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ABSTRACT
Generative Adversarial Networks (GANs) have been used re-
cently for anomaly detection from images, where the anomaly
scores are obtained by comparing the global difference be-
tween the input and generated image. However, the anoma-
lies often appear in local areas of an image scene, and ig-
noring such information can lead to unreliable detection of
anomalies. In this paper, we propose an efficient anomaly de-
tection network Skip-Attention GAN (SAGAN), which adds
attention modules to capture local information to improve the
accuracy of latent representation of images, and uses depth-
wise separable convolutions to reduce the number of param-
eters in the model. We evaluate the proposed method on the
CIFAR-10 dataset and the LBOT dataset (built by ourselves),
and show that the performance of our method in terms of
area under curve (AUC) on both datasets is improved by more
than 10% on average, as compared with three recent baseline
methods.

Index Terms— Anomaly Detection, Generative Adver-
sarial Networks, Attention, Depth-wise Separable Convolu-
tions

1. INTRODUCTION

Anomaly detection is an increasingly important area in com-
puter vision, and has been extensively studied in many ap-
plication fields, such as industrial anomaly detection, fraud
detection and medical applications [1]. However, anomaly
detection suffers from several unique challenges in practical
applications. Firstly, compared with normal data, there is less
amount of abnormal data available, as it is often more dif-
ficult to obtain abnormal data than normal data. Secondly,
anomalies are often unpredictable, which makes it difficult to
accurately define the appearance attributes of anomalous ob-
jects. Due to these challenges, supervised learning methods
are often limited in anomaly detection. In contrast, unsuper-
vised learning methods are often used to learn the distribution
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of normal data, where only normal data is used for training,
while both normal and abnormal data are used in testing.

Recently, Generative Adversarial Networks (GANs) [2]
based unsupervised learning methods [3, 4, 5, 6] have been
employed for anomaly detection, showing promising perfor-
mance. GAN typically consists of two modules, namely, a
generator and a discriminator. The generator constantly gen-
erates images that are as realistic as possible to fool the dis-
criminator, and the discriminator constantly tries to distin-
guish between the real image and the generated image. The
unique network structure of GAN makes it suitable not only
for encoding the image to obtain its latent representations, but
also for decoding and generating image with minimal infor-
mation loss via a reverse pass [7].

AnoGAN [4] is the first GANs-based method for anomaly
detection, which aims to learn the mapping from a latent rep-
resentation to the generated image. However, AnoGAN is
computationally expensive in searching for latent represen-
tations. In contrast, EGBAD [5] does not need to search for
latent representations, as it learns a mapping directly from
image space to latent space. GANomaly [6] combines en-
coder and decoder in the generator and detects anomalies
by comparing the latent representation of the input image
with the latent representation of the generated image. Skip-
GANomaly [8] adds the U-Net [9] structure to the generator
of GANomaly, and uses skip connections to link the encoder
in each layer with the decoder in the corresponding layer,
which improves the reconstruction of an image from its latent
representations.

In all these existing GAN-based methods, however, the
anomalies are detected by comparing the difference between
the global information of the input image and the generated
image. In fact, relying only on global information can impact
adversely on the accuracy of the latent representations of ab-
normal samples. Recently, some works [10, 11, 12, 13] have
used the attention mechanism to capture the relevant infor-
mation and suppress redundant information in the image. For
example, the convolutional block attention module (CBAM)
[10], which is an attention module obtained by mixing the
spatial and channel attention modules, was shown to perform
better than SENet [11], which uses only channel attention.

In this paper, we introduce a new method for anomaly
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Fig. 1. Details of the proposed model architecture. The number above the FeatuteMap indicates the number of channels.

detection, called Skip-Attention GAN (SAGAN), which
uses CBAMs to capture local information, within the Skip-
GANomaly method. Our method is motivated by Attention
U-Net [13], where an attention mechanism was added to the
U-Net model, and was shown to perform better on image seg-
mentation than the original U-Net model. In addition, we use
depth-wise separable convolutions (DSCs), as in [14, 15, 16],
to reduce the number of model parameters to improve the
computational efficiency of our method.

2. PROPOSED METHOD

2.1. Model Overview

Our model structure is shown in Figure 1, which is based on
the Skip-GANomaly [8]. Different from the Skip-GANomaly,
we introducing CBAMs and DSCs in the generator, replace
the convolution with global pooling in the downsampling
process, and replace the transpose convolution with bilinear
interpolation in the upsampling process.

