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Audio-Visual Particle Flow SMC-PHD Filtering for
Multi-Speaker Tracking

Yang Liu, Student Member, IEEE, Volkan Kılıç, Jian Guan, Wenwu Wang, Senior Member, IEEE,

Abstract—Sequential Monte Carlo probability hypothesis den-
sity (SMC-PHD) filtering is a popular method used recently for
audio-visual (AV) multi-speaker tracking. However, due to the
weight degeneracy problem, the posterior distribution can be
represented poorly by the estimated probability, when only a few
particles are present around the peak of the likelihood density
function. To address this issue, we propose a new framework
where particle flow (PF) is used to migrate particles smoothly
from the prior to the posterior probability density. We consider
both zero and non-zero diffusion particle flows (ZPF/NPF), and
developed two new algorithms, AV-ZPF-SMC-PHD and AV-NPF-
SMC-PHD, where the speaker states from the previous frames are
also considered for particle relocation. The proposed algorithms
are compared systematically with several baseline tracking meth-
ods using the AV16.3, AVDIAR and CLEAR datasets, and are
shown to offer improved tracking accuracy and average effective
sample size (ESS).

Index Terms—Audio-Visual Tracking, Sequential Monte Carlo,
PHD filter, Particle Flow, Optimal Proposal Distribution.

I. INTRODUCTION

MULTI-SPEAKER tracking has drawn increasing atten-
tion in applications, such as security surveillance [1],

and human-computer interaction [2]. However, the measure-
ments used in multi-speaker tracking, either audio [3] or visual
[4], often contain noise, clutter, and missing data [5], [6]. For
example, in visual tracking, the tracking result is often affected
by occlusions and the limited field of view of cameras [4],
while in audio tracking, speakers are not always detectable
when strong background noise and room reverberations are
present in the measurements or when the speakers are silent.

To address this problem, different modalities can be ex-
ploited jointly for their complementarity. For example, speak-
ers can be tracked using audio information, if they are vi-
sually occluded, likewise, they can be tracked with visual
information, when the audio information becomes unreliable,
e.g. due to the presence of acoustic noise. Other modalities,
such as thermal vision and laser rangefinders, could also be
considered, however, we will focus on audio-visual sensors,
as in [7], due to their widespread use, low cost, and easy
installation [8]. More specifically, in our work, we consider
the visual measurements obtained by the CAMShift [9] or a
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face detector [10], and the audio measurements, such as the
direction of arrival (DOA) of the sources [11].

To fuse the audio-visual data, the Bayesian inference frame-
work is a popular choice, which provides an intuitive way for
the estimation of speaker states [12] from the measurements.
Early methods include the Kalman filter (KF) [13], extended
Kalman filter (EKF) [14] and particle filter [15], which can
be used for a fixed and known number of speakers, while
more recent methods include random finite sets (RFS) [16],
Gaussian mixture (GM) PHD filter [6], sequential Monte
Carlo (SMC) PHD filter [17], cardinalized PHD filter [18],
and generalized labeled multi-Bernoulli (GLMB) RFS [19],
which can be employed to track an unknown and time-variant
number of speakers. The SMC-PHD filter uses a set of random
particles to estimate the posterior density, as a result, it often
suffers from the weight degeneracy problem [20], i.e. the
weights of most particles will become negligible, while only
a few remain significant, during the iterations in the particle
propagation process.

To address the issue, several ideas have been developed.
The SMC methods exploit the most recent measurements
or the unscented transformation to approximate the optimal
proposal distribution and to minimize the variance of the
importance weights, as in e.g. the auxiliary particle filter [21],
unscented particle filter [22], auxiliary SMC-PHD filter [23]
and unscented auxiliary cardinalized PHD filter [24]. Another
idea is based on the Markov Chain Monte Carlo method [25],
as performed in the well-known resample-move algorithm
[26], where the particles are drawn to represent independent
samples from the target posterior. Finally, an idea based on
bridging densities [27], [28], [29] has also been developed for
approaching the true posterior density from the tractable prior
density. This method offers theoretical elegance and promising
performance, but involves complicated approximation of the
optimal bridging densities.

In this paper, we propose a new method to address the
weight degeneracy issue, based on particle flow [30], [31],
[32]. Different from the above-mentioned techniques, such as
the popular particle re-sampling technique, our method aims
to improve the effective sample size with a particle relocation
strategy designed using particle flow. More specifically, the
particles are migrated from the prior to the posterior distri-
bution, using a homotopy function which defines the flow in
synthetic time and incorporated for particle update at each time
frame [33].

According to the different assumptions employed for solv-
ing the homotopy function, particle flow can be divided into
five classes: incompressible particle flow [34], zero diffusion
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particle flow (ZPF) [32], Coulomb's law particle flow [35],
zero-curvature particle flow [36] and non-zero diffusion par-
ticle flow (NPF) [37]. In this work, we consider ZPF and
NPF. The ZPF is easy to implement [38] and widely used
[39], [40], [41]. NPF does not assume any particular form
of the prior density and likelihood function [37]. NPF offers
slightly better performance than ZPF. Note that, we do not
consider the other types of particle flows for the following
reasons. Incompressible particle flow equation only works on
some special prior densities, such as Gaussian density [42].
Coulomb's law and zero-curvature particle flows are sensitive
to initialization of the state vector [36].

Zero particle flow has been used previously to improve the
particle filter by reducing the number of particles in the particle
flow particle filter (PFPF) [43] and the δ-GLMB particle filter
[44], and to improve the Gaussian mixture PHD filter in [29]
for an unknown number of targets. However, there are several
main differences between our proposed methods and these
methods. First, particle flow is used to improve the SMC-
PHD filter in our method, mainly for particle relocation and
weight update in order to mitigate the weight degeneracy
issue. Second, only ZPF has been considered in the previous
methods, while we have also developed a new method using
NPF. Third, the mean and covariance of the particles are es-
timated by a clustering technique, while in previous methods,
these are estimated using EKF [43], Gaussian mixture model
[29], or label information [44]. Fourth, our proposed methods
offer significant performance improvements and computational
advantages compared with these previous methods.

To demonstrate the advantages of the proposed method, we
consider a recent baseline i.e. audio-visual SMC-PHD (AV-
SMC-PHD) filter introduced in [5], and developed two new
algorithms, namely, AV-ZPF-SMC-PHD and AV-NPF-SMC-
PHD. We compare systematically the proposed algorithms
with several other state-of-the-art methods, such as the sparse-
AVMS-SMC-PHD filter in [5], where mean-shift (MS) was
used for particle relocation.

Preliminary results of this work were presented in confer-
ence papers [20] [7] [45]. This paper provides a comprehensive
treatment of the proposed methods together with new improve-
ments and experimental results. First, the direction of arrival
(DOA) and color histograms are both used for deriving the
particle flow. When speakers are not detected with the DOA
information or the color histograms, particle states can still
be updated with particle flow. Second, the speaker states and
weights in the previous frames are used for relocating particles
in terms of DOA, in order to reduce the adverse impact
of acoustic noise on particle relocation. Third, we perform
extensive experiments on the AV16.3 [46], AVDIAR [47]
and CLEAR [48] datasets, and compare the proposed method
with several baseline methods including the PF-PF [41], ZPF-
GPF-PHD [29], sparse-AVMS-SMC-PHD [5] filters, auxiliary
SMC-PHD filter [23], and a deep learning based face detector
[10].

This paper is organized as follows. The next section dis-
cusses the problems and background. Section III presents the
details of the proposed methods. In Section IV, the proposed
algorithms are compared with several baseline algorithms

based on comprehensive experiments. Finally, Section V con-
cludes the paper.

