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ABSTRACT

Deep generative models have recently achieved impressive per-
formance in speech and music synthesis. However, compared
to the generation of those domain-specific sounds, generating
general sounds (such as siren, gunshots) has received less at-
tention, despite their wide applications. In previous work, the
SampleRNN method was considered for sound generation in
the time domain. However, SampleRNN is potentially limited
in capturing long-range dependencies within sounds as it only
back-propagates through a limited number of samples. In this
work, we propose a method for generating sounds via neural
discrete time-frequency representation learning, conditioned
on sound classes. This offers an advantage in efficiently mod-
elling long-range dependencies and retaining local fine-grained
structures within sound clips. We evaluate our approach on
the UrbanSound8K dataset, compared to SampleRNN, with
the performance metrics measuring the quality and diversity of
generated sounds. Experimental results show that our method
offers comparable performance in quality and significantly
better performance in diversity.

Index Terms— Conditional sound generation, neural dis-
crete representation learning, VQ-VAE, deep generative model

1. INTRODUCTION

General sounds carry a wide range of information about en-
vironments, from individual physical events to sound scenes
as a whole [1]. General sound generation has many poten-
tial applications, such as the automatic production of sound
effects for movies and video games [2]. In addition, due to
the difficulties of collecting and annotating audio data, sound
generation can be used as an efficient data augmentation [3]
approach for acoustic scene classification [4] and sound event
detection [5]. In the long term, sound search engines [6] could
incorporate a sound generation system and customize sound
according to the personal tastes of users.
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Recently, significant progress has been made in speech
synthesis [7, 8] and music generation [9, 10] using deep gen-
erative models. Compared with domain-specific sounds such
as speech and music, general sound is less structured and has
greater diversity, typically accompanied by noise and rever-
beration. Therefore, it is challenging to model general sounds
using deep generative models. Related work on general sound
generation includes acoustic scene generation [11] and en-
vironmental sound synthesis [12]. However, general sound
generation remains a relatively unexplored area.

SampleRNN [13] is an autoregressive model for waveform
generation, which has been adapted to sound generation by
Kong et al. [11]. SampleRNN generates sound in the time do-
main and only back-propagates through a fraction of a second
[14]. Thus, it is difficult to capture the long-range dependen-
cies within sound clips using SampleRNN. However, some
sound events typically have long-range dependencies, such as
an ambulance siren spanning several seconds (tens of thou-
sands of audio samples), and capturing these dependencies
would be beneficial for the generation of such sounds.

Modeling sound in the time-frequency (T-F) domain, e.g.
using spectrogram, can help capture long-range dependencies
[14], although an additional step is required to convert the
T-F representation into a time domain waveform. Recently,
GAN-based methods [15, 16] have been proposed for wave-
form synthesis due to the computational efficiency offered by
their parallel structure and good quality of synthesized audio.
Synthesizing high-quality waveforms would normally require
the spectrograms to be in high temporal resolution in order
to retain the local and fine-grained characteristics that are im-
portant for sound fidelity. However, increasing the temporal
resolution of the spectrogram (i.e., decreasing the short-time
Fourier transform (STFT) hop size) would incur a higher com-
putational cost.

In this paper, we propose an approach to generate sound
conditioned on different sound classes in the T-F domain us-
ing a Vector Quantised Variational AutoEncoder (VQ-VAE)
[17]. Our approach can model the long-range dependencies
of sound while reducing the computational cost of modeling
sound with high temporal resolution in the T-F domain. More
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Fig. 1: Left: The proposed VQ-VAE based approach to learn a discrete T-F representation (DTFR) of sound. Right: The pipeline
for conditional sound generation in the inference stage. We train the VQ-VAE model and the autoregressive model separately.

specifically, a VQ-VAE model is trained to learn a discrete T-F
representation (DTFR) of sound. Then, an improved autore-
gressive model [18] is trained using the DTFR as input and the
sound classes as conditions to generate sounds. In addition,
we propose a multi-scale convolutional scheme for the encoder
of the VQ-VAE to capture acoustic information (i.e. features)
of sound at different scales. We show that this leads to a com-
pact DTFR while enables the encoding of local fine-grained
structures of sound. To our knowledge, the VQ-VAE model
has not yet been considered for the conditional generation of
general sounds. We demonstrate empirically that our approach
offers advantages in modeling the long-range dependencies of
sound over the time-domain generation method [11].

