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Interference Reduction in Reverberant
Speech Separation With Visual
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Abstract—The visual modality, deemed to be complementary
to the audio modality, has recently been exploited to improve the
performance of blind source separation (BSS) of speech mixtures,
especially in adverse environments where the performance of
audio-domain methods deteriorates steadily. In this paper, we
present an enhancement method to audio-domain BSS with the in-
tegration of voice activity information, obtained via a visual voice
activity detection (VAD) algorithm. Mimicking aspects of human
hearing, binaural speech mixtures are considered in our two-stage
system. Firstly, in the off-line training stage, a speaker-indepen-
dent voice activity detector is formed using the visual stimuli
via the adaboosting algorithm. In the on-line separation stage,
interaural phase difference (IPD) and interaural level difference
(ILD) cues are statistically analyzed to assign probabilistically
each time-frequency (TF) point of the audio mixtures to the
source signals. Next, the detected voice activity cues (found via
the visual VAD) are integrated to reduce the interference residual.
Detection of the interference residual takes place gradually, with
two layers of boundaries in the correlation and energy ratio map.
We have tested our algorithm on speech mixtures generated using
room impulse responses at different reverberation times and
noise levels. Simulation results show performance improvement
of the proposed method for target speech extraction in noisy and
reverberant environments, in terms of signal-to-interference ratio
(SIR) and perceptual evaluation of speech quality (PESQ).

Index Terms—Adaboosting, binaural, blind source separation,
interference removal, visual voice activity detection.

I. INTRODUCTION

LIND SOURCE separation (BSS), which aims to recover
the unknown source signals from their mixtures, has been
used to solve the ‘cocktail party problem’ [1], in the presence of
reverberation and background noise. Different BSS techniques
have been developed for this purpose, including independent
component analysis (ICA) [2]-[5], beamforming [6], [7] and
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time-frequency (TF) masking [8]-[10]. However, in an adverse
environment with long reverberation, strong background noise
and multiple competing speakers, performance of the above
audio-domain BSS algorithms degrades steadily. The interfer-
ence distortion introduced by the residual from the interfering
signals or background noise is a main cause for the performance
degradation, and therefore needs to be attenuated to improve
the quality and intelligibility of the separated speech.

Several interference reduction methods have been developed
for this purpose [11]-[18]. Adaptive filtering [11]-[16] is per-
haps one of the most popular methods, which aims to cancel the
interference by applying a time-varying filter to the target BSS
output, where the parameters of the filter are often estimated via
a least mean squares based method. The BSS outputs not related
to the target are used as reference signals, whose contributions
to the target output are minimised after applying the adaptive
filter. There are some other interference reduction algorithms
available. For instance, in Choi et al. [17], probabilistic target
absence/presence models are first built for the BSS outputs, and
then used to remove the interference signal from the target in
the power-spectral domain. In [18], the cepstral smoothing tech-
nique is applied to the binary spectral masks in order to pre-
serve the speech structure of the target source while reducing
the cross-talk by eliminating the random peaks from the inter-
fering signals. However, the application of the methods men-
tioned above can be limited in a certain number of scenarios. For
example, the adaptive filtering algorithm can be computation-
ally expensive particularly for dealing with convolutive mix-
tures with long reverberation when the interference reduction
algorithms are operated in multiple frequency channels [15],
[16] or subbands [14]. The spectral cancellation approach in
[17] assumes the probabilistic models obtained at the BSS out-
puts match approximately the original source absence/presence
models, which is however not the case for the speech mixtures
acquired in adverse conditions. The spectral smoothing method
[18] does not explicitly use the information related to the inter-
fering signals, and as a consequence, the spectral information
related to the target source may also be conversely attenuated.

To improve the speech intelligibility in adverse conditions,
additional information is needed. One such type of information
comes from voice activity, which indicates whether the speaker
is active or silent for a given time period. Voice activity cues
play an important part in speech processing, with applications
in speech coding and speech recognition [19]. During the
detected silence periods of the target speech, the interference
including the competing sounds and the background noise
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can be estimated, which can be used to further enhance the
corrupted speech source via, e.g., spectral subtraction. In this
paper, we enhance the performance of speech separation in
highly reverberant room environments, using a novel interfer-
ence removal scheme that detects and removes the interference
residual, where the voice activity cues are exploited to assist the
interference detection process. To successfully implement the
proposed interference removal scheme, a robust voice activity
detection (VAD) algorithm with a high accuracy is essential.

There are many audio-domain VAD algorithms available.
The ITU-T VAD [19] standard operates on a multi-boundary
decision region with post-processing, in the space spanned by
four statistical parameters, which has been widely used for fixed
telephony and multimedia communications. The decision-di-
rected parameter estimation method is employed in [20], with
a first-order Markov process modelling of speech occurrences.
A recent method in [21] is applied in non-stationary noise
environments with low signal-to-noise ratios (SNRs), where
the speech absence is adaptively estimated from a smoothed
periodogram in two iterations.

However, the reliability of the above audio-domain VAD al-
gorithms deteriorates significantly with the presence of highly
non-stationary noise, e.g. the competing speech in a cocktail
party scenario. Recent works show that the vision associated
with the concurrent audio source contains complementary in-
formation about the sound [22]-[24], which is not affected by
acoustic noise, and deemed to have the potential to improve
audio-domain processing. Exploiting the bimodal coherence of
speech, a family of visual VAD algorithms is developed, ex-
hibiting advantages in adverse environments [25]-[27]. The al-
gorithm in [25] uses a single Gaussian kernel to model the si-
lence periods and Gaussian mixture models (GMM) for speech,
with principal component analysis (PCA) for visual feature rep-
resentation. A dynamic lip parameter is defined in [26] to indi-
cate lip movements, which is low-pass filtered and thresholded
to classify an audio frame. Hidden Markov models (HMMs)
[28] with post-filtering are applied in [27], to model the dy-
namic changes of the motion field in the mouth region for si-
lence detection. However, the algorithm in [25] does not con-
sider dynamic features, which thereby suffers from information
loss about the lip movements. Describing the visual stream only
with the movement parameter, the algorithm in [26] does not
consider static features. As a result its performance is not very
promising. The HMM model in [27] is however trained only
on the visual information from the silence periods, i.e. without
using those from the active periods.

