences in size, dimension and sampling rate.
In the separation stage, two parallel TF mask generation pro-

cesses are combined to derive an AV mask for separating the
target source from themixtures. One of themask generation pro-
cesses operates in the audio domain, exploiting binaural cues to
cluster each TF point of the audio spectrum coming from dif-
ferent sources statistically, i.e., Mandel’s method [11] as men-
tioned above; the other process exploits the AV coherence mod-
elled in the off-line training stage, by mapping the corrupted
AV sequence to the learned AV dictionary using the MP algo-
rithm, to approximate a visually-constrained audio estimate for
generating the visual mask (a mask for audio separation based
on video). Finally, the audio mask and the visual mask are in-
tegrated to obtain a noise-robust AV mask, which is applied to
the TF representation of the audio mixtures for the target source
extraction. These two main stages will be discussed in detail in
the next two sections.

III. AUDIO-VISUAL DICTIONARY LEARNING (AVDL)

AVDL is used in the off-line training stage of AV-BSS, which
aims to learn the bimodality-coherent parts from AV sequences,
resembling the joint receptive field of human vision and hearing
[14], [16]. For presentation convenience, we divide this section
into four parts.

• The generative model of an AV sequence with which
AVDL is derived.

• The coding stage of AVDL, which, given a dictionary, de-
composes an AV sequence using the generative model.

• The learning stage of AVDL, which updates the dictionary
to better fit the data.

• The computational complexity of AVDL.

A. Generative Model

We denote an AV sequence as where the su-
perscripts and denote audio and visual modalities respec-
tively. It contains an audio signal and a visual signal .
Since using the audio magnitude spectrum tends to be more ro-
bust to noise and convolutive filters as compared to the time-do-
main audio signal (observed in Section V), hereafter, we trans-
form the time-domain audio signal to the TF domain (magnitude
spectrum) via the short-time Fourier transform (STFT), using
the same notation :

where and are the discrete audio time (block) and visual
time (frame) indices at different sampling rates and ,
and denote the pixel coordinates, is the frequency index
of the audio spectrum. The upper-case letters with tilde define
the size of the AV sequence1. In our proposed AVDL algorithm,
the same operations will be applied to all the frequency bins of
the audio modality, therefore we will intentionally drop the fre-
quency index in this AVDL section for notational simplicity:

.
In the same way, we define an AV dictionary ,

with each atom denoted as where has a unit
Euclidean norm. Each atom has a similar structure to an AV
sequence:

where the upper-case letters define the atom size, which
is much smaller compared to the AV sequence size

. Note that, in
our implementation.
The bimodality-coherent parts of the AV sequence can be

described as a linear superposition of atoms in the dictionary ,
each of which is convolved with a TS-varying signal, as demon-
strated in Fig. 2. Assuming , there are possible
TS positions indexed by for each visual atom where

, and
possible fine time positions indexed by for each audio atom
where . The generative model is given as

(1)

where the superscript T denotes the transpose operator; is
the audio coefficient and the visual coefficient, which to-
gether comprise the TS-varying coefficients being convolved

1We use the tilde to distinguish the sequence size from the size of the dictio-
nary atom defined in the next paragraph.
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Fig. 2. Demonstration of the generative model in (1). The bimodality-coherent
part of an AV sequence , is represented as a linear superposition
of atoms in the dictionary . Each dictionary atom contains an audio atom
and a visual atom . We show two atoms in this example. Each atom is

scaled and allocated at two places to represent the AV-coherent part in the se-
quence, as highlighted in the rectangles. For demonstration purposes, the audio
stream is shown on the decibel scale, and similarly the following audio magni-
tude spectrograms. (a) Audio stream ; (b) Visual stream .

with to represent the AV signal. The AV atoms are insep-
arable, i.e., each audio atom and its associated visual atom al-
ways appear in pairs at a TS position of the AV sequence. As a
result, if a visual atom appears at the TS position ,
i.e., , there exists a corresponding none-zero coeffi-
cient in the set , subject to

(2)

In the above set, rounds a number to its nearest integer;
denotes the same temporal position as with a finer resolution.
The coarse TS position and comprise a fine TS po-
sition . We denote the approximation error (i.e., the
residual) as .
In (1), each AV atom can be considered as an event that

may sparsely occur (activate) at the TS position of .
For the visual atom, we have the sparsity constraint that the
visual activity (visual coding coefficient ) is binary with
value either 1 or 0, depending on whether or not occurs
at . For the audio atom, a more explicit sparsity con-
straint is enforced. We need to evaluate whether or not the event
occurs at a TS position, as well as how active (loud) it is.

Therefore, the audio activity (audio coding coefficient ) is
non-negative, and its value reflects the energy contribution of
at the temporal position .
We denote as the coding parameter set, where

, . We
enforce the sparseness constraint that there are only non-zero
elements in with or :

(3)

where is the norm, with in this specific situation,
and gives the number of non-zero elements for .
To learn a dictionary that best fits the generative model in

(1), a novel AVDL algorithm is developed, which, similar to
[30], [35]–[37], [41], [42], contains a bootstrap coding-learning
process, as shown in Algorithm 1. The learning process is
stopped when the maximum iteration is achieved, or a robust
dictionary is obtained, i.e., for two successive iterations, the
coding parameters stay the same or highly similar to each
other. The coding and learning stages are detailed in the fol-
lowing two subsections respectively.