We evaluate the diversity [11] and quality [19] (as de-
scribed in Section 3.5) of the generated sound samples on the
UrbanSound8K dataset [20]. Experimental results show that
our proposed method outperforms the SampleRNN baseline
[11] in diversity and has comparable performance in quality.
The code and generated samples are available on GitHub1.

2. APPROACH

To generate sound conditionally, we first use a VQ-VAE [17]
to learn a DTFR of sound, as described in Section 2.1. Then,
the process of generating sound using the DTFR conditioned
on sound class labels is summarized in Section 2.2.

2.1. Discrete time-frequency representation learning

To disentangle the spectrogram representation of sound into
a compressed DTFR, we employ a VQ-VAE-based model
consisting of an encoder, a decoder and a codebook. Our
proposed approach assumes fixed input size, the encoder learns
a non-linear mapping from the spectrogram x ∈ RH×W×1

onto a latent representation z ∈ RH/2m×W/2m×D (H , W ,
D are height, width and depth, respectively), where m is a
compression factor. The latent representation z consists of N

1https://github.com/liuxubo717/sound_generation

elements zn ∈ R1×1×D, where N = H/2m ×W/2m. Each
element zn is quantized based on its distance to the codewords
ck in the codebook C = {ck}Kk=1 with K being the number of
codewords in the codebook C. Formally:

Quantize(zn) = ck where k = argmin
i
‖zn − ci‖2, (1)

where zn is reshaped to a vector of the same dimension as ci
for calculation. After the quantization of each element in z,
the DTFR defined as r = {rn}Nn=1 is obtained, and is fed into
the decoder to reconstruct the spectrogram. The reconstructed
spectrogram x̂ is given by:

x̂ = Decoder(r) = Decoder(Quantize(z)). (2)

To learn the reconstruction process in Equation (2), the
gradient is passed from the decoder input to the encoder output.
The loss function of the VQ-VAE is defined as follows:

Loss = ‖x− x̂‖22 + ‖sg[z]− r‖22 + β‖sg[r]− z‖22, (3)

where sg[·] denotes the stop-gradient operation [17], which
ensures the operand is not updated during backpropagation,
and β is a regularization parameter. The first term is a recon-
struction loss, the second term is used to align the codebook
with the encoder output, and the last term is a commitment
loss [17], which mitigates the uncertainty caused by noise in
the mapping between the encoder output and the codewords.

2.1.1. Multi-scale convolutional scheme in the encoder

A conventional VQ-VAE uses a fully-convolutional encoder
with a fixed kernel size, which can capture the local charac-
teristics in the spectrograms but cannot make use of the de-
pendencies between long-term temporal frames. To efficiently
capture both local characteristics and long-range dependencies,
we propose a multi-scale convolutional scheme in the encoder
of the VQ-VAE. In this scheme, multi-scale CNNs with varied
kernel sizes are deployed. This multi-scale convolutional ap-
proach has been shown to be effective in capturing the global
and local information of audio signals in the T-F domain [21].



More precisely, the encoder consists of several strided
convolutional layers (SCLs) in parallel. Each SCL has several
consecutive sub-layers with strided convolutional kernels of
fixed sizes followed by residual blocks. These SCLs have
different kernel sizes. SCLs with small kernels are used to
capture the local characteristics between the adjacent temporal
frames, and SCLs with large kernels are utilized to explore the
dependencies between long-range temporal frames. Then, the
output of each SCL is added together to obtain the output of
the encoder, thus enabling the encoder to capture global and
local information (i.e. acoustic features) at different scales.

