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A Speech Synthesis Approach for High Quality
Speech Separation and Generation
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Abstract—We propose a new method for source separation
by synthesizing the source from a speech mixture corrupted by
various environmental noise. Unlike traditional source separation
methods which estimate the source from the mixture as a replica
of the original source (e.g. by solving an inverse problem), our
proposed method is a synthesis-based approach which aims to
generate a new signal (i.e. “fake” source) that sounds similar to
the original source. The proposed system has an encoder-decoder
topology, where the encoder predicts intermediate-level features
from the mixture, i.e. Mel-spectrum of the target source, using a
hybrid recurrent and hourglass network, while the decoder is a
state-of-the-art WaveNet speech synthesis network conditioned on
the Mel-spectrum, which directly generates time-domain samples
of the sources. Both objective and subjective evaluations were
performed on the synthesized sources, and show great advantages
of our proposed method for high-quality speech source separation
and generation.

Index Terms—Deep learning, speech separation, speech syn-
thesis, WaveNet, hourglass, high quality.

I. INTRODUCTION

Deep learning has been prevailing the source separation
and enhancement field in recent years, where different deep
neural networks (DNN) have been considered including the
classic multi-layer perception [1], recurrent neural networks
(RNN) [2], [3], convolutional neural networks (CNN) [4], and
more recently, the dilated convolutions [5], [6] and generative
adversarial networks [7]. Most existing methods reconstruct
the sources from low-level features, such as time frequency
(TF) spectrum [1]–[4], [8], or time samples [5]–[7]. However,
the high-dimensional representative features involved in the
above methods are prone to the over-fitting problem, thus the
separated sounds often suffer from artefacts such as musical
noise and interference from competing sounds, especially in
adverse acoustic scenarios. As a result, the source estimates
might sound machine-like and unnatural, which greatly affects
the listening experience and limits their applications in scenar-
ios requiring high quality speech, such as broadcasting.

On the other hand, speech synthesis has also witnessed
the transition from statistical parametric methods to DNNs.
For instance, WaveNet [9] and its modified versions as in
FFTNet [10], Tacotron 2 [11], Deep Voice [12], have been
used to generate sounds in the time-domain directly. Un-
like speech separation, these synthesis methods generate (i.e.
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Fig. 1: Diagram of our proposed system (bottom), in contrast to
traditional blind source separation (BSS) methods (top). Traditional
methods aim to recover the source estimate such that it is a replica
of the original target ŝ(bss) = s. The proposed method reserves
perceptually-important acoustic information via the encoder, and
“fakes” a new source ŝ via the decoder that sounds similar to the
target source s while maintaining high quality.

“fake”) highly natural signals from high-level features such as
linguistic features, pitch and duration models [9], [10], [12],
or from relatively intermediate-level features e.g. Mel-scale
spectrum [10], [11]. It is, however, challenging to synthesise
the same speech under specific scenarios without information
loss/modifications, when limited or no audio input is given.

As an alternative to conventional speech separation meth-
ods, we propose a new method which uses an encoder to
extract the Mel-spectrum of the target source from noise-
corrupted mixtures and then a decoder (i.e. the modified
WaveNet [11]) to synthesise the source from the Mel-spectrum
in the time domain. As compared to traditional BSS methods
that directly extract high-dimensional audio features such as
linear-spectrum, the proposed encoder relaxes the learning
burden to a relatively low-dimensional space with a high
accuracy, and the proposed decoder synthesizes a signal that
is perceptually-similar to the original source. Unlike existing
WaveNet-based models for speech denoising [5], [6], our
framework is composed of two networks boosting multi-
task learning, offering great flexibility, e.g., synthesis using
a new person’s voice. In addition, the proposed model is
half-discriminative (encoder) and half-generative (decoder),
where the encoder avoids the accumulated error from previous
predictions occurred in the generative model [5], and the
decoder takes temporal information into account that is beyond
the fixed-length receptive field as in the discriminative model
[6]. Compared to the GAN-based speech enhancement net-
work [7], the encoder and decoder are independently trained,
which is much more straightforward than the iterative train-
ing process involving a generator and a discriminator. Also,
WaveNet, as a neural network method, is more flexible than the
statistic parametric vocoder used in the parametric resynthesis
system [13].
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Most importantly, we need to stress that, unlike traditional
source separation methods as shown in Fig. 1 (top), our
proposed method does not aim to reconstruct the original
source signal in terms of time-sample or TF-unit accuracy.
Instead, our scheme generates a new signal (i.e. “faked”
source) that sounds similar to the original source, with high
naturalness and sound quality, offered by deep learning based
speech synthesis. The diagram of the proposed system is
shown in Fig. 1 (bottom).

