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Abstract
This study defines a new evaluation metric for audio tagging
tasks to alleviate the limitation of the mean average precision
(mAP) metric. The mAP metric treats different kinds of sound as
independent classes without considering their relations. The pro-
posed metric, ontology-aware mean average precision (OmAP),
addresses the weaknesses of mAP by utilizing additional on-
tology during evaluation. Specifically, we reweight the false
positive events in the model prediction based on the AudioSet
ontology graph distance to the target classes. The OmAP also
provides insights into model performance by evaluating differ-
ent coarse-grained levels in the ontology graph. We conduct a
human assessment and show that OmAP is more consistent with
human perception than mAP. We also propose an ontology-based
loss function (OBCE) that reweights binary cross entropy (BCE)
loss based on the ontology distance. Our experiment shows
that OBCE can improve both mAP and OmAP metrics on the
AudioSet tagging task.
Index Terms: machine learning, audio tagging, ontology, evalu-
ation metric

1. Introduction
Audio tagging is a task that tags an audio clip with one or more
labels. Audio tagging has attracted increasing interest from
researchers in recent years [1, 2], with the increasing number of
papers in the Detection and Classification of Acoustic Scenes
and Events (DCASE) data challenges [3, 4, 5]. Audio tagging
has several applications such as urban noise control [6], audio
retrieval [7], and audio monitoring [8].

Most evaluation metrics for audio tagging systems are based
on a confusion matrix [9]. Early works [10, 11] employ metrics
such as the equal error rate (EER), sensitivity index [12], and
F-score [13]. Many recent studies adopt the mean average preci-
sion (mAP) as the evaluation metric for audio tagging [14, 1, 15],
which measures the area under the precision-recall curve. The
mAP is preferable over other metrics on datasets with unbalanced
class distribution [16], such as AudioSet [17].

Recently, a number of large-scale datasets for audio tagging
have been proposed, such as AudioSet [17], and FSD50K [18].
There are 527 classes in AudioSet and 200 classes in FSD50K,
with an unbalanced distribution of total duration in each class.
To address the class imbalance issues [2], the primary evaluation
metric on these datasets is the class-wise mAP, in which the
average precision (AP) scores are calculated on different classes,
and their mean value is the final mAP. When calculating the
mAP, if a predicted sound event does not appear in the target
labels, the prediction will be considered false positive (FP) [1].
Otherwise, it will be counted as a true positive (TP). However,
calculating FP in this way has the following problems:

Missing labels in the dataset: The labels in audio tagging
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Figure 1: The ontology graph of the AudioSet [17] classes.

datasets are not always correct and may contain missing la-
bels [19, 20]. For example, more than 50% of the labels for
around 30% of the classes in AudioSet are estimated to be in-
correct. In the evaluation set of AudioSet, there are 4895 files
containing the label Speech, while only 2.1% of them have label
Male Speech or Female Speech. In this case, even if the model
learned to estimate gender on all files with speech, 97.9% of
the gender labels will be considered to be false positive. In fact,
compared to the Speech class with an average precision of 0.80,
the experiment in [2] shows that the average precisions for Male
Speech and Female Speech are only 0.07 and 0.09, respectively.

The non-exclusive nature of sound classes: Sound classes are
not always mutually independent. There are also inclusive (e.g.,
Music and Guitar) or intersective (e.g., Shout and Yell) relations
between different sounds. Therefore, we believe FPs should be
reweighted by their “seriousness”. For example, if the target
label is the Giggle sound, the intuition is that an FP prediction
Laughter is less “serious” than an FP prediction Guitar, because
Giggle is semantically closer to Laughter. Previous evaluation
methods fail to consider these class-level relations and may not
ideally reflect the model performance.

We therefore propose a metric: ontology-aware mean av-
erage precision (OmAP) metric to address the above problems.
OmAP reweights the FP predictions based on the ontology node
proximity between the prediction and the target labels (see Fig-
ure 1). In this way, the FPs can be reweighted based on the
relation between the predicted and the target labels. By group-
ing the classes based on the node proximity, we also show that
OmAP can be calculated at different coarse-grained levels, re-
flecting a more thorough view of the model performance. We
conduct human evaluations to study the consistency of differ-
ent objective metrics to human perceptions and observe higher
consistency of the proposed metric than the conventional mAP.
Motivated by the ontology-based structure in [21, 22], we also
propose a novel ontology-aware binary cross entropy (OBCE)
loss function to train audio tagging systems. OBCE reweights
the binary cross entropy loss (BCE) based on the class ontology.
Our experiments show that the OBCE loss can not only improve



the OmAP, but also improve mAP, which further indicates that
the ontology information is useful for model optimization.