2.1.2. Model architecture

A fully-convolutional decoder is used to decode the DTFR to
the reconstructed spectrogram. The structure of the decoder is
similar to the encoder, except that the multi-scale convolutional
scheme is omitted. The architecture of the proposed approach
to learn the DTFR of sound is shown in Figure 1 (left). Details
of the model will be discussed in Section 3.3.

2.2. Conditional sound generation

After learning the DTFR of sound, the task of conditional
sound generation can be treated as generating the DTFR of
sound, conditioned on the class labels. Since the DTFR is a
compressed and compact representation, we can significantly
alleviate the computational cost of modeling sound while still
retaining the long-range dependencies and local characteristics
of the sound. The decoder of the trained VQ-VAE model
in Section 2.1.2 is used to map the generated DTFR to the
generated spectrogram. The generation of the DTFR of a
sound is described as below.

Considering that the index k of the codewords ck can
characterise the nth component of any DTFR r = {rn}Nn=1

(as described in Section 2.1), we first formulate r as a sequence
of indexes y = {yn}Nn=1 as follows:

yn = k where rn = ck. (4)

Then, we use an autoregressive model to build the distribu-
tion p(y) over the DTFR of sound by factorising the joint
distribution as a product of conditionals:

p(y) = p(y1, ..., yn) =

n∏
i=1

p(yi|y1, ..., yi−1). (5)

To generate sound conditioned on a class label, we apply
the one-hot encoding vector h of a sound class as the global
condition. Formally:

p(y|h) = p(y1, ..., yn|h) =
n∏

i=1

p(yi|y1, ..., yi−1, h). (6)

We use PixelSNAIL [18] to build p(y|h). PixelSNAIL is an
improved autoregressive model that combines causal convolu-
tions [22] with self-attention [23]. After training the VQ-VAE,
we compute the DTFR of sound using the encoder of the
trained VQ-VAE. Then PixelSNAIL is trained on the DTFR
conditioned on class labels. The generation of the new DTFR
is enabled by sampling the variables conditioned on all pre-
vious variables one by one from the trained autoregressive
model. A waveform synthesis module, namely HiFi-GAN
[16] (as described in Section 3.3.3), is deployed for converting
the generated spectrogram into a waveform. The generation
pipeline for our proposed approach in the inference stage is
shown in Figure 1 (right).

3. EXPERIMENTS

3.1. Dataset

We evaluate our proposed approach for conditional sound
generation on the UrbanSound8K dataset [20]. UrbanSound8K
consists of 8732 labeled sound clips of urban sound from 10
classes. The duration of each sound clip is less than 4 seconds.
UrbanSound8K has a large diversity of sound classes, such as
siren and street music. In addition, each sound clip is divided
into foreground sound or background sound. These attributes
make it appropriate for using UrbanSound8K to evaluate the
ability of the generative model to capture the salient features
of different sound classes. UrbanSound8K is divided into 10
folds and we use the predefined folds to obtain 7916 sound
clips for training and 816 sound clips for testing. Because our
proposed approach assumes that the length of input audio is
fixed, we pad all sound clips to 4 seconds. All sound clips are
converted to 16 bit and down-sampled to 22,050 kHz.

3.2. Spectrogram computation

To generate high quality sound, we compute the spectro-
gram with the hyperparameter values as used in HiFi-GAN
[16], which can achieve high-fidelity waveform synthesis,
as described in Section 3.3.3. More precisely, we use an
80-dimensional log mel-spectrogram calculated using the
short-time Fourier transform (STFT) with a frame size of
1024, a hop size of 256, and a Hann window. Dynamic range
compression is applied to the mel-spectrogram by first clip-
ping it to a minimum value of 1× 10−5 and then applying a
logarithmic transformation. A sound clip of 4 seconds results
in a mel-spectrogram with shape 80× 344.