In Figure 1, the left side shows the generator, which con-
sists of a U-shaped encode-decoder structure. In the encoder
of the generator, the feature map of each layer will first be
passed through two DSCs to double the number of channels
within the feature maps, and then passed through CBAM to
obtain the CBAM feature map, before applying max pooling
to halve its size. The CBAM feature map of each layer will
be connected to the feature map in the corresponding layer in
the decoder through a skip connection to obtain a new fea-

ture map with attention information. In the decoder of the
generator, the feature map of each layer will first be passed
two DSCs to halve the number of channels within the feature
maps, and then to double their size through upsampling. Fi-
nally, the generator outputs the the generated image through
a 1×1 convolution. With this method, more attention is paid
to the relevant areas in the image.

The right side of Figure 1 shows the discriminator, which
uses the same network structure as in DCGAN [7] to ex-
tract the latent representation of input image and distinguish
whether the input image is a real image or a generated image.

2.2. Attention Mechanism

CBAM [10] is a mixed attention mechanism, in which the
channel attention module and spatial attention module are
concatenated in a specific order. The channel attention mod-
ule models the importance of each feature channel, and then
either enhances or suppresses different channels for different
images. The goal of the spatial attention module is to lo-
cate the region of interest in the image and obtain the weight
distribution map for the image.

In our proposed model, we incorporate CBAM into each
layer of the encoder in the generator to obtain the attention
information of the corresponding layer. The feature maps of
each layer are then passed through the channel module and the
spatial attention module in turn to obtain channel and spatial
attention information embedded feature maps.
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2.3. Depth-wise Separable Convolution

A network with fewer parameters is less likely over-fit with
the training set. However, reducing the number of network
parameters may also lead to an over-simplified network, thus
degrading the learning performance. To achieve a trade-off
between the model complexity and learning performance,
depth-wise separable convolutions (DSCs) have been de-
veloped recently [14, 15, 16]. In this method, the conven-
tional convolution operation is divided into per-channel and
per-point convolutions, so that the network performance is
retained while the network complexity (i.e the number of
parameters) is reduced.

Model Parameters
SAGAN without DSCs 18,498,481

SAGAN with DSCs 5,181,089

Table 1. Number of parameters in SAGAN with/without
DSCs (used in our experiments).

As shown in Table 1, after adding DSCs, the number of
parameters in our proposed SAGAN is greatly reduced.

2.4. Model Training

We introduce the same loss functions Lcon, Llat and Ladv as
in Skip-GANomaly [8] at the positions indicated in Figure 1.

Lcon = Ex∼px
|x−G(x)|1, (1)

Llat = Ex∼px
|D(x)−D(G(x))|2, (2)

Ladv = Ex∼px
[logD(x)] + Ex∼px

[log(1−D(G(x))], (3)

where Ladv is a loss function commonly used in GAN, in
which the generator G and the discriminator D are optimized
in an alternating manner through adversarial learning. The
loss function Lcon is used for image reconstruction, which
aims to further enhance the generated image G(x) on the ba-
sis of Ladv , so that it is similar to the input image x. The
loss Llat is obtained by the discriminator and represents the
difference between the latent representation z = D(x) of the
input image x and the latent representation ẑ = D(G(x)) of
the generated image G(x). The purpose of using Llat is to
maintain as much consistency between z and ẑ as possible.

The overall training objective L is the weighted sum of
Lcon, Llat and Ladv as follows:

L = λconLcon + λlatLlat + λadvLadv, (4)

where λcon, λlat and λadv are the weight parameters of the
individual loss functions in the overall loss function.

2.5. Anomaly Scores

We use the method in [4, 5, 8] to obtain the anomaly score for
the test image as follows:

A(x) = λR(x) + (1− λ)L(x), (5)

where x represents the test image in the test set, and R(x) is
the difference between the input test image and the generated
image, L(x) is the difference between the latent representa-
tion of the input image and the latent representation of the
generated image, A(x) is the raw anomaly score of the test
sample x, and λ is a weighting parameter that controls the
importance of R(x) and L(x) in A(x).

According to Eq. (5), we calculate the raw anomaly scores
of all the test samples in the test set, and use the vector A to
represent the set of anomaly scores of all the samples in the
test set. Then, we use the same method as in [4] to com-
press each anomaly score into the range [0,1], that is, the final
anomaly score Â(x) of a single test sample x is expressed as:

Â(x) =
A(x)−min(A)

max(A)−min(A)
. (6)

3. EXPERIMENTAL SETUP

We have performed experiments on a Ubuntu16.04 server
with 32Gb memory and a single NVIDIA RTX2080Ti GPU,
and evaluated the proposed method on two datasets (the
CIFAR-10 [17] dataset and the train axle bolt LBOT dataset
that we constructed). Next, we introduce the two datasets,
training details, the evaluation metric, before presenting the
results.