II. PROBLEM STATEMENT AND BACKGROUND

This section describes the problem formulation, the SMC-
PHD filter, the particle flow filter, and a baseline AV-SMC-
PHD algorithm. We assume that the speaker dynamics and
measurements are described as a Markov state-space signal
model:

{m̃j
k}
Ñk
j=1 = Fm̃

(
{m̃j

k−1}
Ñk−1

j=1 , τk

)
(1)
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where m̃j
k ∈ RM represents the state vector for the jth speaker

at time k, and ˜ is used to distinguish the speaker state from
the particle state used later. The state m̃j
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j
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j
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position of the jth speaker and (ẋjk, ẏ
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velocity. At time k, m̃j
k is approximated by Nk particles

{mi
k}
Nk
i=1 with weights {ωik}

Nk
i=1. Let Zk denote the set of

measurements at time k, defined as [{m̊o
k}
Ok
o=1, {m̆u

k}
Uk
u=1] for

audio-visual measurements, where Ok and Uk are the number
of audio ˚ and visual ˘ measurements, respectively. τk
and ςk are system excitation and measurement noise terms,
respectively. εk is the clutter term. Fm̃ is the transition
model and Fz is the nonlinear measurement model. A list
of important notations is given in Table I, where o and u are
the indices of audio and visual measurements.

TABLE I: List of important Notations

Notations Meaning

{mi
k, ω

i
k}
Nk
i=1 The set of particle states and weights

{m̃j
k, ω̃

j
k}
Ñk
j=1 The set of speaker states and weights

{m̃j
k|k−1

}
Ñk|k−1

j=1 The set of candidate speaker states

{m̆u
k , ω̆

u
k}
Uk
u=1 The set of visual measurements and weights

{m̊o
k, ω̊

o
k}
Ok
o=1 The set of audio measurements and weights

A. SMC-PHD filter

In the prediction step [49], the particles are obtained by the
proposal distribution qk(mi

k|k−1|m
i
k−1,Zk), with weights

ωik|k−1 =
φk|k−1(mi

k|k−1|m
i
k−1)ωik−1

qk(mi
k|k−1|m

i
k−1,Zk)

, i = 1, ..., Nk−1 (3)

where φk|k−1 is the analogue of the state transition probability.
NB particles are sampled from the new born importance
function pk with weights

ωik|k−1 =
γk(mi

k|k−1)

NBpk(mi
k|k−1

|Zk)
, i = Nk−1 + 1, . . . , Nk−1 +NB

(4)



3

where γk is the probability of the new born speaker, whose
integral approximates the average number of speakers in the
state space. In the update step, the weights are calculated as

ωik =

1− piD,k +
∑

zrk∈Zk

piD,kh
i,r
k

κk +
∑Nk
i=1 p

i
D,kh

i,r
k ωik|k−1

ωik|k−1

(5)
in which κk denotes the clutter intensity of the rth measure-
ment zrk at time k. piD,k is the detection probability of the
ith particle at time k. κk and piD,k can be assumed known
a priori and constant as in [50]. Alternatively, a model of
Beta-Gaussian mixtures can be used to estimate unknown κk
and piD,k as in [51]. hi,rk is the likelihood of the ith particle
for the rth measurement, which can be estimated in terms of
their Bhattacharyya distance [52] or Euclidean distance [53]
with a Gaussian distribution. The number of speakers Ñk is
estimated as the sum of the weights. The states and weights
of the speakers {m̃j

k, ω̃
j
k}
Ñk
j=1 can be calculated using e.g. k-

means clustering method [54] or multi-expected a posterior
(MEAP) [55]. Finally, resampling is performed when the ESS
is smaller than half of the number of particles. Resampling
was proposed originally in [56] and popularised in [57].
According to the different strategies taken for selecting the
particles, the resampling methods mainly fall into three cate-
gories: multinomial resampling [58], residual resampling [58]
and systematic resampling [59]. In multinomial resampling,
the particles are independently selected and resampled. In
residual resampling, the particles to be resampled are selected
based on the values of their weights. In systematic resampling,
the particles are clustered and the resampled particles are taken
from each cluster. This can help reduce the discrepancy among
the particles. The systematic resampling method has been used
in the baseline SMC-PHD filter and will also be used in our
proposed filter, due to its high resampling quality and low
computational complexity.

B. Particle flow

In particle flow, a homotopy function is used to estimate the
posterior density, as follows [33],

log(ψik) = log(gik) + λ log(hik)− logKi
k (6)

where Ki
k is the normalization constant independent of mi

k,
and λ, called pseudo time, is a step size parameter taking
values from set [0,4λ, 24λ, · · · , Nλ4λ] and Nλ4λ = 1,
with Nλ being the number of pseudo time steps. In fact, λ can
also be variable step sizes as in [41], [32], which is further
discussed in Section IV. Eq. (6) represents the evolution of
the particles from the prior density gik to the posterior density.
When λ = 0, ψik represents the prior density gik at time k.
When λ is varied to 1, ψik is translated into the normalized
posterior density [30]. In ZPF, the posterior and likelihood
function are assumed to be Gaussian and linear, and the flow
f ik,λ is derived as,

f ik,λ =
dmi

k|k−1

dλ
= Ai

km
i
k|k−1 + bik (7)

where

Ai
k = −1

2
Ci
k

(
λHi

kP
i
k|k−1(Hi

k)T +R
)−1

Hi
k, (8)

bik =
(
I + 2λAi

k

) [(
I + λAi

k

)
Ci
kR
−1zrk +Ai

km̄
i
k|k−1

]
(9)

Ci
k = P i

k|k−1(Hi
k)T (10)

where P i
k|k−1 is the covariance matrix of the prediction error

for the particle state mi
k|k−1, m̄i

k|k−1 is the mean of the
states over the particle set, R is the covariance matrix of
the measurement noise, I is the identity matrix, and Hi

k is a
Jacobian matrix [60]. The details about ZPF are given in [33].
ZPF has been widely used for its simplicity. For nonlinear
problems, this flow can be used to linearize the measurement
equation for each particle with an extended Kalman filter. The
main critical parameters in ZPF are the number of particles
and the tolerance for the step-size selection. As a result, only
little effort is required for parameter tuning.

Different from ZPF, the particle flow equation used in NPF
is derived by retaining the diffusion term, as detailed in [37],
given as follows,

f ik,λ = −[∇2 logψik]−1(∇ log hik) (11)

where

∇2 logψik ≈ −(P i
k|k−1)−1 + λ∇2 log hik (12)

where ∇ is the spatial vector differential operator ∂
∂mi

k|k−1

.

hik is the likelihood of the ith particle at time k. As compared
to ZPF, the prior density and likelihood function in NPF
need to be sufficiently smooth [61], and the performance
NPF tends to be more sensitive to the choice of parameters
e.g. the pseudo-time step size. However, once properly tuned,
NPF offers a lower computational cost and slightly better
performance than ZPF. Therefore, NPF is also implemented
in this work. It is worth noting that, other ideas are emerging
to address the issues in NPF. For example, stochastic particle
flow based on Langevin diffusion, has been proposed in [62],
and the Gromovs method has been used to reduce sensitivity
to parameter choice of NPF in [63]. These new developments
make NPF an increasingly attractive choice.

C. AV-SMC-PHD filter

The SMC-PHD filter was recently used in [5] for multi-
speaker tracking, based on the fusion of audio-visual in-
formation. The audio information used is the DOA, e.g.
the approximate direction of the speakers with respect to a
microphone array, which can be detected by e.g. the sam-
spare-mean (SSM) method [64], which is a joint detection and
localization method, where the space is divided into sectors,
with each sector corresponding to a certain direction, and the
active sources are searched over these sectors in terms of the
sound energy presented. Color histogram has been used as the
visual information [5].

To fuse the audio-visual information, the surviving particles
are relocated around the DOA lines which are drawn from the
centre of the microphone array to points in the image frame
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estimated by the projection of DOAs to a 2D image plane
[65]. The visual information is used to estimate the likelihood
function and to update the particle weights by Eq. (5).