Algorithm 1: Framework of the Proposed AVDL

Input: A training AV sequence , an initial
with atoms, and the number of non-zero coefficients

Output: An AV dictionary
1 Initialization: , MaxIter
2 while do
3 %Coding stage
4 Given , decompose using (1) to obtain .
5 %Learning stage
6 Given and the residual , update

for to fit model (1).
7

B. Coding Stage

We use matching pursuit (MP) [38] in our sparse coding
stage, which is a greedy method that iteratively chooses the op-
timal atom from the dictionary to approximate the signal. This
facilitates the numerical comparisons with the baseline method
[30], whose coding stage also adopts the MP algorithm. The
MP is performed as follows: in the -th iteration, the atom that
has the highest value of the matching criterion with the training
signal, is chosen to approximate the signal, whose contribution
is then removed from the residual (i.e., approximation error).
In the -th iteration, we continue to find the next optimal
atom and remove its contribution from the residual. In total,
iterations are applied.
1) New Matching Criterion: The ‘matching criterion’ mea-

sures how well an atom fits the signal in the MP algorithm,
which is composed of the audio matching criterion and the vi-
sual matching criterion for AV signals. It is calculated between
an AV atom and an AV segment extracted from the sequence
(i.e., the updated AV residual ). For simplicity, we define a seg-
ment extracted from at the TS position as

, of which and . The
short bar on the top distinguishes the residual segment from the
complete residual sequence. In Monaci et al. [30], the following
matching criterion has been used:

(4)

where with being
a modulus operator and the inner product.
The above criterion, however, is not balanced between the

two modalities. For example, if we scale the audio signal by a
factor , the matching criterion between and translated
will be proportionally scaled by , while the visual matching
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criterion remains the same. As a result, the overall audio-visual
criterion does not proportionally change, leading possibly to a
monomodality criterion.
Another limitation lies in the visual matching criterion. In

[30], the video sequence is pre-whitened to highlight moving
object edges, resembling the motion-selective receptive field of
the human vision system. applied to the whitened video
is not adaptive to the differences in shape and intensity of the
visual objects that might be matched to a visual atom.
To address the above limitations, we propose a new overall

matching criterion together with a new visual matching
criterion:

(5)

where . In the new matching criterion, any change
of amonomodality criterion will proportionally scale the overall
criterion. The visual criterion is defined as:

(6)

In the above visual criterion, we consider the absolute differ-
ence between a visual atom and a visual segment. The segment
value does not directly affect the visual matching criterion. The
exponential operation enlarges the variance of the visual cri-
terion, which prevents the overall criterion from being domi-
nated by the audio modality. Another advantage with (6) is that
the low-dimensional visual feature extracted at the TS position

can be used to replace , e.g., the lip contour used
in our experiments, which greatly reduces the computational
complexity.
2) Optimisation Method: In the MP method, we use the

matching criterion maximization as our objective function.
To optimise it, first we need to calculate the overall matching
criterion using (5), with

being tied with via set (2). In the -th iteration of the coding
stage, the optimal atom index and the associated translation
can therefore be found by maximizing the following objective
function:

(7)

where is associated with as defined in set (2). Then we can
set values in the parameter set :

(8)

Finally, the residual 2 will be updated via:

(9)

There are iterations in total. We summarise the coding stage
in Algorithm 2, where the scanning index , described in
Section III-B.3, is used to improve its computational efficiency.

2To accommodate the visual sparsity constraint, the K-means technique is
used to learn the visual atom, and therefore we do not need to calculate the
visual residual as for the visual modality.

Algorithm 2: The Coding State of the Proposed AVDL

Input: An AV sequence , the dictionary , the
threshold , the number of non-zero coefficients

Output: The coding parameter set and residual
1 Initialization:Set with zero tensors,

2 Calculate using (10) to (13).
3 while and do
4 % Projection

5
n=1
otherwise

6 for to do
7 foreach do
8 Calculate , where is tied with via

set (2).
9 foreach do
10 if then
11 Obtain via (6)

and via (5).
12 % Selection
13 Obtain via (7).
14 Update via (8).
15 Residual calculation via (9).
16
17 if then
18
19

For the convergence of our AVDL, we consider the coding
process to be complete when either of the following two con-
ditions is satisfied: 1) when the iteration number reaches the
predefined number , 2) when the maximum matching cri-
terion in the current iteration is smaller
than , where is the maximum matching criterion in
the first iteration and is a selected threshold.
Note we do not use the residual energy as the stopping

condition, since in our coding stage, we aim to approximate the
AV-coherent parts, whose energy is not proportional to the AV
coherence. This residual may contain some AV-irrelevant parts
with high energy, which are not approximated.
3) Fast Searching Factor for Better Convergence: A limita-

tion in both the proposed algorithm and the baseline algorithm
[30] is the computational complexity of the coding stage. In this
section, we describe a novel method for improving its computa-
tional efficiency using a logical scanning index , com-
puted as:

(10)

where denotes logical conjunction (AND or product), and
and are the audio and visual scanning indices respectively.
The audio scanning index is obtained by thresholding the

short-term energy (of an audio segment having the same length
as the audio atom), i.e., , as follows,

if
otherwise

(11)
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where is the audio threshold,
, and denotes the mean value of .

The visual scanning index is obtained similarly to the
audio index, i.e., by thresholding the energy of the video image
block after whitening. The whitening process is to highlight the
dynamic lip region and to remove the static background in the
images. First, after applying the Fourier transform over the third
dimension (i.e., along ) of , we equalise the spec-
trum (i.e., whitening) with a high-pass filter to highlight the dy-
namic visual parts of the lip region. Then, we transform it back
to the time domain, , which is then smoothed with
three simple moving average filters and that contain

and elements respectively:

We then crop a block of video from
, starting from , denoted as

. We then focus on the peaky
dynamic (i.e., mouth) region in each frame by removing most
of the irrelevant positions:

if

otherwise.
(12)

We obtain by using a visual threshold :

if
otherwise

(13)

where takes the non-zero elements in .
We skip the matching criterion calculation at the TS position

for if , thereby reducing
the computational cost of the coding stage significantly.
Using the scanning index, we have assumed implicitly that

the physically meaningful AV information lies in the active parts
of the AV sequence. This is particularly true in real-world audio-
visual data in which the visual activities are often accompanied
by the audio activities, and vice versa. As such, using the scan-
ning index can significantly improve the computational effi-
ciency of the coding process, without losing important informa-
tion or compromising the performance. According to the evalu-
ations on a set of 50 synthetic signals as used in Section V-A.1,
we found that the proposed scanning index reduces the number
of valid TS positions to , while retaining of the AV
information.