To address the above limitations, we have recently proposed
a method in [29] using both static and dynamic geometric vi-
sual features with adaboost training [30]. Instead of statisti-
cally modelling the visual features as in [25], [27], we build
a voice activity detector in the off-line training stage, by ap-
plying adaboost training to the labelled visual features obtained
by lip-tracking. Rather than applying a hard threshold to fix a
combination of the visual features as in [26], the optimal de-
tection thresholds and their associated visual features are itera-
tively chosen for an enhanced detection.

In this paper, we propose a new method to mitigate the in-
terference distortion in the BSS outputs. More specifically, the
detected voice activity cues via the visual VAD [29] are inte-
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grated into a traditional audio-domain BSS method for the en-
hancement of the separated speech. Binaural mixtures in re-
verberant and noisy environments are considered, to mimic as-
pects of human hearing in an enclosed room environment. First,
the audio-domain BSS method is applied to the mixtures in
the time-frequency (TF) domain, which assigns probabilisti-
cally each TF point to the source signals exploiting the spatial
cues of IPD and ILD [10], [31], to obtain approximately the
source estimates. Afterwards, the interference removal scheme
is applied to these source estimates, where contributions of the
target speech are attenuated in the silence periods detected by
the visual VAD. More specifically, the interference residual in
the TF domain is first detected on a block-by-block basis based
on the relation between the correlation and the energy ratio eval-
uated from the spectra of the BSS outputs, and then removed
using a spectral subtraction technique.

We have two main contributions in our proposed interference
reduction scheme.

* Visual VAD and its use for interference detection: The
reliable visual information obtained by visual VAD is ex-
ploited, to achieve better interference detection. This is
of practical importance since audio-domain processing is
often degraded by acoustic noise, while the associated vi-
sual stream is not affected. Furthermore, the visual stream
contains complementary information to the audio stream.
As a result, our algorithm has the potential to work in
adverse conditions when audio signals are seriously cor-
rupted while the quality of the visual signal in e.g. reso-
lution, illumination, is assumed to be adequate for the ex-
traction of the required visual information, such as the lip
movement.

* Correlation and the energy ratio based interference/
target discrimination: We propose a novel two-stage in-
terference detection algorithm exploiting the joint relation-
ship between the local mutual correlation and the energy
ratio between the associated spectra of the BSS outputs. In
the first stage, the distinctive regions on the mutual cor-
relation and the energy ratio map that belong respectively
to the interference and target source are detected and pro-
cessed in order to guarantee accurate interference detec-
tion and avoids useful target source information from being
removed. The second stage attempts to resolve the over-
lapping source/interference regions in order to refine the
ambiguous source/interference detections in these regions,
and to further reduce the interference residual remained
within the source.

There are potentially several applications that may benefit
from our research. For example, the proposed algorithm could
be used for audio-visual surveillance in a noisy environment
such as airport, supermarket, with cameras that could poten-
tially zoom into the face of a particular speaker. Another real
application that could benefit from our proposed algorithm is
for voice enhancement in a noisy environment for smart phone
users. When the handset is held towards the face of the user
during conversation, the face of the user can be well captured
by the camera with a reasonably good quality that may be suf-
ficient for lipreading.

The remainder of the paper is organised as follows. Section 11
introduces the main flow of the proposed visual VAD-assisted
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Fig. 1. The flow of our proposed two-stage AV-BSS system: VAD-incorpo-
rated BSS. In the training stage (upper shaded box), a visual VAD detector is
trained via adaboost training. In the separation stage (lower shaded box), the
detected voice activity cues are incorporated into the traditional audio-domain
BSS algorithm through a novel interference removal scheme.
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BSS system. Section IIT and Section IV present respectively the
visual VAD technique and the audio-domain BSS used in the
system. The proposed interference removal algorithm that en-
hances the BSS outputs is detailed in Section V. Experimental
results are presented in Section VI, followed by the conclusion.

II. PROPOSED SYSTEM

We present the block diagram of our proposed AV-BSS in
Fig. 1, which contains the off-line training stage and the on-line
separation stage, a similar strategy to those taken in our earlier
work [29], [32], [33].

In the off-line training stage, we first extract the geometric
visual features from the lip region, and then train a speaker-
independent visual voice activity detector, i.e. a classifier, by
applying the adaboost training [30] to these features.

In the on-line separation stage, the voice activities of the
target speech are first detected by applying the trained visual
VAD to the associated video signal. In parallel, the state-of-
the-art audio-domain BSS algorithm proposed by Mandel et al.
[10] is applied to the audio mixtures to obtain the source esti-
mates. In this algorithm, the spatial cues of IPD and ILD eval-
uated from the binaural mixtures are used to estimate the TF
masks for the separation of sources. However, in adverse envi-
ronments especially with high reverberation and strong back-
ground noise, the interference distortion, similar to the cross-
talk in a communication system, deteriorates greatly the intelli-
gibility of the source estimates. The reason for the interference
phenomenon is further explained in Section IV. To mitigate the
degradation, we propose an interference removal scheme, inte-
grating the VAD cues previously detected, which will be pre-
sented in detail in Section V.

For the completeness of the proposed system and readability
of the subsequent sections, we introduce briefly the principles
of the visual VAD as well as Mandel’s BSS algorithms in the
next two sections.

III. VisuAL VAD

The visual VAD is a classifier to determine whether a speaker
is silent or not in a frame / using the associated video signal. The
VAD is built on an off-line training process using the labelled
visual features v(/) extracted from the associated video clips of
the mouth region, i.e. region of interest (ROI). The appearance
(intensity) based features are subject to variation of luminance
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and skin colour, therefore we restrict ourselves to using geo-
metric features of the lip contours. In our proposed algorithm,
the 38-point lip-tracking algorithm [34] is first applied to the
raw video, for the extraction of the contours of both inner and
outer lips. To accommodate individual differences in lip size,
we normalise the mouth region such that, when the speaker is
silent with naturally closed lips, the width of the outer lip should
be of unit length.

From the lip contours, we can extract the 6(2* () + 1)-dimen-
sional geometric visual feature at each frame / where () is the
maximal frame offset

v() = [g"(1),df (-Q),....dT (Q)]" (1)

where the superscript 7' denotes transpose and g(!) is the static
visual feature containing six elements: the width, height and
area of the outer and inner lip contours. In Equation (1), d;(q)
is the difference feature vector that models the dynamic visual
changes, i.e. lip movements, defined as

di(q) =gll) —gll—q) )

where ¢ = [, ..., Q] is the frame offset. v(I) can also be
obtained using other lip tracking algorithms, based on e.g. com-
plex statistical models [35] and active shape models [29], [36].