2. Problem formulation
Audio tagging Let Dtrain=⟨X′

N×T ,Y
′
N×C⟩ denote an audio

tagging training dataset, where X′ and Y′ denote N audio sam-
ples and their labels. The audio sample length and the total
number of classes are denoted by T and C, respectively. We de-
fine class as a particular type of sound and label(s) as the class(es)
that appeared in an audio sample. Each audio sample can have
one or more labels. The label matrix Y′ only has elements with
values zero and one. If the element Y′

n,i is equal one, the n-th
sample is labeled with the i-th class. The label of the n-th sample
is given by Ln=

{
i |Y′

n,i = 1
}

. The audio tagging model F (·)
aims to estimate Ŷ′ = F (X′), where Ŷ′ ∈ [0, 1]N×C is the
estimation of Y′. The performance of the audio tagging model
F (·) is calculated on the evaluation dataset Deval=⟨X,Y⟩, for-
mulated as z = Eval(F (X),Y), where Eval(·) is an evaluation
metric.
Mean average precision Mean average precision (mAP) is
a metric that has been widely used in audio tagging [1, 2] and
image object detection [23] tasks. z denotes the mAP value. The
mAP is the average AP of each class c, and is given by

z =
C∑

c = 1

zc
C
, zc = P(Y:,c, Ŷ:,c) = A(P:,c,R:,c), (1)

where zc is the AP for class c, P(·) is the function for calculating
AP, and A(·) denotes the function that calculates the area under
curve [16]. We use P and R to denote the precision and recall
matrix. The shape of P and R is N × C because we calculate
the precision and recall on N different thresholds and C classes.
The N thresholds for a class c are the N values in the label esti-
mation Ŷ:,c [1, 2]. The AP for class c is calculated by the area
under the precision-recall curve formed by N pairs of precision
and recall coordinates (P:,c,R:,c) = (Pn,c, Rn,c)n = 1,2,...,N .
Given a threshold γ = Ŷn,c, the coordinates are calculated by

(Pn,c, Rn,c) = (
TPn,c

TPn,c +FPn,c
,

TPn,c

TPn,c +FNn,c
) (2)

where TPn,c = |{i | Ŷi,c>γ,Yi,c=1}|, FPn,c = |{i | Ŷi,c>γ,

Yi,c = 0}|, and FNn,c = |{i | Ŷi,c<γ,Yi,c=1}|, respectively,
where | · | denotes the size of a set. In Equation (2), the denom-
inator of Rn,c, TPn,c +FNn,c, is a constant and equal to the
total number of positive labels,

∑N
i= Yi,c, for threshold γ and

class c.
Audio class ontology The C audio classes can be represented
by an undirected complete graph G = (V,E), where V and E
denote sets for vertices and edges, respectively. We use vc ∈ V
to denote the vertex for class c. We define the node proximity
between two vertices vi and vj , Di,j , as the smallest number of
edges to connect vi and vj , given by Di,j = Dist(vi, vj), where
Dist(·) is the proximity calculation function (e.g., Dijkstra’s
algorithm). The proximity matrix D ∈ Z+

C×C is symmetric with
shape C ×C. We also refer to the graph G as the ontology. One
of the most comprehensive audio class ontologies is proposed
by AudioSet [17].

3. Ontology-aware mean average precision
As discussed in Section 1, the evaluation of audio tagging system
tends to be affected by the missing label problem, and mAP as
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Figure 2: Calculate false positive on different coarse levels λ on
the node highlighted with red. The black nodes will be treated
as the same class as the target class without being considered as
false positives for a coarse-level evaluation.

an evaluation metric does not fully accommodate the relations
between classes. Our proposed OmAP addresses these problems
by incorporating the ontology graph into the evaluation process.
Motivated by [6], we design OmAP to evaluate model perfor-
mance on multiple coarse-grained levels λ to gain more insights
into the model performance. The parameter λ represents the
number of nodes or hops in the ontology graph, which covers the
area surrounding a class within which all the nodes are treated
as the same class. The final OmAP z′ is the mean value of
ontology-aware average precision (OAP) on different class c and
λ, defined by

z′ =
Dm∑
λ = 0

C∑
c = 1

z′λ,c
DmC

, z′λ,c =P ′(Y:,c, Ŷ:,c, λ,G) =A(P:,c,R:,c)