C. Learning Stage

In this stage, we adapt the dictionary atom
to fit the AV sequence. Due to the different sparsity constraints
of the audio and visual modalities, the K-SVD [35] andK-means
algorithms are used for learning the audio and visual atoms
respectively.
To demonstrate the K-SVD for the audio modality, we first

introduce the notation that represents the vectorisation
of a tensor and that reshapes a vector to the same

size as the tensor . To apply K-SVD, the contribution of
should be added back to the residual,

(14)

We then build a matrix whose columns are
. After that, we apply the

SVD to to obtain the first principal component:

(15)

where and are the two singular vectors associated with
the largest singular value . Then can be updated via

(16)

The non-zero elements in associated with the -th atom will
be updated as the elements in the row vector . The residual
at the associated positions will be updated3 as:

(17)

Each visual coefficient in is either 1 or 0, which simply
includes or excludes one visual segment to the class . There-
fore, we use K-means to update the visual atom .
The detailed learning stage is depicted in Algorithm 3.

Algorithm 3: The Learning Stage of the Proposed AVDL.

Input: The parameter set , the residual , the old
dictionary

Output: A new dictionary
1 Initialization:
2 while do
3 Update and via K-SVD using (14) to (17).
4 Update via the K-means algorithm
5

6

D. Complexity

The computational complexity of our proposed AVDL is
dominated by the coding stage, as for the baseline method
by Monaci et al. [30]. They are compared in Table I, where
the complex operations include divisions, multiplications
and logarithmic operations, while simple operations include
summations and subtractions. We can observe that, for the
audio modality, the proposed AVDL is faster than the baseline
method by a factor of , assuming a 0.75-overlap STFT
is imposed when applying the AVDL. For the visual modality,
due to the proposed new matching function, the calculation
load is greatly reduced in terms of complex operations, at the
expense of importing additional simple operations. Note that,
this comparison does not include the computational savings
introduced by the proposed scanning index.

IV. AV-BSS

In this section, we describe in detail the three blocks in the
separation stage of our proposed AV-BSS system in Fig. 1:

3This step is necessary in case two allocated atoms overlap with each other.
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TABLE I
COMPUTATIONAL COMPLEXITY QUANTIZATION FOR THE

PROPOSED AVDL AND MONACI’S METHOD

• The audio-domain BSS, i.e., to generate an audio-domain
TF mask for source separation.

• The parallel noise-robust visual mask generation process,
using the AV coherence modelled by AVDL.

• The integration of these two masks for the target speech
separation.

A. Audio Mask Generation Using Binaural Cues

The proposed AVDL method can be flexibly combined with
many existing BSS methods in the literature, and can in prin-
ciple be applied to any number of mixtures. As an applica-
tion example, however, we consider binaural mixtures, which
mimic human binaural perception. Mandel’s method, which ex-
ploits the spatial cues of IPD and ILD, is shown to produce the
state-of-the-art results[11]–[13], and is therefore chosen as the
audio-domain BSS to be combined with AVDL. The principles
of Mandel’s method are as follows.
A source signal arrives at two ears with different time delays

and attenuations, exhibiting:

(18)

where and are the STFTs of the left and
right ear signals respectively, at the TF point . The ILD
is and the IPD is , which can be statistically
modelled with mixtures of Gaussian distributions for different
sources and time delays. Themodel parameters can be estimated
iteratively via the expectation maximization (EM) algorithm
based on a maximum likelihood framework. Based on these
models, each TF point can be associated probabilistically to the
source signals, i.e., to generate audio-domain separation masks.
We denote the TF mask that contributes to the reconstruction of
the target speech as , which can be applied to either
of the binaural signals for target source estimation, or to both of
the binaural signals to obtain their average result as the source
estimation, as done in our experiments.

B. Visual Mask Generation Using AVDL

In this section, we generate a visual mask from the noise-cor-
rupted audio signal (i.e., speech mixtures possibly with addi-
tional noise) and the associated clean video signal, given a dic-
tionary that has been trained on the target speaker.
Previously, in the dictionary learning section, we intentionally
dropped the frequency index for the audio modality since
there is no difference in the operations between different fre-
quency channels. In this section, we aim to obtain a frequency-
dependent separation mask for separating the target speech, so
hereafter we denote the elements in the audio modality with
both temporal and frequency indices. For example, we de-
note as the average

magnitude spectrum from the noise-corrupted mixtures. Sup-
pose is the clean visual stream related to the target source
signal, we can first approximate the new AV sequence

using (1), via the same MP method as used in the
coding stage of AVDL, and obtain the AV approximation de-
noted as .
In the coding stage, the audio matching criterion is affected

by interference and noise. The target speech information may
be corrupted or masked by the interference information, which
often occurs at a TF position when the distortion energy is
higher than the target speech energy. Yet, the audio matching
criterion can approximate the contribution of the target speech
in the matched frames. For the visual modality, the visual
matching criterion is not affected by acoustic noise, and this
avoids ‘fake’ matches caused by audio outliers. Here, we
consider interference and background noise as generators of
audio outliers with respect to the expected audio from the
target. Therefore, the audio approximation gives
an estimate of the contribution of the clean target speech in
the matched TS positions, which is robust to acoustic noise.
Comparing the reconstructed audio sequence with the corrupted
audio sequence, we can obtain a visual mask in the TF domain:

if

otherwise.
(19)