We use our recently proposed visual VAD algorithm [29],
which employs the adaboost training algorithm [30] to the man-
ually labelled visual feature v(7). The same weak classifier used
in the Viola-Jones object detection algorithm [37], denoted as
Cvj(+), is used in our algorithm as follows. In the i-th iteration,
the r;-th element of v(I), i.e. v, (1), is selected and compared
with a threshold A; and a polarity of p; € {1, —1}

1, if ivnil > pi g,
Cva(v(l): ki pi- D) = { 0, g Othir)wisf.

G3)
For simplicity, we denote Cv3(+|2) = Cvi(v{l), 5:, pi, A;) as
the weak classifier chosen at the 2-th iteration, which contributes
to the final strong classifier with a weighting parameter w;. The
parameter w; is determined by the error rate ¢; in the ¢-th itera-
tion in the training process, via

1—6,,',

i

w; = In

“4)

Using the majority voting, the visual VAD detector is obtained
Jpp— . T

c(v(l)) = {(1) if > wilva (VD)) > 535, wi, (5)

otherwise,

where I is the total number of iterations.

The trained visual VAD will be used to reduce interference
residuals that may remain in the output of an audio-domain BSS.
Next, we discuss a typical audio-domain BSS algorithm and
analyse the reason why the interference distortion occurs.

IV. Aubpio-DoMAIN BSS

To mimic aspects of human hearing, binaural mixtures are
considered in our proposed system. We choose to use the
state-of-the-art audio-domain method by Mandel ef al. [10],
where the TF masking technique is used to separate sources.
The TF masks are determined by the evaluation of the spatial
cues of IPD and ILD [10], [31], whose principles are as follows.
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A source signal arrives at two ears with different time delays
and attenuations, exhibiting

L(m,w)/R(m,w) =10 55t oV =T8(mw) 6)

where L(m,w) and R{m,w) are the TF representations of the
left-ear and right-ear signals respectively, indexed by time frame
m and frequency bin w, & and  are respectively the ILD and
IPD. Two Gaussian distributions are used to model the ILD
a(m,w) and IPD (m, w) for source k at the discretized time
delay 7

{ pIPD(mv wlk, ) ~ g(ﬂ(m’v w)|€r (w)3 Ul%-q— (w))

prn(m, wlk) ~ G(a(m, o)\ (w); n2(w)) ™

where G(-) represents the Gaussian density function.
prep(m, wlk, 7) and prop (m, w|k) are respectively the likeli-
hood of the IPD and ILD cues at the TF point (m, w) originating
from source k at time delay 7, parametrised by the means and
variances © = {&-(w), 0% (w), px(w), ni(w)}. With the
independence assumption of ILD and IPD, the likelihood of the
point (m, w) originating from source k at delay 7 is

prep/iLp(m, wlk, 7) = pipp(m, wlk, 7)pp (m, wlk), (8)
and the posterior is calculated as

pIPD/ILD(”La Wk, T)prr
Z;” pIPD/ILD(m'a w|l<:, T)<PA~,T

pk, Tlm,w) = )

with . =Y, p(k, T|m,w) being the prior probability of a
TF point of the mixture coming from source k at delay 7. To
recover the k-th source, an audio-domain separation mask is
calculated via Equation (9) as M (m,w) = > _p(k,7|m,w).
This mask can be applied to L(m, w), R(m, w) or both! to esti-
mate source k via e.g. Sp(m,w) = M§(m,w)L(m,w).

Residual Distortion: The success of Mandel’s method relies
on the sparsity assumption of the source signals, i.e., at most
one source signal is dominant at each TF point. Therefore, in
an ideal narrowband convolution process where the reverbera-
tion time is short, the mask M (v, w) is either 1 or 0 at the
TF point (n, w), depending on whether it is dominated or not
by source k. However, with the presence of a high level of re-
verberation and noise, the mixing process becomes a wideband
convolution process, introducing a large scale in ILD « and IPD
(3. As a result, variances in the parameter set © become large,
which results in a relatively small disparity in the IPD/ILD eval-
uations for different sources in Equation (8). Consequently, a TF
point may be assigned partially to an in-dominant source, de-
termined by Equation (9), even though the in-dominant source
contributes very little to that TF point. Due to the above reasons,
an unwanted residual distortion is introduced, as demonstrated
in Fig. 2, where the residual distortion is highlighted in ellipses.

To mitigate the interference distortion, we propose a novel
interference removal scheme, which combines the voice activity
cues detected by the visual VAD, with the magnitude spectrum
of the source estimates Ey(m,w) = |Si(m,w)|. The detailed
algorithm is presented as follows.

'We applied the audio mask to both of the binaural signals and calculated
their average as the source estimate in our experiments.
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V. PROPOSED INTERFERENCE REMOVAL ALGORITHM

The main principle of the proposed interference removal
method is to first detect the interference on a block-by-block
basis and then to remove the contribution of the interference in
those blocks where the interference is detected (see later in this
section for the motivation of block-based processing). The most
challenging part is the interference detection, for which we
propose a two-stage scheme based on two quantities, namely
the correlation coefficient and the energy ratio. As discussed
more later in this section, on the scatter plot of the correlation
coefficient versus the energy ratio calculated for all the blocks
based on a dataset of real speech mixtures, the distributions
of the interference and target source appear to be well apart
from each other, with some overlap between them. Therefore,
using this information, we could potentially distinguish the
interference from the target speech within the separated speech
signals (i.e. the BSS outputs).

Spectra of the BSS outputs are, however, corrupted by high-
frequency noise, which adds difficulties to the distinction of the
interference from the target. To mitigate the spectral noise, a 2D
Gaussian filter is applied to smooth the spectrum Ey(n, w) be-
fore interference reduction. Impact of the Gaussian filtering on
the performance of the interference reduction algorithm is eval-
uated in Section VI-B. From the spectra of speech signals shown
in Fig. 2(a) and 2(c), it is found that the lower the frequency,
the more distinguished contours the spectra have, i.e., they are
less affected by spectral noise. As a result, the smoothing filter
should have less effect on the low frequency as compared to the
high frequency, i.e., the standard deviation in the low frequency
should be smaller than that in the high frequency. Consequently,
a frequency-dependent smoothing filter G is required, and the
smoothed spectrum is denoted as

Ex(m,w) =G¥ % Ex(m,w)

where * denotes convolution. Mel-scale filterbanks can be ex-
ploited to determine G* using the non-linear resolution of the
human auditory system across an audio spectrum. Mel-scale fre-
quency is related to frequency f in Hertz by