(3)
where P ′(·) denotes the OAP evaluation function, and
Dm=max(D) is the maximum value of proximity between two
arbitrary vertices in G, representing the coarsest level of evalua-
tion. We will introduce the detail of multi-level coarse-grained
evaluation in Equation (5). In a similar way as Equation (2), for
each class c with N thresholds (Ŷn,c)n = 1,2,...,N , we calculate
the N coordinates of the OAP precision-recall curve by

(Pn,c, Rn,c) = (
TPn,c

TPn,c +FPn,c Wn,c
,

TPn,c

TPn,c +FNn,c
),

(4)
in which the calculation of FN, FP, and TP are the same as
Equation (2), and the only difference is the reweight matrix
Wn,c, which represents how “serious” is the mistake if class c
appears as an FP on the n-th samples. The shape of the reweight-
ing matrix W is N × C. The value of Wn,c will be small
if FPn,c represents only a minor mistake. The seriousness of
FPn,c is quantified with the ontology graph based on the as-
sumption that a label prediction that is further away from the
target label is a more “serious” mistake. To calculate W, we
first quantify the ontology proximity D by

Di,j

{
di,j , if di,j > λ

0, otherwise
, di,j = Dist(vi, vj) (5)

As illustrated in Figure 2, OmAP is calculated with multiple
coarse-grained levels λ from 0 to Dm, λ ∈ Z≥0, where Dm

is the maximum proximity between two arbitrary vertices in
G. Evaluation with different λ can alleviate the missing label
problem because the missed labels, which are more likely to be
closer to target labels, will be omitted at certain coarse levels.
For example, if λ = 2, the FP on classes that have a minimum
proximity smaller or equal than two (e.g., Female Speech) to the
target classes (e.g., Speech) will not be taken into account. With
the proximity matrix, we can calculate Wn,c by

Wn,c =
1

µ
min {Dc,k | k ∈ Ln} , µ =mean(D), (6)



Algorithm 1: Calculate OBCE loss weight
Inputs :Ontology G, label for the n-th sample Ln, total

number of classes C, proximity power factor β.
Output :Loss weight vector r with length C.

1 for c in [1, 2, ..., C] do
2 rc = min{dβ | d=Dist(vc, vk), k ∈ Ln};
3 r ← r/max(r); ▷ Preparation for line 4.
4 rk ← 1.0, k ∈ Ln; ▷ Target labels have the highest weight.
5 for c in [1, 2, ..., C] do
6 rc ← rc/mean(r);
7 ▷ Let mean r̄=1. For a fair comparison with the BCE loss.

where Ln is the label for the n-th sample, function mean(·)
calculates the mean value of all the elements in a matrix, and µ
is the mean value of D. We divide W by µ to ensure the value of
OmAP can have a similar scale as mAP. The reweighting matrix
W is dependent on D, which is calculated with different λ, thus
W also has different values on different λ. Finally, Wn,c can be
utilized in Equation (4) and (3) to calculate OmAP at different
coarse-grained levels.

4. Ontology-aware binary cross entropy loss
We propose an OBCE loss, Lobce, to explore if the ontology
information is beneficial for model optimization. The intuition
behind Lobce is similar to OmAP, alleviating the missing-label
problem, and treating each class differently according to its
proximity to the target classes. The proposed OBCE loss is
built upon the traditional BCE loss. Given the target and label
prediction y and ŷ of an audio sample, the BCE loss can be
formulated as

Lbce = mean(y ⊙ log(ŷ) + (1− y)⊙ log(1− ŷ)) (7)

where ⊙ means the Hadamard product, log means element-wise
log, and y is the label vector with elements of ones and zeros.
Compared to Lbce, the OBCE loss reweights the loss function
for each class c based on the node proximity of the predictions
to the target labels. Based on the similar motivation discussed in
Section 3, OBCE loss is designed to assign a smaller weight to
false predictions that are closer to the target labels. Assigning
weight to false prediction can also alleviate the missing-label
problem. As shown in Algorithm 1, we calculate the loss weight
of class c, rc, based on the minimum node proximity between
the vertex of class c and vertices of the target label set Ln. With
the loss weight r, the OBCE loss can be formulated as

Lobce = mean(r⊙ (y⊙ log(ŷ)+ (1−y)⊙ log(1− ŷ))) (8)