More specifically, the distance for particle movement dik is
calculated as:

dik =
d́ik∑Nk−1

i=i d́ik
d́ik (13)

where d́ik is the perpendicular Euclidean distance from the
particles to the DOA line [5], assuming the DOA line is avail-
able at time k. Then, the surviving particles {mi

k|k−1}
Nk−1

i=1

are relocated to near the DOA line [5] in terms of dik as:

mi
k|k−1 ⇐mi

k|k−1 + okd
i
k (14)

where ok = [cos(θok), sin(θok), 0, 0]T and θok is the correspond-
ing oth DOA angle. The visual information is used to derive
the likelihood which is then used to update the weights ωik.
The pseudo code of baseline AV-SMC-PHD filter [5] is given
in Algorithm 1, where T is the length of a frame.

Algorithm 1 AV-SMC-PHD Filter

Input: {mi
k−1, ω

i
k−1}

Nk−1

i=1 , NB , Zk, k and DOA lines.
Output: {m̃j

k, ω̃
j
k}
Ñk
j=1, and {mi

k, ω
i
k}
Nk
i=1.

Initialize: τk, qk, φk|k−1, pk, γk, κk, PD,k, Fm̃, Fz , T
and speaker histograms.
Run:
Step 1: Propagation step
Propagate surviving particles {mi

k|k−1}
Nk−1

i=1 .
Step 2: Particle birth and relocation step
if DOA lines exist then Calculate dk by Eq. (13).

Concentrate particles around the DOA line by Eq. (14).
if new speaker then Sample NB born particles
{mi

k|k−1, ω
i
k|k−1}

Nk−1+NB
i=Nk−1+1 uniformly around the

DOA line Eq. (4).
Calculate {ωik|k−1}

Nk−1

i=1 by Eq. (3).
Step 3: Prediction step
{mi

k|k−1, ω
i
k|k−1}

Nk
i=1 = {mi

k|k−1, ω
i
k|k−1}

Nk−1

i=1 ∪
{mi

k|k−1, ω
i
k|k−1}

Nk−1+NB
i=Nk−1+1.

Step 4: Update step
Estimate colour likelihood.
(Optional) Update the states and the weights of the particles
by the particle flow using Algorithm 3 and 2.
Step 5: Estimation step
Update {ωik|k−1}

Nk
i=1 to obtain {ωik}

Nk
i=1 by Eq. (5) and

calculate Ñk =
∑Nk
i=1 ω

i
k.

Set {mi
k}
Nk
i=1 as {mi

k|k−1}
Nk
i=1.

Get {m̃j
k, ω̃

j
k}
Ñk
j=1 by the k-means method or MEAP

if ESS < Nk/2 then (Optional) Resample {mi
k, ω

i
k}
Nk
i=1.

The AV-SMC-PHD filter, however, suffers from the weight
degeneracy problem, as illustrated in Fig. 1(a), where ten
particles are shown in blue solid circles, with their weights
indicated by the size of the circles, and the prior density and
the likelihood as the red and green solid lines, respectively.
At the top of the figure, the propagated particles are given.
After the relocation step, most of the particles converge to the

area around the peak of the prior density. In the prediction
step, the weights of the particles are adjusted. According to
the Bayes’ theorem, the posterior density is proportional to the
multiplication of the prior density with the likelihood density,
and its estimation becomes less accurate when no particles are
around the posterior density. As a result, only a small number
of particles have high weights after the update step.

In addition, the color histograms of the speakers’ faces were
used as measurements for particle update. The weights of the
particles may decrease sharply when the speakers do not face
the camera, and this can lead to unreliable tracking results.

Finally, the particles are relocated based on the DOA lines
via Eq. (13) and Eq. (14), and thus they could be migrated
from the undetected speaker to the clutter or other speakers,
when the DOA estimation is corrupted by background clutter.

Fig. 1: Illustration of (a) the weight degeneracy problem
and (b) the particle flow process. The particles are shown
as the blue circles whose sizes indicate their weights. The
prior density and likelihood density are represented by the red
dashed and green solid lines, respectively.

III. PROPOSED AV PARTICLE FLOW SMC-PHD FILTER

To address the above problems, we propose an AV particle
flow SMC-PHD filter, where the particle flow is used for
particle migration before the update step of the AV-SMC-
PHD filter (i.e. Step 4 of Algorithm 1). Furthermore, the
measurements zrk used in particle flow Eq. (9) and update step
Eq. (5) are replaced by the candidate speaker states, calculated
in terms of DOA and color histograms. The speaker states
in the previous frames are also used to relocate surviving
particles with DOA at Step 2 of Algorithm 1. This allows
performance benchmarking with the baseline method in [5],
to show the advantage of our proposed method. However, to
show the flexibility of the proposed method, we have also
considered other type of visual measurements such as those
obtained by a state-of-the-art deep learning based face detector,
in our experiments.

A. Particle flow for AV-SMC-PHD filter

We consider both ZPF and NPF in our proposed algorithms.
As the number of speakers and the labels of the particles are
unknown and time-varying, we assume that the number of
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particle flows is identical to the number of candidate speakers
Ñk|k−1. The particles are clustered for the particle flow based
on candidate speaker states m̃j

k|k−1, as discussed in Section
III-B. However, in practice, some particles are created due
to clutter and noise. We assume that each flow will only be
influenced by the particles in the neighborhood of m̃j

k|k−1
within certain distance ξf ,∥∥∥mi

k|k−1 − m̃
j
k|k−1

∥∥∥
2
< ξf (15)

The flow will be applied to the set of particles,
{mi

k|k−1, ω
i
k|k−1}i∈Λ(m̃j

k|k−1
), where Λ(m̃j

k|k−1) is a subset
of [1, · · · , Nk], determined via (15), in terms of the threshold
ξf . A high ξf may lead to an inaccurate estimation of the
variance of the speaker states, while a low ξf may result in
an insufficient number of particles for estimating the variance
of the target state. In practice, ξf is set according to the
variance of the measurement noise, estimated empirically in
our experiments. The mean state m̄k|k−1 of this particle set
is given by:

m̄k|k−1 =

∑
i∈Λ(m̃j

k|k−1
)

(
ωik|k−1Fm

(
mi
k−1

))
∑
i∈Λ(m̃j

k|k−1
) ω

i
k|k−1

(16)

The covariance matrix Pk|k−1 of this particle set is given by:

Pk|k−1 =

∑
i∈Λ(m̃j

k|k−1
)

(
ωik|k−1e(mi

k−1)e(mi
k−1)T

)
∑
i∈Λ(m̃j

k|k−1
) ω

i
k|k−1

(17)
where

e(mi
k−1) = Fm

(
mi
k−1

)
− m̄k|k−1 (18)

For the ith particle in the subset Λ(m̃j
k|k−1), P i

k|k−1 and
m̄i
k|k−1 in Eq. (8) and Eq. (9) are set as Pk|k−1 and m̄k|k−1,

respectively.
1) Zero Diffusion Particle Flow: For ZPF, the particle flow

is calculated by Eqs. (7)-(10) and the measurement model Hi
k

for the ith particle is calculated as,

Hi
k =

∂Fz(mi
k, ςk)

∂mi
k

∣∣∣∣
mi
k|k−1

(19)

In this paper, as the measurement is replaced by the candidate
speaker state, Hi

k ∈ R4×4 is taken as an identity matrix.
The flow f ik,λ of the particle set {mi

k|k−1}i∈Λ(m̃j
k|k−1

) is
calculated via Eq. (7) and applied for migrating the particles.
Ai
k and bik are derived according to Eq. (8) and Eq. (9).