Mel(f) = 2595 logy, (1 + i)

700 (10)

Specifically, a 2D filter G~ can be determined at each frequency
bin w, such that the G* has the standard deviation vector com-
posed of, e.g., 1/10 of the band of a Mel-scale filterbank centred
at the w-th frequency in the frequency dimension, as well as a
fixed standard deviation é,,, in the time dimension. This process
can be approximated with two Gaussian filters? G; and G

. [o

Ey(m,w) = a wgl * Ep(m,w) + %92 * Er(m,w) (11)

where €2 is the total number of the discretized frequency bins;
g1 has a standard deviation vector of §; = [61,6,,]7, while
2Previously we denote the frequency-dependent Gaussian function G with

the superscriptw = [1,2,. ... , NrrT/2]. Here we use two Gaussian functions
with subscripts 1 and 2 to approximate G* .
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Fig. 2. Spectrograms of the original source signals ((a) and (c)) and the source
estimates ((b) and (d)) after the audio-domain BSS by [10]. The high reverbera-
tion (RT = 890 ms) severely degrades the separation performance, introducing
interference distortion. As shown in the highlighted ellipses, there exists the
residual from the competing speaker. For demonstration purposes, the above
spectra are Gaussian smoothed and plotted on a decibel scale: (a) Magnitude
spectrum of source 1; (b) Magnitude spectrum of source 1 estimate; (c) Magni-
tude spectrum of source 2; (d) Magnitude spectrum of source 2 estimate.

Go has 85 = [62, 6,,]F, where §; = [W] and 8§ =

0,
f%] are the standard deviations in the spectral di-

mension. Here, Nppr is the FFT size, F}; is the sampling rate
and [-] rounds a number to its nearest integer. Note that the
lowest frequency 0 Hz was not used for calculating 41, since in
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this case, 51 = 0 and hence no smoothing would be applied.
Therefore, we set 1 = % instead, since 300 Hz is
the beginning range of the voice band [38]. More specifically,
we have G1(-) = G(+]0, 61) and Ga(-) = G(-|0, 82).

Then we detect the interference on a block-by-block basis,
utilising the local mutual correlation and the energy ratio
between E~k and Ej as follows, where k£ and j are the in-
dices of two estimated sources. First, half-overlapping sliding
blocks indexed by (b™,b*) are applied to both spectra, to
segment each spectrum into B x B“ blocks, with each
block spanning the TF space of L™ x L“. The block spectrum
associated with the (5™, 5*)-th block for the k-th source es-
timate is denoted as Eppmpe = (Egp(m,w)) € RVXE7,
where m € My~ = {(™ - 1)37'" +[1:L™]} and
w € o = {(b* —1)E- +[1: L¥]}. After that, in the
(b™, b¥)-th block, the normalised correlation and energy ratio
are calculated, respectively, as

ij(bm7bw) = COI‘I‘(Ekbwbu,E]‘bmbw), (12)
T (6" 6%) = [[Exprmpe |2/ Ejprpe |1 (13)
where || - || is the Euclidean norm, which is the square root of

the summation of the squares of all the elements in the matrix.
In Equation (12), Corr(+, -) first vectorises the two matrices in
its arguments to obtain two vectors spanning the same length.
After that, Pearson’s correlation coefficient is calculated to ob-
tain their similarity.

We want to attenuate the audio spectrum of the target speaker
(suppose it is indexed by k) during the silence periods, so we
integrate the voice activity cues into the energy ratio at the
(b™, b¥)-th block as

TPE™ ) = [ER5.IP/IERR. 17 (4)

where EY\D. = (EYAP (m,w)) € RE™*L™ and
EVAP (g, ) = § Brelm,w), ifCvm) ==1 " 5
e lmsw) Vo Eg(m,w), otherwise, (13

where o is a threshold in the range (0, 1] rather than 0 to3 ac-
commodate the VAD false positive error (i.e. active being de-
tected as silence) and the non-zero energy in silence periods.
The detected VAD cues C(v(!)) are resampled to have the same
temporal resolution as the spectrum, denoted as C{(v(m)). The
calculated block correlation and energy ratio (with or without
integrating voice activity cues) are illustrated in Fig. 3.

As mentioned earlier, we can potentially distinguish inter-
ferences from the target source using the relationship between
the correlation coefficient and the energy ratio defined in Equa-
tions (12) and (13). To see this, we first show an example of
the scatter plot of the correlation coefficient versus the energy
ratio, as in Fig. 4 which demonstrates the dependency of the in-
terference/target distribution on the relation between the block
correlation and the energy ratio. It can be observed that the

31t would have the same effect as the spectral subtraction [39] if we sete = 0O,
which directly removes the information in detected silence periods. It may result
in important information loss, considering that the visual VAD algorithm is not
100% accurate.



LIU et al.: INTERFERENCE REDUCTION IN REVERBERANT SPEECH SEPARATION WITH VISUAL VAD

Il || B 08
1] il L 1
| 06
6
’§ I L I 0.4
= | L]l [
g |l | [i,, 02
w
I | .
2 ||
[ | -0.4
-06
1.60 3.20 4.80 6.40 8.00 9.60
Time (s)
(a)
20
8
15
10
6
N
\EJ 5
>
2 0
S 4
o
[ -5
Iy
-10
2
-15
-20
1.60 3.20 4.80 6.40 8.00 9.60
Time (s)
(b)
20
8
15
10
6
N
g ] 5
>
2 5 0
R
g -5
i
5 /| i -10
‘ 1 0 -15
[l 1 20
1.60 3.20 4.80 6.40 8.00 9.60
Time (s)

(©)

Fig. 3. The block correlation (upper) and the energy ratio (lower two) of the
spectra of two source estimates. Energy ratio of the first source estimate over the
second is shown. The estimated VAD cues are associated with source 1, and the
third row shows the re-calculated energy ratio after combining the VAD cues.
For demonstration purposes, the energy ratio is shown in decibel and thresh-
olded with an upper bound of 20 dB and a lower bound of -20 dB. (a) Block
correlation T (b) Block energy ratio T (c) Block energy ratio with VAD T VAV,

two regions that the interference and source are distributed, are,
in general, distant from each other, with a certain amount of
overlap between them. Based on this observation, we empiri-
cally split the scatter plot into three different regions: ‘strict’,
‘loose’, and ‘non’ interference regions, corresponding respec-
tively to the region occupied mainly by the interference, the am-
biguous region shared by both the interference and non-interfer-
ence (i.e. target source), and the region occupied mainly by the
non-interference.