II. THE PROPOSED METHOD

Our proposed system utilises WaveNet conditioned on the
Mel-spectrum for time-domain speech synthesis. Thus the
accuracy of the Mel-spectrum is of critical importance to the
quality of the generated signals, which relies on the encoder
performance, whose topology is detailed as follows.

Two sets of features extracted from the mixtures are used as
inputs to the proposed encoder network (shown in Fig. 2), i.e.
the normalised linear-spectrum X lin(t, ωlin) and Mel-spectrum
X(t, ωmel), where (t, ω) is the TF index, either in linear or
Mel scale. The linear-spectrum provides detailed information
with a high resolution, while the Mel-spectrum provides infor-
mation in perceptual scale, which is also consistent with the
encoder output. These two sets of features are fed into inde-
pendent RNN networks in parallel, which contain bidirectional
long short-term memory (BiLSTM) layers, followed by fully-
connected layers at each time instance, before being reshaped
and concatenated together. The RNN architecture can exploit
the strong temporal coherence yielded by the audio spectra.
Afterwards, we employ an hourglass network, to explore
information at different scales [14], that consists of stacked
convolutional networks (SCN). To ease the training, we also
enforced residual learning [15] on the hourglass network and
the SCNs. Output from the hourglass network is concatenated
with the input Mel-spectrum, followed by another SCN to
produce the final DNN output—the estimated Mel-spectrum
X̂(t, ω).

We propose to adopt the perceptually weighted loss similar
to [1] as the objective function in the encoder training process.
Dropping the TF index, we denote f(X) ∈ [0, 1] as the
perceptual importance of a unit X , which was empirically
set to boost high energy components. A composite weighted
squared error is proposed that contains two weights:

L =
∑
t,ω

(
f(X) + (1− f(X))f(X̂)

)
(X̂ −X)2, (1)

where the first weight f(X) preserves the perceptually im-
portant information from the target, and the second weight
(1 − f(X))f(X̂) suppresses distortions that may cause per-
ceptual difference.

The encoder output, i.e. the target Mel-spectrum X̂(t, ω), is
then fed into the decoder network, to generate a synthesised
speech signal in the time domain directly. We propose to use
the modified WaveNet as used in Tacotron 2 [11], which is
conditioned on Mel-spectrum, rather than linguistic features
and fundamental frequency as used in the original WaveNet
text-to-speech (TTS) system [16].

III. EXPERIMENTS

A. Data and setup

In the encoder training process, the LJSpeech dataset [17],
together with the environmental sound classification (ESC-50)
database [18] were used.

The LJSpeech dataset contains 13100 sequences (12522-
training, 578-testing) with varying length ranging from 1
to 10 seconds, in total 24 hours of speech by a female
speaker, sampled at 22.05 kHz, which is used as the target
speaker. We used the 800 natural soundscapes & water sounds
and exterior/urban noises (%90-training, %10-testing), each
lasting 5 seconds, to mimic background noise. A target and a
noise signal are randomly chosen and added together with an
additive mixing model without memory.

To extract the DNN input spectrum X lin(t, ω), 1024 FFT size
with 75%-overlapped Hanning windows was applied, resulting
in 512 linear filter bins. Mel-spectrum X(t, ω) was extracted
from X lin(t, ω) in the range of 125 Hz to 7600-Hz with 80
bins. Normalisations are applied via thresholds, mean-shifts,
and scales thus all features are mapped to the range of [0,1].
Audio features spanning 64 frames were fed into the network.

The two BiLSTM layers have a size of 800 and 400
for the linear- and Mel-spectra respectively, with dropout
(feedforward and recurrent) of 0.25, followed by the fully
connected layers at each time instance with a layer size 320.
The two stream outputs are reshaped and concatenated with
the input X(t, ω), to obtain the hidden output H ∈ R64×80×9,
which is then fed into the hourglass network. Three scales with
pooling size of (2,2) are applied in the hourglass network,
where each SCN unit has filter length of 64, resulting in a
bottleneck representation ∈ R8×10×64 at the largest scale level.
Each SCN has three stacked composite layers containing batch
normalisation (BN), ReLU and convolutional layer as shown
in the embedded dashed plot in Fig. 2. Input of each SCN
is added to the last layer output directly, or goes through
another covolutional layer before being added if its channel
number is not consistent with the SCN output. Symmetric
layers in the hourglass network are connected via skip residual
layers. The hourglass output is followed by another SCN and
convolutional layers with filter number of 1, to obtain the final
Mel-scale spectrum.