Since the particle states have been updated, the weights of
{mi

k|k−1}i∈Λ(m̃j
k|k−1

) may have a poor representation of the
prior distribution. As the weights are inversely proportional
to the proposal distribution as Eq. (3), the weights should be
adjusted by:

ωik|k−1 ⇐
qk(mi

k|k−1|m̃
j
k|k−1)|det(I + ∆λAi

k(λ))|

qk(mi
k|k−1 +4λf ik,λ|m̃

j
k|k−1)

ωik|k−1

(20)

where the proposal distribution qk(mi
k|k−1|m̃

j
k|k−1) ∝

N (m̃j
k|k−1,Σ

2
q), Σq is the covariance of the proposal dis-

tribution [66], [67], and det is a determinant. 4λ is the step
of the pseudo time, and the choice of this parameter dictates
a trade-off between the computational cost for calculating the
particle flow, and the accuracy for estimating the posterior
probability. Although det(I + ∆λAi

k(λ)) is a constant for the
particles in the same set Λ(m̃j

k|k−1), it may be different for
particles in different set Λ(m̃j

k|k−1) and thus improves the
estimate of the particle weights [43].

2) Non-zero Diffusion Particle Flow: For NPF, the particle
flow f ik,λ is calculated by Eqs. (11)-(12), where ∇ log hik and
∇2 log hik are calculated as

∇ log hik =
∇hik
hik

(21)

∇2 log hik =
∇2hik
hik

− (∇ log hik)(∇ log hik)T (22)

When hik is Gaussian, we have ∇ log hik = P−1
k|k−1(mi

k|k−1−
m̄k|k−1) and ∇2 log hik = P−1

k|k−1[45]. The weight is adjusted
by:

ωik|k−1 ⇐
qk(mi

k|k−1|m̃
j
k|k−1)|det(I + ∇f ik,λ)|

qk(mi
k|k−1 +4λf ik,λ|m̃

j
k|k−1)

ωik|k−1

(23)
where

∇f ik,λ =


f ik,λ−f

i
k,λ−4λ

4λf ik,λ
λ 6= 0

0 λ = 0
(24)

The particle state mi
k|k−1 is updated by:

mi
k|k−1 ⇐mi

k|k−1 +4λf ik,λ (25)

The pseudo code of particle flow is given in Algorithm 2,
where {m̃j

k|k−1}
Ñk|k−1

j=1 is the candidate speaker state which
replaces zrk in Eq. (9). After applying Algorithm 2, ωik|k−1

will be updated to ωik by Eq. (5). The particle flow step is
also illustrated in Fig. 1(b). The particles are moved towards
the peak of the likelihood. As a result, most of the particles are
localized between the two peaks of the prior density (red line)
and the likelihood density (green line). This means that the
shifted particles provide an improved local characterization of
the posterior density.

B. Candidate Speaker States

In this subsection, we explain how the candidate speaker
states are estimated using audio-visual information e.g. DOA
and color histograms. It is worth noting that our proposed
tracking framework is flexible and can be adapted easily to
accommodate other audio-visual information, such as face
detector [10], as considered in our experiments. The DOA
information can be obtained by either a circular array (as in
our work) or a linear array. As the DOAs are determined by
the relative delay between the pairs of microphone signals
[5], it only shows the approximate direction θok of the sound
sources with respect to the microphones. In practice, the
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Algorithm 2 Particle flow for the AV-SMC-PHD filter

Input: {mi
k|k−1, ω

i
k|k−1}

Nk
i=1 and {m̃j

k|k−1}
Ñk|k−1

j=1 .
Output: {mi

k|k−1, ω
i
k|k−1}

Nk
i=1.

Initialize: ξf , 4λ, Nλ, R, e, Fz , ςk and Σq .
Run:
for each m̃j

k|k−1 do
Select particle set Λ(m̃j

k|k−1) according to Eq. (15).
Calculate m̄k|k−1 and Pk|k−1 by (16) and Eq. (17),
respectively.
Set m̄i

k|k−1 = m̄k|k−1 and P i
k|k−1 = Pk|k−1.

for i ∈ Λ(m̃j
k|k−1) do

for λ ∈ [0,4λ, 24λ, · · · , Nλ4λ] do
if Zero diffusion particle flow then

Evaluate flow f ik,λ by Eqs. (7)-(10).
Update the particle weights by Eq. (20).

if Non-zero diffusion particle flow then
Evaluate flow f ik,λ by Eqs. (11)-(12).
Update the particle weights by Eq. (23).

Update mi
k|k−1 by Eq. (25).

rectangular coordinate [xok, y
o
k] of m̊o

k can be transformed to
polar coordinate [rok, θ

o
k], where rok is the Euclidean distance

from the nearby speaker state at the previous frame to the
microphone position,

rok =
∥∥∥[x̃ĵk−1, ỹ

ĵ
k−1]T − [xmic, ymic]

T
∥∥∥

2
(26)

where

ĵ = argmin
j

∥∥∥∥∥ ỹ
j
k−1 − ymic − (x̃jk−1 − xmic) tan θok

x̃jk−1 − xmic − (ỹjk−1 − ymic) tan θok

∥∥∥∥∥
1

(27)

where ‖.‖1 and ‖.‖2 are the L1 and L2 norm, respectively.
[x̃jk−1, ỹ

j
k−1]T and [xmic, ymic]

T are the positions of the jth
speaker state at the previous frame m̃j

k−1 and the state of
microphone array mmic, respectively. They both correspond
to the center of the microphone array. Here, the aim is to find
the index of the speaker, i.e. ĵ, which gives the minimum
tangent value of the angle between the DOA θok and the
direction of each target speaker. Then m̊o

k is given by:

m̊o
k = [rok cos θok + xmic, r

o
k sin θok + ymic, 0, 0]T (28)

The weight ω̊ok of m̊o
k is given by,

ω̊ok = N (θok|arcsin(
ỹjk−1 − ymic

rok
), σ2

o) (29)

where σ2
o is the variance of the DOA angle distribution. The

candidate speaker states {m̃j
k|k−1}

Ñk|k−1

j=1 can be calculated as

m̃j
k|k−1 =

{
ω̊ôkm̊

ô
k+ω̆ukm̆

u
k

ω̊ôk+ω̆uk
, if du,ôm ≤ ξm

m̆u
k , if du,ôm > ξm

(30)

where
du,ôm =

∥∥[̊xôk, ẙ
ô
k]T − [x̆uk , y̆

u
k ]T
∥∥

2
(31)

where ω̆uk is the weight for m̆u
k , which can be obtained by

CAMShift [9] or face detector [10]. [x̆uk , y̆
u
k ]T is the position

information taken from m̆u
k . As the association between m̊ô

k

and m̆u
k is unknown and time-varying, we assume Ñk|k−1 is

equal to the number of the speakers detected, and o is the
index of the DOA line that is closest to m̆u

k .

ô = argmin
o

du,om (32)

In practice, m̊ô
k and m̆u

k may represent different speaker states.
To address this issue, the distance du,ôm is compared with a
threshold value ξm. If du,ôm ≤ ξm, m̃j

k|k−1 is estimated in
terms of the DOA and color histograms. When the speakers
go out of the view of the camera or are visually occluded, mu

k

will become inaccurate. In this case, the DOA lines near the
speaker will be used to calculate the candidate speaker states
which are then used to calculate the likelihood as:

hi,jk ∝ N (m̃i
k|k−1 − m̃

j
k|k−1|0,Σh) (33)

where Σh is the covariance of the likelihood and hi,rk in Eq.
(5) is replaced by hi,jk . As a result, the particle weights are
likely to retain high values even when the speakers do not face
the camera. If du,ôm > ξm, m̃j

k|k−1 is only estimated by the
uth color histograms.

The pseudo code for calculating the candidate speaker state
is given in Algorithm 3, which, together with Algorithm 2,
can be plugged into Step 4 of Algorithm 1.

Algorithm 3 Candidate Speaker States

Input: DOA lines, reference color histograms,
{m̃j

k−1}
Ñk−1

j=1 and {mi
k|k−1, ω

i
k|k−1}

Nk
i=1.