Therefore, we propose to detect the interference in two stages,
whose architecture is similar, in spirit, to the scheme taken in
many hierarchical clustering algorithms [40]. The first stage
aims to detect any signal that falls into the ‘strict’ region shown
in Fig. 4, therefore it has a high detection accuracy. The second
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Fig. 4. The joint distribution of the block correlation I' and the energy ratio
T. The blocks are randomly chosen from the spectra of the BSS outputs from
four different rooms. Each block is detected as interference (red cross) or non-
interference (blue star). Details on how this figure is generated can be found in
the texts below.

stage attempts to resolve the ambiguous ‘loose’ region, to fur-
ther reduce the interference residual as much as possible.

The physical meaning of the proposed scheme is that: if the
spectra of two different BSS outputs at the same TF position
have a very similar structure (evaluated by the block correlation
coefficient I' defined in Equation (12)) and a very large energy
difference (evaluated by the block energy ratio YT, defined in
Equation (13)), then the spectrum with low energy is likely to be
the interference residual. This is, in practice, the case since two
independent speech signals have different temporal and inter-
frequency structures.

To determine the boundary between these regions, we
first choose empirically several points (e.g. six in our work)
according to the distribution plot to coarsely generate the
boundaries between these regions. We then use a third-degree
polynomial curve fitting technique to find the values of the
other points on the coarse boundary, which results in the final
boundary for splitting these three regions.

The scatter plot in Fig. 4 is generated as follows. We first ap-
plied BSS to four pairs of randomly-chosen mixtures in four dif-
ferent rooms, the room description is available in Section VI-B.
For the ease of understanding, we denote the spectra of the two
BSS outputs in a TF block as El and Ez (the block indices
are dropped here for notational convenience), and the original
source signals 1 and E» in the associated block. Assuming that
E, and E; are respectively the target source and interference
signal, we attempt to find whether or not the source estimate B,
is corrupted by the interference signal E; . In each TF block, we
calculated the block correlation and energy ratio between E,
and B, which correspond to one point (either cross or star) in
the scatter plot of Fig. 4. Then, the following approach was used
to determine if Es is corrupted by the interference E; (cross) or
not (star).
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First we calculate the ideal binary mask (IBM) [41] by com-
paring the elements of E; with E». If one TF point of E; has
a greater value than the corresponding TF point of E,, then
the IBM is assigned with 1 at the associated TF point, other-
wise 0. If more than 80% of the IBM values in this block are
1, it means E; is the dominant source. As a result, E; may
corrupt the source estimate EQ. Then we calculate the corre-
lation coefficients between the BSS outputs and the original
source signals. If Corr(]:llt E;) > 0, Corr(Eg,El) > 0, and
Corr(Eq, Ez) < 0, Corr(Eg, Eg) < 0, then within this block,
]:]2 is dominated by the interference E;. Therefore this block is
labelled as interference.

We should note that these blocks are randomly chosen from
different room mixtures, and the distribution remains similar
even if we change the candidate blocks or swap the order of the
BSS outputs. Therefore, the relation between the correlation and
energy ratio can be applied generically to different datasets, and
hence the proposed algorithm is not over-fitted to the dataset
used in this work.

We have also applied SVM [42] to the same data to automati-
cally find the detection boundary, with 10-fold cross validation.
However, the SVM method produces a relatively high negative
error rate, i.e., non-interference being detected as interference.
This may introduce greater information loss as compared with
the proposed method. For this reason, the SVM results are not
included.

With a hard threshold of I';; > 0.6 in the first stage4, we con-
sider the audio block (o™, b*') as interference for the j-th source,
if it is above a third-degree polynomial curve parametrised by

[Q& q2.41; (10]

TP > T3y + @T3; + aTw + a0 (16)
The motivation behind the use of the third-degree polynomial
curve fitting technique is mainly to consider the fitting accu-
racy of the interpolation (curve fitting) functions and its associ-
ated computational cost. There are other curve fitting techniques
that can serve for the same purpose. For instance, we tested
three other curve fitting methods, respectively, linear interpola-
tion (one-degree polynomial), quadratic interpolation (two-de-
gree polynomial) and the exponential curve fitting (which has
two parameters to tune). For example, in Fig. 4, the fitting errors
by these methods obtained from the six manually selected points
are [1.4820.4 0.39], respectively, while the third-degree polyno-
mial curve fitting has an error smaller than 0.01. Moreover, the
computational complexity of the third-degree polynomial curve
is lower than that of the exponential functions, and with only a
few parameters involved in such a fitting function, the proposed
algorithm is less likely to have the over-fitting problem.

Ifthe block (5™, b*') is labelled as interference, exploiting the
speech resolution characteristics, the neighbouring blocks of the
same Mel filterbank, denoted as (b™, b* + [—A(b*), A(b¥)]),

4We picked this value 0.6 empirically from Fig. 4 when the maximal non-
interference correlation in the overlapped region is smaller than 0.6. In the same
way, we obtained another hard threshold of 0.4 in the second stage associated
with Equation (18) when the minimal interference correlation in the overlapped
region is bigger than 0.4.
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Fig. 5. The two-stage boundaries for interference detection. In the first stage, if
Ty (b, b*) and TP (b, b*) fall in the cross hatched region, we consider
the block (b™. b*) as an interference for source j. The cross-hatched region is
thresholded by a strict boundary, shown by the solid curve. Then in the second
stage, we detect the affected neighboring blocks determined by A(b*). If '

and Y)/? " associated with one affected block fall in the single-hatched region,
this block is considered an interference for source j. The single-hatched region
is margined by a loose boundary, shown by the dashed curve.

are likely to be interference, where A(b“) measures the affected
neighbouring block number. Using the similar approximation
for the spectrum smoothing, we calculate the ‘affected area’
using the Mel-scale filterbanks

B — b¥ Mecl(300)B*
B F

A() = [ b Mel(F,/ 2)3”] .

B~ F,
(17)

Then, in the second stage, for a labelled block (6™, b*), we fur-
ther detect the interference in its affected neighbouring blocks
using a loose boundary parametrised by [b3, b2, b1, by] with a
hard threshold of I'y; > 0.4

TP > b33, + bol'y + bal's; + bo. (18)
The same third-degree polynomial curve fitting technique as
used in the first stage is employed to find the parameters in Equa-
tion (18). With the second stage, the overlap regions of the in-
terference and source in the correlation and energy ratio plot
can be better resolved. As a result, the interference residual can
be further reduced. The two-stage boundaries in Equations (16)
and (18) are shown in Fig. 5.