Note that in OmAP, we calculate vertex proximity in G
by simply calculating the number of edges (see Equation (5)).
However, this assumption is not necessarily optimal for model
optimization using OBCE. Hence, in Algorithm 1, we raise the
proximity d to the power of a proximity power factor β to explore
the effect of non-linear proximity. We empirically observe that β
can affect the model performance on mAP and OmAP. Since the
OBCE loss has a higher weight on classes that are further away
from the target labels, the OBCE loss tends to emphasize more
on coarse-grained classification. Therefore, we use the BCE
loss with the OBCE loss to ensure the model still is sufficiently
optimized for fine-grained classification. The final loss function
L is the combination of the BCE and OBCE losses, given by
L = (Lbce + Lobce)/2, in which the division of these two is to
ensure a similar scale of L with Lbce for fair comparisons in the
experiments.

Model Params mAP OmAP OmAP0

PANN [1] 42 M 43.3 76.7 54.3
PSLA [2] 14 M 43.7 77.6 55.3
AST [14] 88 M 45.6 78.5 57.0

HTS-AT [24] 31 M 46.4 78.5 57.7

Table 1: The performance of state-of-the-art methods on Au-
dioSet. We also report the OmAP at the finest-grained level when
λ=0, denoted by OmAP0. All the metrics are reported in the
percentage format.
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Figure 3: The left two figures show the differences of OmAP
at each coarse-grained level between two groups of models.
Although HTS-AT and AST have the same OmAP (see Table 1),
HTS-AT is better on smaller coarse-grained levels. The right
figure shows the OmAP and mAP performance with different β
settings in the OBCE loss.

5. Experiments
We conduct experiments on the AudioSet balanced sub-
set (AudioSet-20K), full AudioSet (AudioSet-2M) [17], and
the FSD50K dataset [18]. All the datasets are resampled into
a sampling rate of 16 kHz following [1, 25]. The AudioSet on-
tology is a complete graph, in which the maximum proximity
between two nodes is Dm=21. The FSD50K datasets use part
of the AudioSet ontology with 200 classes. We use the same
backbone as [2], which is an ImageNet pretrained EfficientNet-
B2 [26] with a four-head attention block. The detailed setup of
hyper-parameters is the same as Liu et al. [25]. For the proximity
power factor β, we use 1.0 by default, except for the experiments
in Figure 3. We also report the OmAP when λ = 0, denoted by
mAP0, which is the most fine-grained evaluation level. Note that
the calculation of OmAP0 is not affected by the value of λ and
will consider all false positives made by the model. The false
prediction will be reweighted by OmAP0 based on proximity to
the target labels.
OmAP of state-of-the-art methods As shown in Table 1, we
evaluate several SOTA methods for audio tagging with both mAP
and our proposed OmAP metrics. The evaluation is performed
on the open-sourced pretrained versions of these four methods.
In Table 1 we see that the OmAP score of AST and HTS-AT are
the same, while the OmAP of AST when λ=0 is 0.7% lower than
HTS-AT, which indicates that HTS-AT and AST do not perform
the same on different λ. We further visualize the difference
between HTS-AT and AST in Figure 3, which shows that HTS-
AT performs better on smaller λ while AST performs better
on larger λ. This indicates that the hierarchical structure and
shifted window attention in HTS-AT [24] might benefit fine-
grained classifications. Although all three evaluation metrics
show that PSLA is better than PANN, the comparison between
PSLA and PANN in Figure 3 shows that PANN performs better
at higher coarse levels, which indicates PANN makes fewer false
predictions on classes far from the target classes. The result in
this section shows OmAP can provide more detailed evaluation
results on different coarse-grained levels, and can better guide



Prob Prediction Which one is better? Confi-
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Figure 4: Comparing the objective evaluation result with the
human evaluation score. The procedure in this figure will be
performed multiple times with different class c and subsets of
evaluation files. Finally, for each objective metric, we calculate
the statistic of agreement and disagreement with the human eval-
uation score to measure its consistency with human perception.