We set 1 as the upper-bound since we aim to recover the in-
formation embedded in the mixture that comes directly from
the target speaker. Hence, the reconstructed source magnitude
should not be greater than that of the mixture. For those tem-
poral positions where no AV atom matches the AV sequence,
the visual mask is set as 0.5. Since the reconstructed
audio stream is obtained by mapping the corrupted
AV sequence to the AV dictionary, which encodes the ‘clean’
AV coherence information associated with the target speaker,
the ‘fake’ matches can be effectively suppressed.

C. Audio-Visual Mask Fusion for BSS

The probabilistic audio mask obtained by using the inter-
aural spatial cues works well when the noise level in the mix-
tures is relatively low. However, with the increase of the noise
level in the mixtures, the quality of the probabilistic mask starts
to deteriorate, mainly because the confidence of assigning the
TF point of mixtures to a particular source is reduced due to
the noise corruption which essentially makes the binaural cues
estimated from the mixtures in the audio domain increasingly
ambiguous.
To increase the confidence of the TF assignment when gen-

erating the TF mask for source separation, we propose an em-
pirical method for audio-visual fusion based on the power-law
transformation as follows,

(20)

where the power coefficients are obtained by applying a non-
linear mapping to shown in Fig. 3 We fix several
of the power coefficients, and the other values of
are obtained via curve fitting techniques, e.g., the spline inter-
polation used in our method.
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In particular, the visual information is likely to increase the
confidence of TF assignment in the situation where the audio
mask has a low confidence, i.e., the source occupation likeli-
hood determined via IPD and ILD is in the range around 0.5 (for
two-source scenario), since in this case, the algorithm is not cer-
tain which source the TF point of the mixture belongs to. The
power-law transformation, however, increases the discrimina-
tion confidence by either increasing or alternatively decreasing
the occupation likelihood based on the information from the vi-
sual mask, so as to assign the TF point to the target or the inter-
fering source. The principles for adjusting the occupation like-
lihood using the visual mask are as follows. The higher the con-
fidence that the visual mask has, the more likely the occupation
likelihood will be adjusted towards the value 1 or 0. In addi-
tion, when the visual mask has a very low confidence, i.e., 0.5,
we retain the audio mask without being modified by the visual
mask. This is also the situation when the mismatches happen in
the AV sparse coding, which means none of the learned dictio-
nary atoms occurs in this frame. A mismatch does not mean that
the target speaker is silent in this period. Thus, we set the visual
mask with value 0.5 rather than 0 for the mismatched frames.
Fig. 10(b) illustrates the process as the visual mask adjusts

the noise-corrupted audio mask towards the ground-truth ideal
mask using our proposed AV fusion method. The power-law
transformation, in terms of our observation and evaluations,
works well for incorporating the visual information, discussions
and illustration of an alternative method of using the simple
linear combination can also be found in Section V-B.4.
Finally, the noise-robust AVmask is used for the target source

separation on both and to obtain their average
result. The proposed AV-BSS is summarised in Algorithm 4.

Algorithm 4: Summary of the proposed AV-BSS.

Input: The AV dictionary , the binaural mixtures
, the video

Output: The target source estimate
1 % Audio mask generation
2 Obtain the audio mask with Mandel’s method.
3 % Visual mask generation
4 Reconstruct via MP using .

5 calculation via equation (19).
6 % Audio-visual mask generation
7 calculation via equation (20).
8 Apply to the binaural signal for source
separation

V. EXPERIMENTAL EVALUATIONS

This section contains two parts: evaluations of the proposed
AVDL and evaluations of the proposed AV-BSS method. In
the AVDL evaluation part, we used both synthetic AV data and
short speech signals. For comparison purposes, we also imple-
mented Monaci’s method [30], in which we used the ‘K-SVD
’ type, i.e., norm in the objective function, and K-SVD in

the learning process to update dictionary atoms. We have quan-
tified the performance of the AVDL in terms of approximation
error rates for both audio and visual modalities. Examples of the
learned dictionary atoms for synthetic and real speech data are
analysed to demonstrate our proposed AVDL method.

Fig. 3. Combine and to obtain . The
power coefficients are determined by a non-linear interpolation with pre-de-
fined values. Considering the extreme situation where the audio mask values
for both the target signal and the interference are 0.5, these pre-defined values
are chosen to minimise the potential distortion due to processing artefacts.
If only the target speaker is silent (ideally, ), the value 4
is chosen to attenuate the target mask within 10 percent of the overall mask
( ). If only the target speaker is active (ideally, ),
the value 0.2 is chosen so that the target mask spans 90 percent of the overall
mask ( ). We slightly decrease the visual influence by replacing
0.2 with 0.3, considering that the hard upper bound threshold in equation ((19))
introduces some artificial distortion. When , the value 1 is
chosen so that the visual mask does not alter the audio mask. When
is 0.75 (.resp 0.25), the value is set to 0.6 (.resp 2), so that the change from the
audio mask value 0.5 to the AV mask value, is half of that when
is 0 (.resp 1).

In the AV-BSS evaluation part, we have compared our pro-
posed method, denoted as AVDL-BSS, with four competing
methods, of which two BSS methods are in the audio-visual do-
main, one in the audio domain and another in the visual domain.
We evaluate the separation performance with the overall per-
ceptual score using the PEASS tool-kit[44], which is specially
designed for perceptual objective quality assessment of audio
source separation.