In the training process, the Adam optimiser [19] was used
in the backpropagation, with initial learning rate of 0.001 and
decay of 0.98 after each epoch. In total, 500 epochs were
enforced with each epoch using data lasting about 1.5 hours. In
our loss optimisation, we use a perceptual importance function
f(X) = X2 to boost high-energy components. The decoder
part is the same as in [11], and a pre-trained model learned
from the LJSpeech dataset is used here. The parameters used
to obtain the pre-trained decoder network are consistent with
that in our encoder training process.

B. Baseline methods

We implemented two baseline methods. The first one (de-
noted as B1) directly estimates the linear-scale spectrum of
the target from the mixture, which is a modification to the
encoder network as follows. The two fully-connected layers
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Fig. 2: Diagram of our proposed encoder DNN, which contains mainly two parts: the recurrent neural network (RNN) to exploit the temporal
information, and the followed hourglass network that learns features at different scales. The RNN network has bidirectional LSTM layers
followed by fully connected layers. The hourglass network contains mainly stacked convolutional networks (SCN). Details of the SCN
structure are highlighted in the right bottom corner. The dashed down and up arrows denote max-poolings and up-samplings.

have size 1024 and 512 respectively, to generate hidden
outputs spanning the same frequency length in the linear
scale. Afterwards, the linear-spectrum X lin is concatenated
with the hidden outputs, instead of the Mel-spectrum X .
This ensures that the same input features as for the proposed
encoder are used in this baseline, to allow fair comparison,
mitigating effects caused by factors such as DNN structures
and implementations. Finally, an inverse STFT was applied to
the estimated linear-spectrum to recover time-domain signals,
using phase information estimated via the Griffin-Lim algo-
rithm [20], thus a synthesis decoder network is not required.

The second baseline method1 is a state-of-the-art WaveNet-
based speech enhancement method, denoted as B2 [6]. This
method directly outputs a batch of enhanced time samples
from noisy mixtures.

C. Results and analysis

1) Encoder evaluation: We first quantitatively evaluate the
introduced error in the encoder network of our proposed
method and B1 on the testing data. Denoting Ȳ as the
normalised audio features ignoring the TF index, either on the
linear- or Mel-scale, the following two metrics are employed.

e1 =

∑
‖Ȳ − ˆ̄Y ‖2∑
‖Ȳ ‖2

, e2 =

∑
w( ˆ̄Y , Ȳ )‖Ȳ − ¯̂

Y ‖2∑
w( ˆ̄Y , Ȳ )‖Ȳ ‖2

, (2)

where w( ˆ̄Y , Ȳ ) = f(Ȳ ) + (1 − f(Ȳ ))f( ˆ̄Y ) is the weight
at each TF unit. e1 is the normalised absolute error, and e2
is the normalised version of the perceptually weighted error.
From randomly-generated 500 testing sequences, we obtain
e1 = 2.8% and e2 = 0.3% with the proposed encoder. For
B1, we have e1 = 6.8% and e2 = 0.6%, approximately
twice the error as the proposed method. This is because
as compared to B1 that predicts high-dimensional linear-
spectrum, our proposed encoder relaxes the learning process

1Modified from https://github.com/drethage/speech-denoising-wavenet to
support our testing data and TensorFlow framework.

to a much lower dimensional space, which leads to a higher
accuracy and robustness.

2) System evaluation: Our proposed system uses compact
Mel-spectrum to represent the target signal in the encoder,
which greatly relaxes the training burden with an improved
accuracy as compared to linear-spectrum. Although the Mel-
spectrum has preserved perceptually important audio infor-
mation, there is also inevitable information loss, which is
compensated by the additional information introduced via the
WaveNet synthesis network that enables high quality synthesis.
This extra information is learned from all the audio clips with
similar Mel-spectra to that of the target we want to retrieve,
but not an exact replica of the original target signal. In other
words, the groundtruth target signal is not the reference for
the “fake” information introduced by the synthesis network.
As a result, direct comparison of the synthesised signal with
the target does not reflect the real audio quality as perceived
by a listener, which is however the case for most traditional
evaluation metrics [21], that often assume the source estimate
is a Wiener-filtered version of the dry groundtruth.