Output: {m̃j
k|k−1}

Ñk|k−1

j=1 .
Initialize: mmic, ξm and σo.
Run:
for each DOA line indexed by o do

Calculate θok from the DOA line [5].
Select the nearby speaker m̃ĵk−1 as Eq. (27).
Calculate rok and ω̊ok as Eq. (26) and Eq. (29), respectively.
Calculate m̊o

k as Eq. (28).
j = 0
for each reference histogram indexed by u do

if the uth reference histogram is detected then j = j+1.
Calculate m̆u

k and ω̆uk by CAMShift [9].
Select the nearby m̊ô

k as Eq. (32).
Calculate m̃j

k|k−1 as Eq. (30).

Ñk|k−1 = j.

C. Relocating particles

Due to the presence of noise and clutter in acoustic measure-
ments, the DOAs estimated are not always reliable. To address
this issue, we also consider the speaker state {m̃j

k−1}
Ñk−1

j=1 at
the previous time frame k − 1.
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After calculating dik by using Eq. (13), the movement
distance dik is updated as

dik ⇐

(1− ω̃ĵk)dik + ω̃ĵk

∥∥∥4m̃i
k|k−1

∥∥∥
2

dik ≤ ξd
ω̃ĵk

∥∥∥4m̃i
k|k−1

∥∥∥
2

dik > ξd
(34)

where
4m̃i

k|k−1 = Fm̃(m̃ĵ
k−1, τk)−mi

k|k−1 (35)

ĵ = argmin
j

∥∥∥Fm̃(m̃j
k−1, τk)−mi

k|k−1

∥∥∥
2

(36)

where ĵ ∈ {1, ..., Ñk−1} is the index of the speaker closest
to the ith particle. The threshold ξd is used to control the
movement distance dik, in order to reduce the effect of noise in
DOA estimate. When the DOA estimates are noisy, we relocate
the particles in terms of the motion model, otherwise, in terms
of the DOA and the speaker states in the previous frames. In
our work, ξd is set empirically according to the variance of
the DOA estimates. As the particles are located near the DOA
lines, the relocation step is applied only when Uk 6= Ñk−1,
where Uk and Ñk−1 are the number of audio measurements at
time k and the number of speakers at time k−1, respectively.

The DOAs are also applied to detect new speakers, i.e.
whether Step 2 in Algorithm 1 is needed. Comparing the
number of visual measurements Ok with Ñk−1, the PHD
filter is able to identify the appearance and disappearance of
speakers. If Ok = Ñk−1, the number of speakers remains
unchanged. If Ok < Ñk−1, the speakers may walk out of the
camera view, or be occluded by other speakers. If Ok > Ñk−1,
new speakers may appear in the scene, and hence new born
particles are created.

IV. EXPERIMENTAL EVALUATIONS

The proposed algorithms are evaluated using real AV data.
First, we briefly discuss the datasets, baseline algorithms,
performance metrics and the parameter set up. Then we show
the improvement achieved by the particle flow, the candidate
speaker states and the novel localization method. Finally, we
compare the proposed methods with several recent baselines.

A. Datasets and Baselines

Several audio-visual datasets are publicly available, such as
the AV16.3 [46], AVDIAR [47], AVTRACK-1 [68], AVASM
[69], AMI [70], CLEAR [48], MVAD [71] and SPEVI [72].
We have considered our requirements when choosing the
datasets. For example, the calibration information should be
provided for the projection of the audio information from the
physical space to the image plane. In addition, the dataset
should contain some challenging situations, e.g, the number
of speakers changes and some speakers are occluded. For
these reasons, we have chosen AV16.3, AVDIAR and CLEAR
datasets in our evaluations.

The AV16.3 [46] consists of real-world data with both audio
and video sequences. It provides the calibration information of
the cameras to map the audio information from the physical
space to the image plane. AV16.3 includes the occlusion as
a challenging scenario, and consists of sequences where the

speakers are walking and speaking at the same time. The
video and audio signals are recorded by three calibrated video
cameras at 25 Hz and two circular eight-element microphone
arrays at 16 kHz, respectively. The audio and video streams
are synchronized before running the algorithms. The size of
each image frame is 288×360. All algorithms are tested with
all three different camera angles of five sequences: Sequences
1, 24, 25, 30 and 45, which correspond to the cases of one
to three speakers and are the most challenging sequences in
term of movements of the speakers and occlusions.

Different from the AV16.3 dataset, the speakers in the
AVDIAR dataset [47] talk one by one. There are six micro-
phones mounted on Sennheiser Triaxial MKE 2002. Two of
them are on the left and right ears and the other four are
on each side of the head. However, since the details of the
microphone positions are not provided, only the microphones
on the left and right ears are considered. Another issue is that
the calibration information of the cameras is not available. The
AVDIAR provides training data to learn a mapping as in [47].
This dataset includes 23 sequences. Each image frame is of
1920× 1200 pixels. The audio and video were recorded at 48
kHz and 25 Hz, respectively, which were synchronized by an
external trigger controlled by software. There are 12 different
participants and up to 4 people are recorded in each sequence.

AVTRACK-1 [68] and AVASM [69] are provided by the
same institution as for AVDIAR. However, they are less chal-
lenging than AVDIAR. AMI and MVAD, which are designed
for speaker diarization, are not used in our tests since the
speakers are mostly static or with small movements. In SPEVI
[72], audio signals were recorded with linear microphone ar-
rays. Since the calibration information and training set are not
available, this dataset is also not chosen. The CLEAR dataset
is chosen for our experiments since it has the largest number
of speakers among these datasets. Although our proposed
algorithms could be used in other scenarios such as sport-
video analysis and smart surveillance systems, due to the lack
of suitable datasets, such scenarios are not considered here.

Several baselines are considered for benchmarking our
proposed algorithms, including AV-PF-PF [43], AV-ZPF-GPF-
PHD [29], SAVMS-SMC-PHD [5], auxiliary SMC-PHD filter
[23], baseline AV-SMC-PHD filter [5] and the filter proposed
in our previous work [7]. For convenience, the AV-ZPF-SMC-
PHD, AV-NPF-SMC-PHD, SAVMS-SMC-PHD, AV-PF-PF,
AV-ZPF-GPF-PHD, AV-SMC-PHD and AV auxiliary SMC-
PHD filters are abbreviated as ZPF, NPF, SMS, PPF, GPF,
SMC and ASMC respectively. The GLMB method [19] was
not considered since it was used only for audio tracking, and
did not address the weight degeneracy problem.

B. Performance metrics

We use the Optimal Sub-pattern Assignment (OSPA), ESS,
and distance between particles and ground truth speak state as
performance metrics.
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The OSPA [73] is defined as,

OSPA({m̃j
k}
Ñk
j=1, {m̃

j̃
k}

Ñk

j̃=1
) =

a

√√√√√√√ min
π∈ΠÑk,Ñk

Ñk∑
j=1

d
(c)

(m̃j
k, m̃

π(j)
k )a + ca(Ñk − Ñk)

Ñk

(37)

where {m̃1
k, ..., m̃

Ñk

k } is the set of ground truth speaker states,
and {m̃1

k, ..., m̃
Ñk
k } is the set of the estimated speaker states.

ΠÑk,Ñk
is the set of maps π : 1, ..., Ñk → 1, ..., Ñk. Here

the state cardinality estimation Ñk may not be the same as
the ground truth Ñk. The OSPA error given in Eq. (37) is for
Ñk ≤ Ñk. If Ñk < Ñk, then OSPA({m̃j

k}
Ñk
j=1), {m̃j̃

k}
Ñk

j̃=1
) =

OSPA({m̃j̃
k}

Ñk

j̃=1
, {m̃j

k}
Ñk
j=1)). The function d̄(c)(·) is defined

as min(c, d̄(·)) where c is the cut-off value, which determines
the relative weighting of the penalties for the cardinality and
localization errors and a is the metric order which determines
the sensitivity to outliers. A lower OSPA implies a better
performance.