A. AVDL Evaluations

In this subsection, we test our proposed AVDL algorithm, for
both synthetic data and speech signals. For demonstration pur-
poses, we use short AV sequences. To obtain a computationally
feasible algorithm, we also apply our proposed scanning index
to Monaci’s baseline method.
1) AVDL for Synthetic Data:
Data, Parameter Setup and Performance Metrics: Similar

to [30], we also generate a synthetic AV sequence, which lasts
40 s, with , . The video size is

, while the audio length is 640000
samples (4 s). The synthetic data is generated by scaling and
allocating five AV generative atoms at randomly-
chosen TS positions. Each generative atom contains a moving
object on a white background as the visual atom and a snippet
of audio vowels as the audio atom, including /a/, /i/, /o/, /u/. Of
the five generative atoms, three atoms contain both audio and
visual information, one atom is audio-only and one is visual-
only, as shown in the upper row of Fig. 4. Part of the synthetic
AV sequence lasting one second is shown in the lower row of
Fig. 4. When we generate the synthetic data, the TS positions of
the chosen atoms are randomly placed, and two allocated atoms
are allowed to overlap with each other. To simulate the noise
in a real AV sequence caused by background noise and image
aliasing, and to test the robustness of our proposed AVDL to
noise, 10 dB signal-to-noise ratio (SNR) audio noise and 20 dB
peak signal-to-noise ratio (PSNR) visual noise are added, both
in the form of Gaussian white noise.
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Fig. 4. The generative atoms and the synthetic data generated via the model (1). The white pixels have the minimal value 0 and the black pixels have the maximal
value 1. Some atoms may have similar partial feature, e.g., AV atom: /i/ and audio only atom: /u/ have very similar audio structures. The audio sequence is
normalized, e.g., the maximal magnitude is 1. (a) AV: /a/; (b) AV: /i/; (c) AV: /o/; (d) Visual only; (e) Audio only: /u/; (f) The generated AV synthetic sequence
(only one second data is shown).

To implement the AVDL method, the STFT is first applied
to the audio stream to obtain the audio spectrum , with a
Hamming window size (32 ms) equal to the FFT
size and a hop-size of 128 (8 ms), leading to a overlap
between the neighbouring windows. To synchronize with the
video stream, spectrum was repeat-padded at the be-
ginning and the end, and the audio stream is hence downsam-
pled to . We set the dictionary size , the
visual atom size . Therefore, we have
the audio atom size , where
and . in the sparse generative
model was set to 100. To calculate the scanning index, we set

and . For the convergence of AVDL, we
set the coding threshold (.resp ) in the second
(.resp fifth, tenth) bootstrap iteration, and the maximal iteration
number . In addition, we set the specific ‘evo-
lutionary’ TS constraint as follows. In the first coding-learning
iteration , two visual atoms are not allowed to have
any overlap (i.e., by setting

after finding the -th optimal
atom in the coding stage). From the fifth iteration, two visual
atoms may have at most half overlap, and from the tenth iter-
ation when the dictionary atoms already tend to converge, two
atoms are allowed to have full overlap (i.e., keep unchanged).
To evaluate the performance of the two dictionary learning

methods, we use the approximation error as the quantitative
metric. We first generate five different training sequences
as above, to train five different pairs of AV dictionaries
via AVDL and Monaci’s method. For each dictionary, 10
testing AV sequences with each lasting 40 s are generated,
and the learned dictionary is used to approximate these
testing sequences, with the approximated sequence denoted as

. Comparing with the ground-truth
signal , which contains only the AV-coherent parts con-
tributed by the AV atoms (the first three generative atoms):

we can obtain the audio approximation error and the visual
approximation error separately:

Results Comparison and Analysis: After 10 iterations, both
algorithms successfully converge to three AV atoms, while ig-
noring the audio-only and the visual-only atoms. The upper row
in Fig. 5 shows the AV atoms obtained via AVDL, while the
bottom row shows the AV atoms obtained via Monaci’s method.
However, if we amplify the audio sequence, or re-sample the

audio sequence with a new temporal resolution or re-sample
the video with a new spatial resolution, Monaci’s algorithm
may fail to converge to the correct AV atoms, due to its sensi-
tivity to the size change of the AV atom. For instance, Monaci’s
method converges to four AV atoms with the four vowels as
audio atoms if we increase the audio amplitude by a factor of
10, while the visual atoms are blurred by noise. In other words,
Monaci’s method becomes an audio-only dictionary learning
method in this specific situation. However, our method still con-
verges to the AV atoms accurately, since changes of the criterion
in one modality proportionally change the overall AV matching
criterion.
Moreover, our method is robust to convolutive noise encoun-

tered in a real acoustic environment where sounds reaching the
sensors are filtered by room impulse responses. Hence we ran
another independent test. A training sequence was generated
with the same parameter setup, except that it was convolved
with a time-varying FIR filter with 100 taps . i.e., at
each TS position where a generative AV atom is allocated, a
100-tap filter whose coefficients are randomly chosen is gen-
erated and convolved with the allocated atom. Both dictionary
learning algorithms are applied to this training sequence cor-
rupted by time-varying convolutive filters. After the conver-
gence of both algorithms, we notice that our AVDL still suc-
cessfully learns the three AV atoms. However, of the four atoms
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Fig. 5. The converged AV atoms using our proposed AVDL (the upper row) and the competing method (the bottom row). Both algorithms successfully converge
to the right AV atoms in a few iterations. We have converted the audio atoms via Monaci’s algorithm into the TF spectrum for ease of comparison. (a) AVDL: /a/;
(b) AVDL: /i/; (c) AVDL: /o/; (d) Monaci: /a/; (e) Monaci: /i/; (f) Monaci: /o/.