3.3. Details of model implementation

3.3.1. VQ-VAE

For the encoder of the VQ-VAE, we use four SCLs consisting
of two sub-layers with stride 2, followed by two 3× 3 residual
blocks (ReLU, 3×3 conv, ReLU, 1×1 conv). The kernel sizes



Table 1: Results of classification accuracy

air conditioner car horn children playing dog bark drilling engine idling gun shot jackhammer siren street music Average

Proposed Approach 0.8516 0.5049 0.1738 0.6875 0.9453 0.1875 0.7832 0.1240 0.6699 0.3613 0.5289

SampleRNN 0.6328 0.7119 0.7002 0.3438 0.3984 0.2305 0.4980 0.5840 0.6191 0.5625 0.5281

Test 0.4400 0.9375 0.9200 0.8500 0.6100 0.7640 0.9032 0.9146 0.9878 0.9700 0.8297

Reconstructed Test 0.3500 0.9688 0.8100 0.8700 0.8300 0.5843 0.8710 0.9024 0.9878 0.9000 0.8074

Table 2: Results of class-wise NDB and JSD

air conditioner car horn children playing dog bark drilling engine idling gun shot jackhammer siren street music Average

Proposed Approach NDBclass 6 4 4 2 3 1 1 3 4 3 3.1

JSDclass 0.0694 0.0522 0.0714 0.0351 0.0425 0.0336 0.0364 0.0357 0.0568 0.0448 0.0478

SampleRNN NDBclass 15 10 11 9 11 16 8 10 12 13 11.5

JSDclass 0.2897 0.1748 0.4859 0.3130 0.1632 0.3017 0.2856 0.1363 0.3251 0.2955 0.2771

Test NDBclass 1 1 1 0 0 2 0 1 2 0 0.8

JSDclass 0.2932 0.1881 0.1045 0.0427 0.0700 0.3476 0.2202 0.3677 0.2983 0.0964 0.2029

of these four SCLs are 2×2, 4×4, 6×6 and 8×8 respectively.
Thus, we can down-sample the input log mel-spectrogram
from 80×344 to 20×86 with compression factorm = 2. The
dimension of the codebook and each codeword are 512 and
64, respectively. The decoder has two 3× 3 residual blocks,
followed by two transposed convolutional layers with stride 2
and kernel size 4× 4. We train the VQ-VAE model using the
Adam optimizer [24] with a learning rate of 3× 10−4 and a
batch size of 64 for 70,000 iterations.

3.3.2. Autoregressive model

The PixelSNAIL [18] model is trained on the 20× 86 DTFR
of sound using the Adam optimizer [24] with a learning rate
of 3× 10−4 and a batch size of 32 for 250,000 iterations. We
use a PyTorch implementation of PixelSNAIL2.

3.3.3. Waveform synthesis module

The generated mel-spectrograms are converted into waveforms
using HiFi-GAN [16], which provides high-fidelity speech
synthesis results and fast inference. We train a HiFi-GAN on
the training data of UrbanSound8K dataset from scratch using
the code provided in the official GitHub repository3.

3.4. Baseline system

SampleRNN has been adapted for sound generation in [11].
In this work, we use a two-tier conditional SampleRNN4 as
the baseline system. The baseline system is trained on raw
waveforms for 350,000 iterations using the Adam optimizer
[24] with a learning rate of 1× 10−3 and a batch size of 64.

2https://github.com/rosinality/vq-vae-2-pytorch/
blob/master/pixelsnail.py

3https://github.com/jik876/hifi-gan
4https://github.com/qiuqiangkong/sampleRNN_

acoustic_scene_generation

3.5. Evaluation methods

Several subjective metrics [25] have been proposed for evaluat-
ing the performance of acoustic generative models. However,
a subjective evaluation of sound is time-consuming and the
results are sometimes difficult to reproduce. In this work, we
adopt the quality and diversity of generated sound samples as
two objective performance metrics.

3.5.1. Generation quality

Similar to the evaluation metric used in [11], we train a VGG11
[26] classifier on the training data and then use the trained
VGG11 to classify the generated data. If the generated data is
of high quality, the VGG11 will assign them to the correspond-
ing sound classes with high accuracy. If the generated data is
of low quality, such as random noise, the VGG11 will tend to
predict them as random classes. Although this metric does not
indicate the perceptual quality of the generated sound, it is still
useful for partially assessing how good the generated sound is.
The VGG11 classifier is trained on the computed spectrogram
(mentioned in Section 3.2) of training data using the Adam
optimization algorithm [24] with a batch size of 128 and a
learning rate of 5× 10−4. The VGG11 classifier achieves a
83% accuracy on testing data after training for 3100 iterations.