(a) train data (b) test data

Fig. 2. Some image examples from the LBOT dataset, (a)
images from the training set, and (b) images from the test set.
The abnormal areas of bolts are marked in the red box.

LBOT: The LBOT dataset is constructed by ourselves. It
is derived from a study on the train axle bolt status inspection,
which defines the missing or damaged bolts as abnormal. This
dataset includes 5,000 image patches of the train axle bolt
status extracted by the 128×128 overlapping sliding window
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CIFAR-10
Model frog bird cat deer dog horse ship truck Average

EGBAD [5] 0.512 0.523 0.466 0.467 0.502 0.387 0.534 0.579 0.496
GANomaly [6] 0.777 0.552 0.647 0.684 0.815 0.683 0.818 0.844 0.728

Skip-GANomaly [8] 0.955 0.611 0.670 0.845 0.706 0.666 0.909 0.857 0.777
proposed 0.996 0.957 0.951 0.998 0.975 0.891 0.990 0.980 0.967

Table 2. The AUC results obtained on the CIFAR-10 dataset.

Model AUC
EGBAD [5] 0.489

GANomaly [6] 0.900
Skip-GANomaly [8] 0.840

SAGAN without DSCs 0.960
SAGAN with DSCs 0.958

Table 3. The AUC results on the LBOT dataset.

method. As shown in Figure 2, we divided the LBOT dataset
into 4,000 training images and 1,000 test images according to
the ratio of 4:1. The 4,000 training images are all normal bolt
images, and the 1,000 test images contain 500 normal bolt
images and 500 abnormal bolt images.

CIFAR-10: Both GANomaly [6] and Skip-GANomaly
[8] used the CIFAR-10 dataset and formulated a leave one
class out anomaly detection problem. For comparison, we
also used this dataset. Similar to [5, 6, 8], we divide the
CIFAR-10 dataset into 8 different categories, each category
has 45,000 normal training samples, 9,000 normal test sam-
ples and 6,000 abnormal test samples. Before training, one
of the categories was defined as abnormal, and the other
categories as normal.

Training Details: During the training process, the weight-
ing parameter of L in Eq. (4) is set to λadv = 1, λcon = 40
and λlat = 1. The objective function L is optimized by Adam
[18], and the initial learning rate of Adam is lr = 2 × 10−3

with a lambda decay, and momentum β1 = 0.5, β2 = 0.999.
To calculate the anomaly scores, we set λ = 0.2 in Eq. (5).

Evaluation Metric: We use the area under the curve
(AUC) of the receiver operating characteristic (ROC) [19] as
performance metric, as in [5, 6, 8].

Baseline Methods: We compare our method with three
baseline methods, i.e. EGBAD [5], GANomaly [6], and Skip-
GANomaly [8], respectively.

4. EXPERIMENTAL RESULTS

The results on the CIFAR-10 dataset are shown in Table 2.
It can be seen that in each abnormal case, the results of the
proposed method are better than the baseline methods. Es-
pecially when the anomaly category is bird, our proposed
method obtains an AUC of 0.957, which is improved by more
than 0.3 compared with the highest AUC of 0.611 of baseline

Fig. 3. The left histogram shows the distribution of normal
and abnormal scores for the test data in the LBOT dataset.
The right histogram shows the distribution of normal and ab-
normal scores of the test data in the CIFAR-10 dataset when
the frog is defined as an anomaly.

methods.
Table 3 shows the experimental results of our proposed

method SAGAN and baseline methods on the LBOT dataset.
Again, SAGAN performs better than the baseline methods,
and the adverse impact of adding DSCs is negligible.

Figure 3 shows the score histograms obtained by our
proposed method from the CIFAR-10 dataset and the LBOT
dataset. It can be seen from the Figure 3 that there are signif-
icant differences in the distribution between the normal and
abnormal scores of the two datasets, which indicates that the
method can separate the normal and abnormal scores well.

5. CONCLUSION

We have presented an anomaly detection method, i.e. SAGAN,
on the basis of the Skip-GANomaly model, by incorporating
an attention module and depth-wise separable convolutions.
We found that adding CBAMs and DSCs to the generator of
the U-Net structure allows the generator to efficiently gener-
ate images that emphasize key areas, and with the generated
image, the discriminator can extract a more accurate latent
representation. Our experiments on CIFAR-10 and LBOT
datasets show that our method outperforms the state-of-the-
art GAN-based anomaly detection methods [5, 6, 8].
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