Fig. 6. The converged AV atoms using our proposed AVDL andMonaci’s method when there is extra convolutive noise applied to the audio sequence. Our method
successfully learns the three AV atoms, while the baseline method learns two accurate AV atoms and two spurious atoms (the last two). For the first spurious atom,
the visual atom is from the visual-only outliers, and the audio atom is the combination of vowel /u/ and /o/. The second one contains the visual atom for the third
generative AV atom and a distorted audio snippet. (a) AVDL1; (b) AVDL2; (c) AVDL3; (d) Monaci1; (e) Monaci2; (f) Monaci3; (g) Monaci4.

converged via the baseline method, two are spurious AV atoms
shown in the last two atoms in Fig. 6.
We then quantitatively evaluate the performance of our pro-

posed AVDL via the objective metrics of and . Fig. 7
demonstrates the performance comparison, which shows that
the proposed AVDL outperforms the baseline approach, giving
an average of improvement for the audio modality, from a
set of 50 independent tests, together with a improvement
for the visual modality.
2) AVDL for Short Speech Data: To demonstrate our pro-

posed method on real speech signals, we applied our AVDL and
Monaci’s baseline method on the multimodal LILiR Twotalk
dataset [45], which was recorded with each subject uttering con-
tinuous speech. Sequences were obtained from 6 recordings,

with each lasting from 210 s to 240 s, sampled at 16 kHz. For
demonstration purposes, only a one-minute AV sequence data
was used.

Data and Parameter Setup: For the visual stream, we used
the lip contour coordinates to represent the video stream in-
stead of the raw video for computational complexity reduction.
A 38-point lip contour extraction algorithm [46] was applied
for both inner and outer lips. Then we normalized the lip re-
gion to make the outer lip contour have a unit size, at the sam-
pling rate of . After that, a new visual stream

was obtained.
For the audio stream, we still used the same STFT parameters
and synchronisation with and a hop-size of 128,
and the audio sampling rate again became . We set
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Fig. 7. The approximation error metrics comparison of AVDL and Monaci’s
method over 50 independent tests.

the dictionary size , the visual atom size
. Therefore, we had the audio atom size ,

where and .
was set for the sparsity. The other parameters were

the same as those used in the previous subsection for synthetic
data.
We applied Monaci’s method for comparison. For the visual

stream, we first manually cropped a rough lip region from
the original video as the visual sequence with the size of

. We then ‘pre-whitened’
the cropped video data to highlight the moving object edges,
i.e., pixels in the neighbourhood of lip contours, and the 3D
whitening technique [16] was applied. For the audio stream, a
normalized audio sequence with a unit maximum magnitude
and a sampling rate of was used. We set the visual
atom size . Therefore, the audio
atom size was , where . To
balance the audio and visual modalities, we amplified the audio
stream with a factor4 of 10000. The other parameters were set
the same as for AVDL.

Results Comparison and Analysis: Both dictionary
learning methods converged after 15 iterations. Our proposed
AVDL produced 13 AV atoms, while the baseline method
produced only 7 AV atoms. We show one converged AV atom
for each algorithm in Fig. 8, which correspond to the same
generative AV atom.
From Fig. 8, we notice that the visual atom obtained via

AVDL has a distinct outline, while the one obtained via
Monaci’s method is blurred, which means the learned visual
atom via the baseline method tends to be distorted by other
visual atoms or outliers. For the audio atom, some useful
signal parts are truncated with Monaci’s method, compared
to that learned via AVDL. The cause of this problem is that
some audio segments with high magnitude (and energy) are
matched with the AV atom although their audio structures are
not very similar, i.e., an outlier might be incorrectly matched

4This factor is not adaptive to size changes, and it was empirically chosen in
case the baseline method is reduced to audio-only or visual-only. This factor
was only effective with the predefined parameter setup. Any parameter change,
e.g., the visual atom size set to resulted in the failure of the baseline
method in our tests.

Fig. 8. The converged AV atoms after applying our proposed AVDL algorithm
(a) and the competing method (b) to AV data from LILiR Twotalk database.
The visual atom in AVDL contains only the normalized coordinates of the lip
region. For ease of visual comparison, we reconstruct the lip intensity images,
by mapping the TS positions of a learned visual atom in the lip contour data to
the original video, and calculating the mean of the projected regions. To com-
pare our proposed algorithm with the competing method on a fair basis, we
also implemented Monaci’s algorithm using the extracted lip features as used
in our algorithm, rather than the 3D-filtered visual raw data as stated in their
original paper. The competing algorithm converged to atoms with ambiguous
visual contours and spurious audio spectrum, as demonstrated in the bottom
row (c), which shows that Monaci’s method is limited in this circumstance. The
reason is that the inner product used to calculate the visual matching criterion in
(4) can not distinguish different lip contour features very well. For example, a
relatively high-valued inner product can still be calculated between two lip con-
tours associated with different utterances, which may result in a high AV-valued
matching criterion. To avoid this situation, Monaci’s algorithm is applied to the
pre-processed raw data for the following experiments, as introduced previously.
(a) AVDL; (b) Monaci; (c) Monaci-Lip Feature.

with the AV atom. The updated AV atom, i.e., the first principal
component of all the matched audio segments associated with
the AV atom, is affected by the outlier, and therefore suffers
from the information loss and distortion. It is worth noting that,
due to the lack of ground truth AV atoms for real speech data,
quantitative evaluations of the quality of the learned dictionary
by the proposed method in comparison with Monaci’s method
become difficult. This offers an interesting point for future
investigation.