The block-wise principle used in our interference detec-
tion scheme aims to facilitate the evaluation of the structure
similarity and energy ratio between the spectra of the BSS out-
puts, and thus to detect reliably the TF regions of the separated
sources that still contain interference residuals. With block-wise
processing, such regions can be identified more efficiently as
compared to the evaluation of the above cues at each TF point
of the spectra of the separated speech sources. However, the
block-wise processing may introduce processing artefacts,
which can be further reduced using some post-processing tech-
niques such as spectral smoothing [18]. The influences of the
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artefacts can be observed later in the performance evaluation
in Section VI-B2, especially when the input angle is small
e.g. 15°. Spectral smoothing is a popular technique to mitigate
artefacts introduced in the processing technique. However, we
did not combine it for further improving the results since this
is out of the scope of this paper. This block-wise processing
is a trade-off between the performance and computational
complexity, which will be demonstrated later in the computa-
tional load comparison between our proposed algorithm and a
point-wise processing method in Section VI-B2.

Finally, the interference at the block (6™,6%) is removed
from the j-th source estimates if it is labelled as interference:

1

—_— 19
Tkj (bm, bw) ( )

Ejbrnbw «— Ejbrnbw — Ekb"lb“"

The spectra after the interference reduction are transformed

back to the time domain for source estimates reconstruction.
The interference removal scheme is summarised in

Algorithm 1.

Algorithm 1: Framework of the proposed interference removal
scheme.

Input: Magnitude spectra of the source estimates
after the audio-domain TF masking
Ep(m,w), k = 1,2,..., K, parameters
[93, 92, q1, Qo] and [bs, b2, b1, bg], block size
L™ x L¥, and visual VAD cues C(v(m)).

Output: Interference-reduced audio spectra Ey, (i, w).

—

% Gaussian smoothing

Obtain Ey,(m, w) using Equation (11).

% Segmentation

Obtain half-overlapping blocks Ejprmpe .

% Mutual correlations and energy ratios

Calculate [';; (™, 6*) and YZ,’}AD(b’”, b*) with
Equations (12) to (15) for each block.

() NV, B~ VS I S

7 % Interference detection

8  Detect interference with Equation (16).

9  Further detect interference with Equations (17) and (18).
10 % Interference reduction

11 Remove the detected interference with Equation (19).

VI. EXPERIMENTAL RESULTS

To demonstrate our proposed method on real speech signals,
we applied our algorithm on the LILiR main dataset [43], which
was recorded in a controlled environment with each subject ut-
tering continuous speech, and the frontal face of the subject
being captured with a high-resolution camera, with a certain de-
gree of head movements. Sequences were obtained from several
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recordings, sampled at £y = 16 kHz. To obtain a speaker-inde-
pendent visual VAD, recordings of two speakers were used. The
first 4 sequences for subject 1 and the first 3 sequences for sub-
ject 2 were used for training, which last 41267 frames in total
(approximately 28 minutes). The remaining 5 sequences lasting
about 12 minutes were used for testing.

A. Visual VAD

Data and Parameter Setup: A 38-point lip contour extrac-
tion algorithm [34] was applied for both inner and outer lips to
extract the lip contours, and we set ) = 10 to obtain the visual
features V. = (v(l})).

We manually labelled the clean audio activity for training at
each frame [, denoted by «(l). For the VAD training, we set
I = 100 in the adaboost training, which means 100 weak clas-
sifiers will be combined. The error rate was used as a criterion
to evaluate the performance over the total L frames

c= 7 S HEvD) £ alh) (20)

where #(-) counts the number.

In the same way, we defined the false positive rate ¢, and the
false negative rate €,, which evaluate respectively the ratio of
voice being detected as silence and its converse. We are more
tolerant to ¢,, as compared to ¢,,.

For comparison purposes, we also implemented two baseline
visual VAD methods.

The first baseline algorithm uses support vector machine
(SVM) training to the same visual features as used in our
algorithm. The linear SVM [44] was used to accommodate the
high-dimension and the large scale.

The second one is the method by Aubrey et al. [27] using the
optical flow algorithm [45], where one HMM model was built
on the 18156 silence frames. However, there are instances of
significant rigid head motion which greatly affects the perfor-
mance, therefore, we centralised the cropped lip region based on
the lip tracking results. Different recordings were scaled such
that in a natural pose with closed lips, the width of the lips
is 100 pixels. The cropped, raw images have a dimension of
96 x 128. We then applied the optical flow [45] to produce a
24 % 32 motion field, which was later projected onto a 10-dimen-
sional space via principal component analysis (PCA). Finally, a
20-state HMM was trained on the visual feature space, where
the conditional probability distribution is a Gaussian function
for each state. When we applied the trained HMM on the testing
data, the HMM evaluation results was normalised into [0 1], and
we set the threshold® of 0.7 for VAD detection, which was fil-
tered using a low-pass filter with 5 taps. The same low-pass filter
was also applied to our proposed algorithm and the SVM based
method.

Results Comparison and Analysis: First, the trained visual
VAD detector was applied to the testing data, and our algorithm
successfully detected most of the frames with a high accuracy.
We noticed that our proposed algorithm suffers from a relatively
high false positive error rate. However, the false negative error
rate is much lower than the two competing methods, as shown
in the dot-dashed curve in Fig. 6.

5This threshold was chosen from a series of candidates with an increment of
0.1 from 0.6 to 0.9, which gave the best results.
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Fig. 6. Comparison of our proposed visual VAD algorithm with the ground-
truth, Aubrey et al. [27], and the SVM [44] method.

We then quantified the detection performance using the
testing data. Using our method, we obtained ¢, = 0.03, and
€, = 0.25, while the total error rate ¢ = (.11. With Aubrey’s
method, we obtained ¢, = 0.01,¢,, = 0.32 and e = .12, Using
SVM, we gote, = 0.01,¢, = 0.72 and € = 0.27. Aubrey et al.
[27] and the SVM [44] method achieve the best false positive
rate, however at the expense of resulting in a high false negative
rate, especially for the SVM training. The method of Aubrey et
al. is likely to be affected by the following issues. First, a much
large-scale data is used, rather than 1500 frames used in [27].
Second, shifts of head positions affect the performance, even
though they are already alleviated by scaling and centralisations
in the pre-processing. Third, some irregular lip movements in
the silence periods (e.g. those caused by laughing and head
rotations) are matched with movements in voice, which results
in a high ¢,.