ESS is applied widely to evaluate the severity of weight
degeneracy problem [43], [20], [32], which is given by

ESS =
(
∑Nk
i=1 ω

i
k)2∑Nk

i=1 (ωik)2
(38)

When ESS is small, e.g. ESS < Nk/2, the resampling step
is performed with the uniform weights. When ESS is high,
more particles are used to estimate the posterior density with
an increased accuracy.

As the label information for each particle is unavailable,
the minimal distance dm(mi

k|k−1) between each particle and
speaker is used:

dm(mi
k|k−1) = min

j̃∈Nk

∥∥∥mi
k|k−1 − m̃j̃

k−1

∥∥∥
2

(39)

C. Parameter settings

In this subsection, we discuss the setting of five important
parameters, i.e. pseudo time λ, the number of particles Nk, and
three thresholds ξf , ξm, and ξd. We only show the experiments
based on ZPF, as these are similar to NPF. Other parameters
are given as in the baseline method SMC [5]. The parameters
used for detecting the DOAs are set the same as in [74]. The
initial distributions of the particles are randomly sampled in
the tracking area. If the particles move out of the tracking area,
we will reject and resample them. Resampling is performed
when ESS is smaller than N/2. The order parameter a in
OSPA is set to 2. These parameters are chosen empirically
based on our earlier studies [7], [20]. All experiments are run
on a computer with Intel i7-3770 CPU with a clock frequency
of 3.40 GHz and 8G RAM. Each experiment is repeated 50
times, and the average results are presented.

1) Pseudo time: The pseudo time λ in the particle flow
is increased incrementally from 0 to 1, with a step size ∆λ,
which is either fixed as in [75] or varied as in [43], [32].
Six situations are considered. Here, we have tested three fixed
step sizes, i.e. ∆λ = 0.1, 0.01 and 0.001, and three varied:

∆λ = 0.0385 × 1.2λ×Nλ , 2.4 × 10−9 × 1.2λ×Nλ , and 1.3 ×
10−80 × 1.2λ×Nλ . In both cases, the number of steps Nλ is
chosen as 10, 100, 1000, respectively. Sequence 01 (camera
1) from the AV16.3 dataset is used since there is only one
speaker and it is easy to see the impact of different pseudo
times.

TABLE II: Running time (s) and tracking accuracy in OSPA
of ZPF versus λ steps.

step type fixed varied

Nλ 10 100 1000 10 100 1000

time (s) 9.03 11.64 23.99 9.05 11.68 23.98

average OSPA 8.82 7.32 7.12 8.54 7.32 7.12

Table II shows the running time and OSPA of ZPF versus
the step type and Nλ. It can be seen that a smaller step size
leads to a smaller OSPA but with a longer running time.
For the case of Nλ = 100 with a fixed time step size, a
good balance between OSPA at about 7.3 and running time
at about 11.6s is achieved, therefore, this is used later in our
experiments.

2) Number of particles Nk: A large Nk can alleviate the
weight degeneracy problem [76], but induce extra computa-
tional cost. Here Nk is set from 10 to 1000. Sequence 01
(camera 1) of the AV16.3 dataset is used. During the iterations
of the algorithm, if Nk is greater than a preset value, the
particles with low weights are removed from the particle set.
If Nk is smaller than the preset value, the particles with high
weights are duplicated and added into the particle set. The
results are shown in Table III. It can be seen that with the
increase in the number of particles, OSPA is reduced while
the computational cost is increased. When Nk is larger than
50, the OSPA becomes stabilized at approximately 7 and the
further improvement is small. For example, compared to the
case Nk = 50, using Nk = 500, an OPSA of only 3.1% lower
was achieved, at a cost of nearly ten times computational load.
If Nk is smaller than 50, e.g. Nk = 10, OSPA is 37.0471,
implying a higher tracking errors. Therefore, Nk = 50 is used
later in our experiments.

TABLE III: Running time (s) and OSPA of ZPF versus the
number of particles.

Nk 10 50 100 500 1000

time (s) 2.51 11.63 22.25 111.95 245.40

average OSPA 37.05 7.32 7.22 7.09 6.84

3) Thresholds ξf , ξm, and ξd: The parameters ξf , ξm, and
ξd are used, respectively, to guide the selection of particles into
Λ(m̃j

k|k−1), to obtain the states for the candidate speakers, and
to relocate the particles in the relocation steps. We have tested
different values for these parameters ranging from 1 to 288
(for the image height at 288). Since these thresholds were used
for different purposes, we have chosen different sequences and
frames for the tests, i.e. all the frames in Sequence 45 (camera
1) for ξf , frames 500-1000 of Sequence 45 (camera 1) for ξm,
and frames 280-500 of Sequence 24 (camera 1) for ξd, all from
the AV16.3 dataset.
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Fig. 2: The motion trails of the particles for the second speaker by NPF, ZPF and SMC. The columns show the results for
λ = 0, 0.5, 1 respectively in the frame 287 and 288 for Sequence 24.

The results are shown in Tables IV. When ξf is increased
to 25, the OSPA is decreased but the running time is increased
since more particles are considered in the particle flow. How-
ever, with a further increase in ξf , the performance in terms of
OSPA starts to degrade, because the particles of the different
speakers may be selected into the same set Λ. When ξm is
increased, OSPA is first decreased from 38.6 to 34.8 and then
remains stable. When ξd is increased, the OSPA is decreased
from 22.3 to 20.8 and then remains almost unchanged at 20.8.
Therefore, for the AV16.3 dataset, we set ξf , ξm, and ξd
empirically as 25 in our experiments. Note that the running
time of our proposed algorithm is not dependent on ξm and
ξd, since only the DOA lines near the particles are considered.

TABLE IV: Running time (s) and OSPA of ZPF versus ξf ,
ξm and ξd.

1 10 25 50 100 288

ξf
96 286 348 394 493 673 time (s)

26.5 23.8 19.3 24.8 28.5 36.5 OSPA

ξm
146 146 146 146 146 146 time (s)

38.6 34.8 31.6 31.6 31.6 31.6 OSPA

ξd
52.1 52.1 52.1 52.1 52.1 52.1 time (s)

22.3 21.5 20.8 20.8 20.8 20.8 OSPA

D. Comparison with the baseline methods

In this subsection, we show the improvement achieved by
the particle flow, the novel relocation method and the candidate
speaker state. First, we compare between particle flows and
SMC. Second, we compare particle flows with candidate
speaker state and color histograms, respectively. Each speaker
is calculated by 50 particles. Third, we compare between
our proposed relocation method with the relocation method
in SMC [5]. When a new speaker is detected, 50 particles
are created and added into the PHD filter. The parameters
for the particle flow are set empirically, i.e. 4λ = 0.01 and
Nλ = 100.

1) Particle flow for weight degeneracy problem: To evalu-
ate the particle flow, ZPF, NPF and SMC are compared. Firstly,
we only update the particle states by SMC in the frames 270-
286 for Sequence 24 on camera 1. In the frames 0-270, there
is no speaker or only one speaker, and the weight degeneracy
issue does not usually occur. Therefore, these frames are not
used for demonstrating the weight degeneracy effect. Note,
however, that we have included the results for all the frames
in Section IV-E, with a varying number of speakers from
0 to 3. Until frame 286, there are two speakers and most
of the particles can track the speakers. In frame 287, the
ESS of SMC is smaller than Nk/2 and SMC is encountered
with the weight degeneracy problem. Then this particle set is
separately updated by ZPF, NPF and the baseline SMC. In
these filters, the candidate speaker state is used. In SMC, we
assume hi,jk ∝ N (mi

k|k−1 − m̃
j
k|k−1,R). hi,rk and zrk in Eq.

(5) are replaced by hi,jk and m̃j
k|k−1. ESS is calculated at each

pseudo time step.
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Fig. 3: The ESS and OSPA of ZPF, NPF and SMC in the
frame 287 of Sequence 24 (camera 1) changes with respect to
λ.