B. AV-BSS Evaluations

1) Off-Line Training: The LILiR Twotalk corpus is also used
here for training the AV dictionary, to improve the performance
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Fig. 9. Converged dictionary atoms using our proposed AVDL. Each learned
AV atom contains an audio atom and an associated visual atom. The audio atom
is the magnitude spectrum, while the visual atom contains the 38 lip contour
coordinates in 10 consecutive frames. In the above figure, we reconstruct the lip
regions via the lip contour coordinates to demonstrate the learned visual atoms.
The first AV atom represents the utterance ‘marine’ /mari:n/ while the second
one denotes the utterance ‘port’ /por:t/.

of the BSS. The first four of six sequences lasting 23278 frames
in total (approximately 931 s) were concatenated for training.
We enlarged the dictionary size to to represent the AV
sequence more explicitly. was set for the sparsity.
For the other parameters, we used the same setup as in the pre-
vious Section V-A.2.
After the dictionary learning, meaningful dictionary

atoms were learned, of which two are shown in Fig. 9.
The converged atoms can represent about 7380 frames of the

training sequence in the coding process, excluding about 6400
silence frames5. Therefore, there were still 9500 frames that
were not properly represented by the learned dictionary. The
reason behind this is that human speech produces a very com-
plex signal, and a limited number of atoms (80 in our exper-
iment) can hardly represent all the utterance variations. Also,
some utterances appeared only once or too few times, there-
fore AVDL may consider them as outliers. Furthermore, we
need to stress that we aim to learn and reconstruct the most bi-
modality-informative structures of the AV sequence, rather than
fully reconstructing it. Monaci’s method is also applied to train
another dictionary, which is used in AV-BSS for comparison.
2) Data, Parameter Setup for Separation: We used the

other two video sequences associated with the target speaker
for testing. The interfering speech came from another speaker.
We considered real-environment auditory mixtures, assuming
a time-invariant mixing process. The binaural room impulse
responses (BRIRs) measured by Hummersone [47] were used,
which were recorded using a dummy head in four reverberant
rooms in the University of Surrey, indexed by A, B, C and

5After the coding process, the AV atoms from the dictionary are sparsely lo-
cated at 738 TS positions, where each AV atom spans 10 frames. Therefore,
7380 frames are approximated ignoring the potential overlap between two al-
located AV atoms. The approximate number of silence frames, i.e., 6400, is
obtained in terms of , as defined in (11).

D. The average reverberation times are
respectively. To simulate the room mixtures, we set the target
speaker to an azimuth of zero degrees, i.e., in front of the
dummy head, and we changed the azimuth of the interfering
speaker on the right hand side, varying from 15 to 90 with
an increment of 15 . In each of the six interference angles, 15
pairs of source signals were randomly chosen from the two
testing sequences associated with the target speaker, as well as
sequences associated with the interfering speaker, each lasting
10 s. The source signals were passed through the BRIRs to
generate the mixtures. To test the robustness of our algorithm,
Gaussian white noise was added to the mixtures at different
SNRs.
We compared our proposed AV-BSS method, i.e.,

‘AVDL-BSS’, with four competing algorithms that we imple-
mented. The first one is Mandel’s state-of-the-art audio-domain
method, as introduced in Section IV-A, which we denote as
‘Mandel’. We then incorporated the learned dictionary via
Monaci’s method using the proposed separation method, de-
noted as ‘Monaci-BSS’. Since the audio atoms learned via
Monaci’s method are in the time domain, while the separation
is mainly in the TF domain, we first transformed these atoms
into the TF domain. We also compared the results of another
AV-BSS method that we proposed previously based on ICA
[27], where the AV coherence is modelled by Gaussian mixture
models and coherence maximization is used to solve the per-
mutation problem caused by ICA techniques, which we denote
as ‘AV-LIU’. However, we neglected the feature selection
process, since the visual sampling rate for the dataset was 25
Hz, which was relatively low compared to the data used in
[27]. To demonstrate how each part of our proposed AV-BSS
works, we added an intermediate experiment, where the visual
masks generated by the AV sparse coding, as introduced in
Section IV-B, are applied directly to the binaural mixtures for
source separation. This is denoted as ‘Visual-only’.
3) Demonstration of TFMask Fusion in AV-BSS: To demon-

strate the AV fusion process, where the visual mask constrains
the audio mask to produce a noise-robust AV mask, we com-
pare the audio mask, the visual mask, and the audio-visual mask
with an ideal binary mask (IBM) [48]. Supposing the source sig-
nals are known in advance, the IBM [48] can be calculated and
used as a bench-mark for speech separation performance eval-
uation. For demonstration purposes, masks spanning a block of
30 time-frames are shown in Fig. 10(b). We also plotted the
log-spectra of the two original source signals, and the binaural
mixture signals in the associated time frames.
From Fig. 10(b), we notice that the IBM gives an accurate

description of the target speech (source 1) at each TF point. The
boundary region distinguishes the target signal from the inter-
fering signal in perfect detail. The audio mask presents a rela-
tively accurate approximation of the target signal. However its
accuracy is affected by the competing signal, which is particu-
larly evident in those TF points having a very low confidence
with values around 0.5. The visual mask gives a rough approxi-
mation of the target signal, which however suffers greatly from
information loss, especially the detailed information. The AV
mask is generated by adjusting the audio mask with the visual
mask, which keeps the detailed information of the audio mask,
and enhances the TF points with low audio confidence towards
the IBM based on the visual mask.
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Fig. 10. (a) Spectrograms of source and mixture signals. (b) Comparison of
the audio mask, the visual mask, the AV mask with the ground-truth IBM. Our
proposed algorithm amplifies the audio mask when the confidence of the visual-
onlymask is high, and attenuates the audio mask when its confidence is low. The
power law regularisation pushes the AVmask towards the IBM. The highlighted
rectangles are further analysed in Fig. 12. (a) Sources and mixtures; (b) Masks.