Then we compared the algorithm complexity, ignoring the
training stage and post-processing in the detection stage. For our
proposed algorithm and SVM training, the same visual features
were used. The complexity is mainly caused by the lip-tracking
algorithm. For the detection part, our method has 27 compar-
isons and / summations, which are neglect-able as compared to
feature extraction. For the SVM detection, 6(2Q + 1) multipli-
cations are involved, which are also neglect-able as compared
to feature extraction. For Aubrey et al.’s method, lip tracking
is also required to centralise the lip region, which has the same
complexity as our proposed algorithm. Then we need PCA pro-
jection to reduce the redundancy. A forward-type calculation
for the likelihood of the testing data is applied to the 20-state
HMM, whose complexity is mainly taken up by 400 multiplica-
tions and 20 exponential calculations for 10-dimensional data,
which is much higher than our proposed algorithm.

B. VAD-Incorporated BSS

Data, Parameter Setup: Considering the real-room time-in-
variant mixing process, the binaural room impulse responses
(BRIRs) [46] were used to generate the audio mixtures, which
are recorded with a dummy head in four reverberant rooms in-
dexed by A, B, C and D, with reverberation times of [320,
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470, 680, 890] ms respectively. These four rooms have different
acoustic properties: a typical medium-sized office that seats 8
people, a medium small class room with the small shoebox
shape, a large cinema style lecture theatre with soft seating and
a low ceiling, and a typical medium/large sized seminar room
with presentation space and a very high ceiling. To simulate the
room mixtures, we set the target speaker in front of the dummy
head, and we changed the azimuth of the competing speaker on
the right hand side, varying from 15° to 90° with an increment
of 15°. The source signals from the LiLIR dataset [43], each
lasting 10 s, were passed through the BRIRs to generate the mix-
tures. In each of the six interference angles, 15 pairs of source
signals were randomly chosen from the testing sequences asso-
ciated with the target speaker and the competing speaker. This
essentially facilitates the quantitative evaluations of the average
performance of the proposed method under different room en-
vironments and for different speakers. When applying our pro-
posed interference removal algorithm to a set of audio samples
from another multi-modal database XM2VTS [47], we observed
similar performance improvements as shown later, which fur-
ther confirms the robustness of our proposed interference detec-
tion scheme. Due to space limitations, these results are omitted
here. To test the robustness of the proposed algorithm to acoustic
noise, Gaussian white noise was added to the mixtures at a SNR
of 10 dB.

To implement the interference removal, we set ¢ = 0.2
which is found as follows. We varied its values among
{0.01,0.1,0.2,0.3,0.4} in Room A without additional noise,
and obtain the average PESQ results from 90 independent tests,
which are listed as [2.57,2.538,2.58,2.58,2.57]. Comparing
the above results, the value of 0.2 is therefore chosen. We set
8,, = 3 for the 2D smoothing in the time dimension. The value
of &,, equals 41 such that the 2D filter balances the temporal
smoothing with the spectral smoothing. Each of the half-over-
lapping blocks spans the TF space of L™ x L¥ = 64 x 20,
which is equivalent to 1 kHz x 320 ms when Ngpt is set to
1024. L™ is set to span 320 ms (64 samples) so that it can
cover the mean duration of English phonemes, even for the
short vowels such as /oh/ (310 ms) [48], in which period the
temporal structure of a phoneme can be captured and compared
with the block correlation. To choose L“, we varied its values
among {10, 20,40} in Room A in noise-free conditions, and
evaluated the average PESQ results from 90 independent tests,
which are listed as [2.57,2.58, 2.55] respectively. As a result,
the value 20 is chosen.

The coefficients for fitting the boundary curves were ob-
tained as [gs, g2, q1. o] = [—27.30,109.63, —138.29, 57.41]
and [bs, by, b1, bg] = [—22.15,84.29, —98.08, 37.23].

We compared our proposed AV-BSS method, i.e. ‘Pro-
posed’, with several other competing algorithms. The first
one is Mandel’s state-of-the-art audio-domain method, as
introduced in Section IV, which we denoted as ‘Mandel’.
The second one uses IBM [41], denoted as ‘Ideal’, assuming
contributions of each source signal to the audio mixtures are
known in advance. The third one is proposed in our previous
paper [49], which exploits the AV coherence to address the per-
mutation problem associated with ICA, denoted as ‘AV-LIU”.
The forth one is the combination of the proposed interfering
removal scheme with the ground truth VAD, which is manually
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Fig. 7. Spectrograms of the source estimates after applying the interference re-
moval scheme to enhance audio-domain BSS. The magnitude spectra are plotted
in a decibel scale. Spectrograms of the associated original source signals are
plotted in Fig. 2(a) and (c), and the spectra obtained by the audio-domain algo-
rithm proposed by Mandel et al. are shown in Fig. 2(b) and (d). With further
interference reduction, enhanced spectra with much less residual distortion are
obtained, as demonstrated in the above figure. (a) Magnitude spectrum of source
1 estimate after the VAD-BSS. (b) Magnitude spectrum of source 2 estimate
after the VAD-BSS.

labelled from the testing data, denoted as ‘Ideal-VAD’. The
fifth one is proposed by Rivet ef al. [S0] denoted as ‘Rivet’,
where the visual VAD cues detected by our proposed visual
VAD algorithm are used to regularise the permutations, which
is also an ICA-based algorithm as [49]. The sixth one uses
adaptive noise cancellation, denoted as ‘ANC’ [14]. ‘ANC” is
essentially a post-processing scheme based on least squares
optimisation, which is proposed to remove cross interference
in subband BSS algorithm. In our tests, the subband BSS based
on the Informax algorithm [5] as used in [14] seems to work
well for instantaneous or anechoic mixtures. However, the
convergence of this algorithm was numerically unstable when
tested on reverberant mixtures such as those used in our experi-
ments. For this reason, we directly combined Mandel’s method
with ANC, in order to provide a fair comparison between the
post-processing methods that we considered. In the seventh
algorithm, we combined ‘Proposed’ with ‘ANC’, denoted as
‘Proposed-ANC’ for further interference reduction. First, the
‘Proposed’ and the ‘ANC’ methods are applied in parallel to the
BSS outputs, to obtain two independent streams of enhanced
target estimates. Then we obtain the final enhanced output by
the integration of the above two enhanced target estimates as
follows: we copy the TF points spanned by the blocks detected
as interference from the enhanced target output via ‘Proposed’
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Fig. 8. The signal-to-interference ratio (SIR) comparison for four different
rooms (a) without and (b) with 10 dB Gaussian white noise corruption. The
higher the SIR, the better the performance. The thin solid line represents the
performance of the proposed algorithm.

to the final output, and copy the other TF points from the
enhanced target output via ‘“ANC’ to the final output.