Fig. 2 shows how the particles are modified by these filters
from λ = 0 to λ = 1. As an example, the first, second and
third rows, show the tracking results of NPF, ZPF, and SMC,
respectively, for frames 287 and 288. The green lines show
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the motion trails of the particles. Note, the face images were
actually cropped manually from the video signal to visualize
the distribution of the particles around the face area, which
is very small in the whole image plane. For NPF and ZPF,
three figures are shown for λ = 0, 0.5 and 1, respectively.
SMC at the third row is shown as the baseline method, where
only the predicted and updated results are shown as there is
no particle flow step in this filter. Compared to SMC, NPF
and ZPF give more accurate estimates for the speaker states.
Before resampling, SMC has only four particles located on
the speaker’s face and the speaker in frame 287 is not well
tracked.

In Fig. 3(a), we show the variation of ESS of NPF, ZPF and
SMC from λ = 0 to λ = 1. As the baseline SMC does not use
the particle flow, its ESS only has values at the beginning and
end of the update step, as shown by the green dashed line. At
the beginning of the update step, the ESS of the three filters is
about 45, which is lower than Nk/2, shown in the pink dash-
dot line. Using NPF and ZPF, the ESS is increased to 57 and
58, respectively, and therefore the particles do not need to be
resampled. When λ < 0.5, the improvement of ESS given by
NPF is higher than that given by ZPF. In Fig. 3(b), the OSPAs
of the three filters are shown at each λ. After the update step,
the OSPAs of NPF and ZPF are both decreased to 12. This
shows that ZPF and NPF provide more accurate estimate of
the speaker state than SMC. When λ = 0.95, the OSPA of
ZPF increases slightly, due to the measurement errors. Fig. 4
shows the average OSPA and the number of speakers for the
frames 287-500. It can be observed that ZPF and NPF give
a smaller average OSPA than SMC. Due to the presence of
occlusion from frames 300 to 500, the OSPAs for all methods
have increased. At frame 345, ZPF and NPF give an average
OSPA at about 19.3 and 18.9, respectively, resulting in a 24%
and 29% performance improvement over SMC thanks to the
more accurate estimate of the number of speakers offered by
the particle flow.
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Fig. 4: The average OSPA of SMC, ZPF and NPF and
the estimated number of speakers in the frames 287-500 of
Sequence 24 (camera 1).

2) Particle relocation methods: Here the baseline SMC and
SMC with the novel particle relocation methods are compared.
To show the OSPAs of these two filtering algorithms, we
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Fig. 5: Comparison the OSPA error (a) and the minimal
distance dm (b) between the novel relocation method with
the speaker states at the previous time frame and the baseline
relocation method of SMC.

ran experiments in frames 280-500 of Sequence 24 camera
1 which involves two speakers and visual occlusion. Fig. 5(a)
shows the average OSPA. For convenience, the novel method
in which the particles are relocated with the previous speaker
states are abbreviated as Previous states. The average OSPA
error is 20.8 for the novel method and 22.6 for the baseline
method SMC. This means that the novel relocation method
offers an 8% improvement over the baseline method.

Apart from that, Fig. 5(b) shows the distance measure in
terms of Eq. (39). The average is 6.77 for the novel method and
10.78 for the baseline method. The novel relocation method
offers 37% improvements. The running time of the novel
relocation step (0.0529s) is higher than that of the baseline
method (0.0218s), however, the running time of the overall
algorithms are similar.

3) Candidate speaker states: To show the impact of using
the candidate speaker states m̃j

k|k−1, ZPF is compared with
the filter in our earlier work [7]. Although both methods use
ZPF, DOA lines are used only in the update step of ZPF, rather
than in that of the filter in [7]. Other steps and parameters of
these filters are the same. The frames 500-1000 of Sequence
45 are used to test both methods since in these frames the
speakers go out of the view of cameras which represents a
challenging tracking scenario.
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Fig. 6: Comparison of ZPF and the filter in [7] in terms of
OSPA and the number of speakers.

Fig. 6(a) shows the average OSPA for this sequence, which
is 38.6 for the filter in [7] and 31.6 for ZPF. This means that
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TABLE V: The experimental results for NPF, ZPF and SMC
with different levels of noise and different number of clutter
in terms of the OSPA error

Method σς Nc

0 10 20 30 0 5 10 50

NPF 19.41 23.54 26.71 32.94 19.41 19.75 21.81 24.37

ZPF 19.33 23.55 25.51 31.42 19.33 19.47 20.06 21.86

SMC 29.46 31.52 39.12 39.94 29.46 29.57 30.14 32.07

the proposed relocation method offers 19% improvements over
the filter in [7]. In the frames 620-700, the average OSPA error
is 21.6 for ZPF, and 38.2 for the filter in [7]. Fig. 6(b) shows
that ZPF offers more accurate estimates for the number of
speakers than the filter in [7], especially for the frames 620-
700. The average running time of ZPF and the filter in [7] are
146.8s and 143.5s, respectively. This means the use of audio
information leads to only 2.3% increase in running time.

4) Clutter and noise: We also evaluated the performance
of our proposed filter in different levels of clutter and noise,
as compared with SMC, using Sequence 45 of the AV16.3
dataset. Fig. 7 shows a frame of sequence 45 with clutter
and noise. Gaussian noise ςk ∝ N (0,σς) and random clutter
are added to the visual detection, where σς is the covariance
matrix of noise. The clutter is shown in green stars. The visual
detection without noise is shown in red points and its noise
version in yellow diamonds. Table V shows the OSPA for
different levels of noise with σς set from 0 to 30 pixels and
the different number of clutter with Nc set from 0 to 50. We
observe that particle flow gives a smaller OSPA, as compared
with SMC, confirming that particle flow can improve the
performance of SMC in different levels of noise. The positions
of clutter are randomly set in the tracking area. The OSPA of
three filters slightly increases with the level of clutter due to
the RFS model used, however, the ZPF and NPF offer 32%
and 24% improvement, respectively, even when Nc = 50.

Fig. 7: The clutter and noise in Frame 325 of Sequence 45. The
measurements, their noisy versions, and the clutter are shown
in red points, yellow diamonds, and green stars, respectively.

5) Comparison with face detector: Here we compare the
performance difference for using color histogram versus using
measurements obtained by a face detector, e.g. the convolu-
tional neural networks (CNNs) based face detector (Tiny) [10].

To distinguish the filters with face detectors from the filters
with color histogram, ZPF, PPF, GPF, SMC and NPF with the
face detector are renamed as AFZPF, AFPPF, AFGPF, AF-
SMC and AFNPF, respectively, where AF means both audio
measurements (i.e. DoA) and visual measurements (obtained
by face detector) are used in these algorithms. The frames 250-
300 and 530-580 of the Sequence 45 camera 1 are used for
evaluations since unreliable detection and occlusion happen
in these frames. The OSPA and ESS of the different filters
are shown in Table VI where ESS is not available for the
Tiny face detector. AFZPF offers the lowest OSPA and highest
ESS among all the filters except AFPPF, since the number of
speakers is given in AFPPF. With the zero-diffusion particle
flow, the OSPA of AFZPF is 51% and 12% lower than those
of AFSMC and Tiny detector when speakers are occluded. We
also tested these filters on frames 350-400 of the Sequence 45
camera 1 where occlusion does not happen. The face detector
gives a lower OSPA than the filters with color histogram, while
it gives a similar OSPA to AFZPF, i.e. ZPF with face detector.

TABLE VI: Experimental results for ZPF, NPF, AFZPF,
AFPPF, AFGPF, AFSMC, AFNPF, and Tiny face detector in
terms of the OSPA error and ESS for Sequence 45 camera 1.