Evaluation metric mAP OmAP OmAP0

Consistency with human opinions 10.0% 82.5% 62.5%

Table 2: The percent of agreement between human annotations
and each objective evaluation metrics in 20 different trails.

model comparison and performance analysis than mAP.
Which metric is closer to human perception? By randomly
sampling a class c and a random subset of evaluation files to eval-
uate HTS-AT [24] and AST [14], we observe 17% of the results
are inconsistent between mAP and OmAP on deciding which
model is better. So, we design human evaluations on the incon-
sistent results as a reference to find out which metric is better.
As illustrated in Figure 4, after listening to an audio clip, the par-
ticipant needs to choose which model makes a better prediction
and his/her confidence (1 to 5). We anonymize the file name and
model name during the evaluation. In our experiment, we found
94% of the answers are marked with the highest confidence. We
perform human annotation on 20 different random classes and
subsets of evaluation clips. For each class c we randomly sample
30 audio clips on the AudioSet evaluation subset both with and
without the label of class c. We ensure there are at least 5 audio
clips with the label c. We also ensure for the clips without label c,
at least half of them have model probability estimations greater
than 0.1 on class c. We set these two constraints to ensure the
majority of 30 audio clips are relevant to class c, and have a
reasonable proportion of positive and negative labels. We recruit
four participants with audio-processing backgrounds to perform
this test. For each of the 20 evaluation subsets, the participants
are asked to determine which model is better, model A or B,
using the method shown in Figure 4. On a subset of evaluation
files, if an objective metric has the same result as the partici-
pant, we call this metric consistent with human perceptions. The
averaged consistency results on four participants are shown in
Table 2. Both OmAP and OmAP0 show better consistency with
human evaluation than mAP.
Improving audio tagging with OBCE loss We performed
repeated experiments with different random seeds on both
AudioSet-20K and AudioSet-2M with and without the OBCE
loss. Our experimental results are shown in Figure 5, in which
the experiments with the same seed are connected. We perform
a paired t-test [27] on the observed model performance with
and without the OBCE loss. The OmAP improvements with
OBCE loss on the AudioSet-20K and AudioSet-2M are both
statistically significant at more than 99% confidence (p<0.0001
and p=0.0005). This is expected because OmAP and OBCE
are designed with similar motivations. Surprisingly, we observe
mAP can be improved on both datasets with 95% confidence,
which suggests reweighting the loss function based on ontol-
ogy proximity can also benefit model optimization and help the
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Figure 5: The mAP and OmAP without (w/o) and with (w) the
OBCE loss. Both mAP and OmAP on AudioSet show improve-
ment with more than 95% confidence. The right half of each
subfigure shows the improvements in the repeated experiments.

model make more accurate predictions. This might be because
the reweighting in OBCE loss helps the model to learn the re-
lation of classes, such as which classes are more (dis)similar
to the target classes, and learn a better decision boundary. We
also conduct experiments on FSD50K and perform the same
paired t-test. The result shows that the OBCE loss can im-
prove the OmAP on the FSD50K tagging task with 95% con-
fidence (p < 0.05), while our experiments do not show high
confidence in improving mAP (p=0.73). This might be because
the audio clips in FSD50K are more exhaustively labeled than
AudioSet [18], hence fewer labels are missing. Nevertheless, the
improvements of mAP and OmAP with the OBCE loss presented
in Figure 5 indicate that ontology is beneficial for audio tagging,
which also suggests the proposed OmAP metric is preferable.

As discussed in Section 4, we introduce a proximity power
factor β in the OBCE loss to explore the effect of non-linear
proximity between nodes. The parameter β raises the elements of
the proximity matrix to power and will affect model optimization.
For example, a higher β will make the difference between small
and large values more prominent, which in turn makes the classes
further from the target classes on the ontology have larger loss
weight. When β = 0, the proximity matrix becomes an all-one
matrix, and the OBCE loss is reduced to the conventional BCE
loss. The effect of β on the AudioSet-20K is shown in Figure 3.
The OmAP improves roughly linearly with the increase of β,
while mAP shows roughly a quadratic relation with β. This
indicates the OBCE loss might need a proper tuning of β to
achieve the best performance on OmAP and mAP.

6. Conclusions
In this paper, we proposed a new evaluation metric, ontology-
aware mean average precision (OmAP), which can evaluate
model performance based on an intuitive class ontology. The
multi-level coarse-grained evaluation scheme in OmAP provides
more angles on model evaluation. Our human evaluation shows
that OmAP is more consistent with human perceptions. We
also proposed a loss function, ontology-aware binary cross en-
tropy (OBCE) loss, that shows high confidence in improving
both mAP and OmAP on AudioSet. The success of our proposed
OBCE loss also supports our claim that OmAP is preferable to
mAP as the audio tagging evaluation metric. Future work will
be evaluating the OBCE loss on more SOTA models.
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