4) Experimental Results of AV-BSS: To evaluate the perfor-
mance of the BSSmethods6, we used a new perceptual objective
quality assessment of audio source separation using PEASS [44]
tool-kit. In PEASS [44], the overall-perceptual-score (OPS) has
a high coherence with subjective perceptual evaluation, which
we denote as OPS-PEASS, and it was used as the perceptual
evaluation metric.
From Fig. 11, we found that our method suffered from

an average of 3 points loss compared to Mandel’s method
in the noise-free condition. We believe the reason lies in the
imperfect match between atoms from the learned dictionary
with the testing sequence. Since one learned atom resembles
the common characteristics of one AV event that occurs at
different TS positions, which is not identical with any new
occurrence of the same AV event, some artificial distortion is
incurred. In an ideal noise-free environment, the audio-domain
method already successfully generates an accurate audio mask
in the TF domain, and further processing using the visual mask
may introduce artificial distortions that degrade the accuracy
to some extent. However in adverse conditions, our method
shows some advantages over Mandel’s method with an average
of 2 point improvement. Even though the improvement was
modest, it demonstrates that our learned dictionary inherited
the underlying audio-visual coherence, and each converged
AV atom could be used for separation (and potentially other

6We also performed the evaluations based on the signal to distortion ratio
(SDR). The results are omitted due to space limitation.

Fig. 11. OPS-PEASS evaluations without noise (upper) and with 10 dB
Gaussian noise (bottom). (a) OPS-PEASS evaluations without noise;
(b) OPS-PEASS evaluations with 10 dB Gaussian noise.

applications in the field of AV signal processing such as local-
isation, verification and recognition). Using the AV dictionary
learnt via Monaci’s method, Monaci-BSS cannot compete with
our proposed algorithm. This is because Monaci’s dictionary
learning method introduces more distortion, since the same
AV mask fusion process was applied in both Monaci-BSS and
AVDL-BSS which is also consistent with the results presented
in Section V-A.1.
Using only AV sparse coding, i.e., Visual-only, however, can

not achieve satisfactory results for source separation tasks. From
Fig. 11, Visual-only shows the worst results, for both noise-free
and 10 dB noise-corrupted situations. This is because the visual
mask affects only the matched frames. In mismatched frames,
the visual mask cannot determine the audio information.
We also note when the two sources are very near to each other

(input angle is small), all themethods fail to produce satisfactory
results, since the mixing filters exhibit strong singularity, and
hence give similar directions of arrival (DOA) as well as near-
zero IPDs and ILDs. This is because in the AV mask fusion
process, the visual mask is used to modify the audio mask, rather
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Fig. 12. The highlighted areas of the masks shown in Fig. 10(b) are compared
with the same area extracted from the average AV mask, obtained by a symmet-
rical linear audio and visual mask combination . The average
AV mask is degraded due to the low confidence of the visual mask, whose accu-
racy is lower than the audio mask. The structure of the average mask is further
pushed away from that of the IBM, compared to the audiomask. However, using
our proposed AV mask fusion method with the power law transformation, the
generated AV mask resembles the IBM better than the average AV mask.

than a symmetrical combination where the visual mask can take
over when the audio mask fails. The symmetrical combination
is not used since the visual mask fails to outperform the audio
mask in our experiments, and a visual mask of low confidence
is likely to degrade the overall AV mask confidence, if they are
fused using a linear superposition. We illustrated a linear fusion
in Fig. 12 where the overall AV mask (on the rightmost) is the
average of the audio and visual masks.
Interestingly, the AV-LIU method shows the highest OPS

score for the most reverberant room D. There are three pos-
sible reasons behind this observation. First, the sigmoid func-
tion that is used in PEASS to non-linearly evaluate the target
distortion, the interference distortion and the artefact distortion,
gives less priority to the artefact distortion mainly caused by
background noise. Second, the long reverberation blurs the TF
spectrum, which exhibits consistency in the ICA-based separa-
tion process and therefore suppresses the interference distortion.
Third, the separation is not dependent solely on the reverbera-
tion time, it is affected by direct-to-reverberant ratios (DRRs) as
well, where DRRs for the four different reverberant rooms are

respectively. The complex relation-
ship of the ICA performance with RT60 and DRR needs further
study.

VI. CONCLUSIONS

We have developed an audio-visual dictionary learning
(AVDL) algorithm that can capture the most AV-coherent
structures of an AV sequence. The dictionary learned via
AVDL implicitly inherits the AV coherence robust to acoustic
noise, and therefore can be used to improve the performance of
traditional audio domain BSS methods in noisy environments.
In our proposed AV-BSS system, a visual mask is generated
by matching the corrupted AV sequence to the learned AV
dictionary. Considering the binaural room mixtures, an audio
mask is generated in parallel using the spatial cues of IPDs and
ILDs. Integrating the above two masks, a visually constrained
noise-robust mask is generated for separating the target speech
signal. We have tested our proposed AVDL on both synthetic
data and the LILiR Twotalk corpus, and numerical results
show the advantages of our method, with a greatly reduced
computational load and a smaller approximation error rate,
compared to another baseline audio-visual dictionary learning
method. We have also tested our proposed AV-BSS method
using a dictionary learned from the LILiR Twotalk corpus,
which shows a performance improvement in noisy reverberant

room environments in term of overall-perceptual-score (OPS)
using the PEASS tool-kit.
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