Frame ZPF NPF AFZPF AFPPF AFGPF AFSMC AFNPF Tiny

250-300 29.4 29.6 21.6 23.8 23.6 24.3 23.7 43.9 OSPA

82 73 86 90 65 34 81 - ESS

530-580 24.6 25.8 20.9 23.2 22.8 26.5 22.7 39.5 OSPA

96 78 98 99 76 45 95 - ESS

350-400 18.7 19.7 17.2 17.5 17.3 17.7 17.3 17.7 OSPA

115 94 117 118 90 52 115 - ESS

E. Comparison with other audio-visual algorithms
In this subsection, the proposed algorithms ZPF and NPF

are compared with several baselines, including PPF [43], GPF
[29], SMC [5], ASMC [5] and SMS algorithms [5]. Although
Gebru et al. [47] also presented an audio-visual Bayesian
framework, we did not consider this in our experiments, since
it does not apply any particle flow or PHD filter. The same
zero diffusion flow is used in PPF and GPF, as in our proposed
ZPF.

In the PPF, the number of speakers is given when the parti-
cles are created due to the use of the particle filter framework.
However, this information is unknown and time varying in
our audio-visual tracking problem. Therefore, the following
two situations are considered. For the AV16.3 dataset, the
speakers utter together and continuously, therefore the number
of speakers is the same as the number of estimated DOA
lines. For the AVDIAR dataset, as the speakers are talking
one by one, the number of speakers is given before running
the algorithm. GPF is integrated with zero diffusion flow
[29]. Based on the Gaussian mixture model, each particle has
one dependent variance. Other parameters are the same as in
ZPF. The NPF used is based on [45]. We set 4λ = 0.01
and Nk = 50, as already tested in the experiments shown
in Section IV-C. To allow for fair comparison, the same
measurements were used in all the filters compared.
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Table VII reports the average OSPA over 50 random tests.
All the frames of the 12 sequences have been used in these
tests, where the number of speakers is varying with time. It can
be observed that, using ZPF and NPF, about 31% reduction
in tracking error has been achieved as compared with SMC.
Compared with the ASMC filter, ZPF and NPF both give about
20% reduction in OSPA.

TABLE VII: The experimental results for ZPF, SMS, PPF,
GPF, SMC, ASMC and NPF in terms of the OSPA error

Seq ZPF SMS PPF GPF SMC ASMC NPF

24(1) 12.35 14.50 12.18 13.00 17.71 14.68 13.32

24(2) 13.24 15.35 13.12 15.13 19.83 16.15 13.20

24(3) 13.15 15.72 13.02 15.22 18.94 15.24 13.23

25(1) 15.94 17.17 14.90 18.28 19.13 16.21 15.96

25(2) 15.21 15.39 13.08 15.58 18.47 15.67 15.29

25(3) 16.22 17.62 14.98 18.62 21.61 17.95 16.29

30(1) 15.82 19.27 15.29 18.89 25.22 22.84 15.76

30(2) 13.43 16.16 13.86 16.12 19.37 16.17 13.41

30(3) 16.01 19.67 15.61 19.03 25.31 21.75 15.93

45(1) 17.60 23.40 24.50 23.12 29.46 26.07 17.65

45(2) 18.55 23.16 22.26 22.71 29.47 25.97 18.60

45(3) 19.54 23.80 24.34 23.76 28.43 26.41 19.50

Avg 15.59 18.43 16.43 18.28 22.75 19.59 15.68

To show how significant the difference is among the results
of the tested algorithms in Table VII, the ANOVA based
F-test [77] is applied and the significance test results are
given in Table VIII. As the degree of freedoms for all the
significance tests is (1, 22) and the significance value is 5%,
the corresponding critical value Fcrit for (1, 22) is 4.30 in
terms of the F -distribution table [77] where the F-value is
the ratio of the between-group variability to the within-group
variability. The p-value is the probability of a more extreme
result than the value achieved when the null hypothesis is true.
According to the test, the results are considered as statistically
significant if F -value > Fcrit and p-value is less than the
significance value (0.05). It can be seen that the improvements
of ZPF and NPF, over SMC, SMS and ASMC are statistically
significant. However, the difference between ZPF and PPF is
not significant. Nonetheless, in ZPF, the number of speakers
is estimated, while in PPF, this is given as prior information.
The difference between ZPF and NPF is also not significant.

TABLE VIII: Significance test for ZPF, SMS, PPF, GPF,
ASMC and NPF.

Method ZPF SMS PPF GPF ASMC NPF

ZPF - 5.84 0.33 5.10 7.14 0.01 F

- 0.024 0.057 0.034 0.014 0.921 p-value

NPF 0.01 5.64 0.027 4.89 6.98 - F

0.921 0.027 0.610 0.038 0.015 - p-value

SMC 23.84 6.92 11.6 7.27 2.8 23.7 F

7e-07 0.015 0.003 0.013 0.1082 7e-05 p-value

As shown in Table IX, ZPF has a lower computational cost
than GPF. Although ZPF and GPF use the same initial number
of particles, the number of particles is drastically varying and
a few particles are added in the update step of the GPF.
For further understanding, we calculated the total number of
particles used in the update step of ZPF and GPF. In the update
step of ZPF, the average number of particles is 108, while in
GPF, it is 463. The computational complexities are shown in
the last line of Table IX. The complexity (Com) of SMC, SMC
and ASMC is the lowest at UkNk. The complexity of ZPF, PPF
and NPF does not depend on the number of measurements.

TABLE IX: Computational cost comparison per Sequence
(s/Sequence) for ZPF, SMS, PPF, GPF, ASMC and NPF.

Seq ZPF SMS PPF GPF SMC ASMC NPF

24 234.5 146.2 211.3 435.3 80.6 102.5 174.6

25 236.0 147.2 210.6 435.5 83.6 105.2 175.7

30 235.1 146.8 211.7 436.8 83.7 105.4 174.9

45 347.8 208.5 315.9 655.3 124.3 172.9 264.6

Time 263.4 162.2 237.4 490.7 93.1 121.5 197.5

Com NkNλ UkNk NkNλ UkNkNλ UkNk UkNk NkNλ

To show the performance of the proposed method on other
datasets rather than AV16.3, we selected sequence 32 (four
speakers) and 09 (three speakers) from the AVDIAR dataset
[47], and the frames 100-170 (four speakers) and frames 180-
250 (five speakers) of sequence UKA from the CLEAR dataset
[48]. Their average errors are summarised in Table X. Our
proposed ZPF and NPF methods offer a similar OSPA which
is the lowest OSPA among all the filters except PPF. Note that
the number of speakers is given to PPF as a priori. However, as
the speakers are talking one by one, the performance difference
among the compared filters is not significant. The OSPA of
all the methods is increased with the increase in the number
of speakers.

TABLE X: Experimental results for ZPF, SMS, PPF, GPF,
SMC and NPF in terms of the OSPA error for Sequence 09
and 32 of the AVDIAR dataset and frames 100-170 and frames
180-250 of sequence UKA 20060726 of the CLEAR dataset.

Filters sequence 09 sequence 32 frames 100-170 frames 180-250

ZPF 13.72 14.37 28.62 31.57

SMS 13.95 14.90 29.35 36.68

PPF 11.68 12.14 24.21 26.65

GPF 13.82 14.78 30.25 37.84

SMC 14.96 16.86 31.58 38.61

NPF 13.80 14.42 28.60 31.55

V. CONCLUSION

We have presented a new method for mitigating the particle
degeneracy issue in SMC-PHD filtering, and implemented
both the zero-flow and non-zero flow algorithms for audio-
visual multi-speaker tracking. We have demonstrated the ad-
vantages of the proposed algorithms as compared with several
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audio-visual tracking baselines, in terms of ESS and OSPA.
The computational cost of AV-NPF-SMC-PHD is lower than
that of AV-ZPF-SMC-PHD, while AV-ZPF-SMC-PHD is eas-
ier to implement. Apart from that, the speaker states and
weights in the previous frames have been used for relocating
particles with DOA lines. The proposed relocation method
offers a lower OSPA than the baseline methods. The proposed
methods could be further improved to allow better detection
of speakers when silent speakers are visually present in the
scene.
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