To make the best of traditional evaluation metrics in the
source separation community, we propose to compensate the
extra introduced information as follows. Denote W ∈ R80×512

as the transform matrix from Mel-spectrum to linear-spectrum
X(t) = WXlin(t) at time t, we can expand the Mel-spectrum
to an estimated linear-spectrum via W+X(t), where the
superscript + denotes pseudo-inverse. The residual informa-
tion between the groundtruth linear-spectrum Ylin(t) and the
groundtruth Mel-spectrum Y(t) can be approximated as

R(t) = Ylin(t)−W+Y(t).

The above information loss can be added back to the
estimated target Mel-spectrum to obtain a new linear-spectrum

Y̆(t) = W+Ŷ(t) + R(t).

Inverse STFT is then applied to the loss-compensated linear-
spectrum Y̆ using the groundtruth phase information. The
result is denoted as “Proposed-res-gt”. Three evaluation met-
rics are employed here: perceptual evaluation of speech qual-
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TABLE I: Performance evaluations in PESQ, STOI and SDR aver-
aged over 100 test sequences.

PESQ (-0.5-4.5) STOI (0-1) SDR (dB)

Input 1.02 0.85 5.34
Proposed-res-gt 3.62 0.95 15.36
Proposed 2.61 0.88 NA
B1-gt 3.26 0.94 11.66
B1 2.84 0.91 NA
B2 2.30 0.85 5.35
IBM-gt 2.75 0.97 13.55

ity (PESQ, -0.5-4.5) [22], short-time objective intelligibility
(STOI, 0-1) [23] and signal-to-distortion ratio (SDR) [21]. For
fair comparisons, the groundtruth phase was also integrated
into the linear-spectrum regressed by “B1” for time-domain
reconstruction, denoted as “B1-gt”. We also extracted the ideal
binary mask (IBM) from the groundtruth and the interference
spectrum, which was applied to the mixture for optimised
signal separation using groundtruth phase information, denoted
as “IBM-gt”. The same evaluation metrics are also applied
to denoised signals from the second baseline and the noise
corrupted mixture, denoted as “B2” and “Input”. The separated
signals from “Proposed” and “B1” are directly evaluated as
well. Average evaluation results from 100 randomly chosen
test files are listed in Table I, from which it can be seen
that “Proposed-res-gt” shows significant advantages over other
methods. Therefore, if the WaveNet synthesis network could
fill in the lost information caused by compact Mel-scale
representation, the proposed scheme could achieve results very
close to the groundtruth. We need to stress that the synthesis
network is independently trained, as a result, data from an-
other speaker might cause timbral changes in phonemes and
degrades the performance of the trained model. Interestingly,
“B1-gt” even gained a better PESQ value than “IBM-gt”, this
is because the B1 baseline also retrieves audio information
at interference-dominant TF units while the IBM method
abandons this information. On the other hand, this also shows
the DNN structure, i.e. RNN+hourglass as used in both “B1”
and the proposed encoder, is effective in recovering target
information while suppressing the interference.

It is worth mentioning that, the total processing time for
100 sequences (ranging from 1 s to 10 s) is around 55
hours using “Proposed”, while “B1” and “B2” used 0.5 and 3
hours respectively. This is because the deployed WaveNet in
“Proposed” uses causal convolutions, which involves a sample-
by-sample outputting strategy.

We further conducted two sets of paired listening tests,
to compare “Proposed” with two baselines “B1” and “B2”
respectively, with each one involving 16 participants with
normal hearing. Each person was asked to compare 20 pairs
of randomly-chosen speech signals obtained by the proposed
method and one baseline method from the same noise-
corrupted mixture. The mixture recording was also provided
as a reference. Two evaluation attributes, naturalness and
preference, were employed over five-point scales. Specifically,
naturalness is a commonly-used metric for speech synthesis,
with certain ambiguities in its rating standard [24]. To evaluate
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Fig. 3: Listening test results averaged from 320 pairs of data
comparing “proposed” with “B1” (top) and “B2” (bottom). The
participants scored the paired comparison by judging two statements
at five scales: 1 “A sounds more natural than B”; 2 “You overall
prefer A over B”, where A and B indicate a paired estimated signals
with randomised orders.

naturalness, we focus on levels of artefacts and “muffleness”
as in [16]. The preference attribute is much more hedonic. To
avoid confusions between these two attributes, their ratings
were conducted in two sessions.