3.5.2. Generation diversity

The number of statistically-different bins (NDB) [19] has been
proposed to evaluate generative models. This evaluation met-
ric first clusters the training data into different bins and then
assigns each generated data to the nearest bin. NDB is re-
ported as the number of bins where the number of training
instances is statistically different from the number of gener-
ated instances by a two-sample Binomial test. In addition, the
Jensen-Shannon divergence (JSD) between the distribution of
the training data and generated data over the clustered bins is
calculated as the evaluation metric if the number of samples



Table 3: Results of all-classes NDB and JSD

NDBall-classes JSDall-classes

Proposed Approach 25 0.0461

SampleRNN 120 0.3267

Test 6 0.1359

is sufficiently large. A smaller NDB and JSD represent bet-
ter performance. We adopt the K-means algorithm to cluster
sound data in the T-F domain (as reported in Section 3.2). We
then calculate the NDB and JSD of the generated sound in the
class-wise case and the all-classes case (merge the generated
data of all classes together and compare with the training data),
respectively. 20 bins are used for class-wise clustering and
200 bins are used for all-classes clustering. We use the official
implementation of NDB and JSD5.

3.6. Evaluation results

We use our proposed method and the baseline to generate 1024
sound clips per class. Evaluation results are discussed below.

3.6.1. Generation quality

Table 1 shows a VGG11 classification accuracy of 52.89%,
52.81%, 82.97%, 80.74% on the data generated by our pro-
posed approach (Proposed Approach), data generated by base-
line (SampleRNN), testing data (Test), and testing data after
the reconstruction based on DTFR (Reconstructed Test), re-
spectively. Our proposed approach achieves a comparable per-
formance in generation quality compared with SampleRNN.
Sound classes such as dog bark and gunshot perform better,
while sound classes such as jackhammer and children playing
perform worse. In addition, although the DTFR is four times
smaller than the spectrogram, the classification accuracy on
the testing data after reconstruction only decreases by 2.23
percentage points, which confirms the effectiveness of DTFR.

3.6.2. Generation diversity

The results of class-wise and all-classes evaluations of genera-
tion diversity are shown in Table 2 and Table 3, respectively.
Our proposed approach outperforms the SampleRNN baseline
significantly in NDB and JSD for all sound classes, which
means the data generated by our approach has greater diversity
and its distribution is closer to the real data. The JSD of the
testing data is higher than the data generated by our proposed
approach because the size of the testing data is small and the
class distribution is different from the training data.

5https://github.com/eitanrich/gans-n-gmms/blob/
master/utils/ndb.py

Table 4: Results of ablation experiment

MSE Accuracy

DTFR w/ MSCS 0.0684 0.8074

DTFR w/o MSCS 0.0731 0.7454

3.7. Ablation study

We investigate the impact of the multi-scale convolutional
scheme (MSCS) in the VQ-VAE’s encoder. Table 4 shows the
mean square error (MSE) and the VGG11 classification accu-
racy of the reconstructed test data based on DTFR with and
without MSCS. Experimental results show that by applying
the MSCS, the MSE decreases by 0.0047 and the VGG11 clas-
sification accuracy increases by 6.2 percentage points, which
indicates that more acoustic information (i.e. local fine-grained
structures) within sound is captured by MSCS.

4. CONCLUSIONS

We have presented a novel approach for conditional sound
generation using neural discrete time-frequency representa-
tion learning. Our proposed approach can efficiently model
long-range dependencies and retrain local fine-grained struc-
tures within sound clips. Experimental results show that our
proposed method has better performance in diversity and has
comparable performance in quality compared to SampleRNN.
In future work, we will consider learning a representation via
adversarial training [27] and perceptual loss [28], and compare
it with other GAN-based audio generative model [29].
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