The listening test results are shown in Fig. 3. It can be
observed that the proposed method outperforms “B1”(“B2”)
with overall much higher quality. It was found that 47%(48%)
sounds much more natural, while another 41%(34%) are
moderately more natural. Only a very small number of audio
clips from the proposed method sound less natural than the
baseline methods. With quantised scales ranging from 1 to
5, the average naturalness score is 4.29(4.49). Naturalness is
a critical attribute in listeners’ preference, and the preference
score overall has a similar trend as the naturalness distribution.
The average preference score is 4.28(4.18). Despite similar
trends, the preference score does not highly correlate with
naturalness, due to individual bias. The Pearson correlation
and the absolute difference for all the paired results between
these two metrics are respectively 0.51(0.38), and 0.48(0.68).
Overall, the participants tend to prefer audio sequences gen-
erated via the proposed method, suggesting its potential for
applications requiring high-quality sound.

IV. CONCLUSIONS

We have presented a new idea for source separation by
synthesizing speech source from intermediate-level acoustic
features derived from sound mixtures containing a target
speech corrupted by background noise. Our preliminary results
in terms of objective and subjective evaluations show that,
exploiting WaveNet to synthesize speech from mixtures offer
high sound quality, which provides a promising alternative for
addressing the artefact issues in traditional source separation
methods. In the future, we will consider this framework for
more challenging mixing conditions, e.g. reverberant rooms,
multi-interference scenarios. In addition, we will also consider
training the decoder with encoder output directly to mitigate
the degradations that might be introduced by mis-matched
training conditions of the two.
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separation using deep convolutional neural networks. In IEEE Interna-
tional Conference on Latent Variable Analysis and Signal Separation,
02 2017.

[5] K. Qian, Y. Zhang, S. Chang, X. Yang, D. A. F. Florêncio, and
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generative adversarial network. In Conference of the International
Speech Communication Association (INTERSPEECH), pages 3642–
3646, 08 2017.

[8] Q. Liu, Y. Xu, P. Coleman, P. Jackson, and W. Wang. Iterative
deep neural networks for speaker-independent binaural blind speech
separation. In IEEE International Conference on Acoustics, Speech and
Signal Processing, 2018.

[9] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. Wavenet:
A generative model for raw audio. CoRR, abs/1609.03499, 09 2016.

[10] Z. Jin, A. Finkelstein, G. J. Mysore, and J. Lu. FFTNet: A real-time
speaker-dependent neural vocoder. In IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2018.

[11] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen,
Y. Zhang, Y. Wang, RJ Skerry-Ryan, R. A. Saurous, Y. Agiomyrgian-
nakis, and Y. Wu. Natural TTS synthesis by conditioning wavenet
on mel spectrogram predictions. In IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2018.

[12] S. O. Arik, M. Chrzanowski, A. Coates, G. Diamos, A. Gibiansky,
Y. Kang, X. Li, J. Miller, J. Raiman, S. Sengupta, and M. Shoeybi.
Deep voice: Real-time neural text-to-speech. CoRR, abs/1702.07825,
2017.

[13] S. Maiti and M. Mandel. Speech denoising by parametric resynthesis.
In IEEE International Conference on Acoustics, Speech, and Signal
Processing, pages 6995–6999, 05 2019.

[14] A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human
pose estimation. In European Conference on Computer Vision, pages
483–499, 2016.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for
image recognition. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, June 2016.

[16] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. WaveNet:
A generative model for raw audio. CoRR abs/1609.03499, 2016.

[17] K. Ito. The LJ speech dataset. https://keithito.com/LJ-Speech-Dataset/,
2017.

[18] K. J. Piczak. ESC: Dataset for environmental sound classification. In
Annual ACM Conference on Multimedia, pages 1015–1018. ACM Press,
2015.

[19] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014.

[20] D. Griffin and Jae Lim. Signal estimation from modified short-time
Fourier transform. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 32(2):236–243, April 1984.

[21] E. Vincent, R. Gribonval, and C. Fevotte. Performance measurement
in blind audio source separation. IEEE Transactions on Audio, Speech,
and Language Processing, 14(4):1462–1469, July 2006.

[22] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra. Perceptual
evaluation of speech quality (PESQ)-A new method for speech quality
assessment of telephone networks and codecs. In IEEE International

Conference on Acoustics, Speech, and Signal Processing, volume 2,
pages 749–752, 2001.

[23] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen. A short-
time objective intelligibility measure for time-frequency weighted noisy
speech. In IEEE International Conference on Acoustics, Speech and
Signal Processing, pages 4214–4217, March 2010.

[24] R. Dall, J. Yamagishi, and S. King. Rating naturalness in speech syn-
thesis: The effect of style and expectation. In International Conference
on Speech Prosody, 2014.