To evaluate the performance of the BSS methods, we used
the objective signal-to-interference ratio (SIR) and the percep-
tual evaluation of speech quality (PESQ) [51] as evaluation
metrics.

Results Comparison and Analysis: We first show two exam-
ples of the enhanced audio spectrum after the interference re-
moval scheme in Fig. 7. Our algorithm has successfully detected
most of the interference block and attenuated them. The inter-
ference has been considerably reduced as compared to Fig. 2(b)
and Fig. 2(d).

Then we demonstrated the SIR comparison as shown in
Fig. 8. From this figure, we can observe that the ‘Proposed’
algorithm greatly improves the results obtained by ‘Mandel’,
confirming that the visual information is effective in in-
terference reduction for the separated speech. The spectral
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subtraction based method seems to be less effective as com-
pared with adaptive filtering approach. This can be seen from
the results by the competing ‘ANC’ algorithm [14] which
achieves the second best results. It is, however, worth noting
that the ‘ANC’ approach is computationally more expensive
as compared with the spectral subtraction technique. We quan-
titatively evaluated the running time for both ‘Proposed’ and
‘ANC’, for each test, 10 s long speech data were used, and
average time consumptions are about 0.6 s versus 42.8 s respec-
tively (CPU: 3 GHz, RAM: 3.71 GB, MATLAB R2012a for
Linux operating systems). We have also considered the com-
bination of the visual-VAD based technique with the ‘ANC’,
i.e. ‘Proposed-ANC’ which tends to give the best SIR results
for all room types. In general, ‘Proposed’, ‘ANC’ and ‘Pro-
posed-ANC’ achieve similar results for the above reverberant
rooms, which are much better than the other baseline algo-
rithms. The adaptive filtering techniques are the most popular
techniques for reducing interference, our proposed algorithm
achieves competitive results, which confirms the benefit of
using visual modality to speech enhancement. Also, due to the
easy-to-implement and efficient strategy, our proposed method
provides the potential of real-time processing, as suggested by
the average processing time presented earlier in this paragraph.

The ‘ANC’ method aims to attenuate the interference for each
TF point of the BSS output. The ‘Proposed’ method, on the other
hand, only attenuates the interference on certain TF points, i.e.
in those TF blocks that are detected as interference based on
VAD. In other words, the ‘Proposed’ method effectively reduces
the interference when its residual in the BSS outputs remains
relatively strong, but retains the TF points if they are detected
as non-interference. For the TF blocks that are detected as being
dominated by interference, the ‘ANC’ approach is less effective
in removing the interference residual as compared with the ‘Pro-
posed’ approach, since the update of the coefficients of the adap-
tive filter used in ‘ANC’ is dependent on the previous frames
where the interference level may be low, thus leading to inaccu-
rate estimation of the interference level of the current frame. We
also notice that ‘ANC’ outperforms ‘Proposed-ANC’ for small
angles for the following reason. In small-input-angle situations,
the interference residual in the BSS outputs is much stronger
as compared with the large-input-angle conditions due to the
overlap of the binaural cues. As a result, more TF blocks are de-
tected as interference, which include some TF blocks where the
contribution from the target source is non-trivial and actually
essential to speech quality. Such important information origi-
nating from the target speech, however, might get attenuated
after applying Equation (19) once the associated TF block is de-
tected as interference. This un-wanted over-subtraction results
in slightly lower performance as compared to ‘ANC’. Also, SIR
evaluations of ‘Proposed-ANC’ and ‘ANC’ are not significantly
different in Rooms A and B where the reverberation level is rela-
tively low. This implies that the advantage of using spectral sub-
traction over the adaptive filtering technique is less significant
for the attenuation of the interference residuals in the interfer-
ence dominant TF blocks in low-reverberation conditions. How-
ever, for highly-reverberant environments, such as for Rooms C
and D, the advantage of ‘Proposed-ANC’ over ‘ANC’ becomes
more significant as shown in Fig. 8.
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Also, the ICA-based AV-BSS methods ‘AV-LIU’ and ‘Rivet’
do not work very well, since ICA algorithms are limited in re-
verberant environments. The reverberant impulse responses are
much longer than the FFT size in these room mixtures. As a
result we could not accurately estimate the demixing filters.
Interestingly, in Room A and C when the input angle is very
small, ‘AV-LIU’ shows very modest improvement over the TF
masking method in noisy environments. Overall, ‘AV-LIU’ out-
performs ‘Rivet’, but neither of them cope very well with a high
reverberation or noise level.

Comparing the results of ‘Proposed’ and ‘Ideal-VAD’, we
could evaluate the VAD accuracy on the interference removal
scheme. Since the VAD algorithm proposed by Aubrey et
al. [27] achieved similar results as our VAD method, it was
not combined with the residual removal scheme. We found
that the curve of our ‘Proposed’ method almost overlap with
the curve of ‘Ideal-VAD’. There are two reasons behind this
phenomenon. First, less than 10% error rate is involved for our
proposed visual VAD algorithm as compared to the ground-
truth, and there is approximately 3-second silence for each
of the 10-second speech, which means that less than 300 ms
silence is misclassified as active. However, the temporal length
of each of the half-overlapping blocks spans more than 300 ms.
In addition, most of the misclassified frames are scattered at
different time points. Consequently, many block energy ratios
are affected, but the influence is very small that the interference
detection is not affected. Second, the VAD attenuation to the
spectra changes only the block energy ratios, but not the block
correlations. The interference detection, however, depends on
both. In the misclassified frames, the spectra might have low
correlation ratios. In that case, whether or not the frame is
detected as silence, it will not be classified as interference.
Due to the above reasons, the final estimates of ‘Proposed’ and
‘Ideal-VAD’ remain similar.

It is worth noting that the quality of the visual VAD is de-
pendent on lipreading results, which will inevitably be affected
by the quality and resolution of the images in the video sig-
nals used for liptracking. Head rotations and the distance be-
tween the subject and the camera can also affect the lipreading
results. Despite the fact that we have used fairly good quality
video signals in our experiments, the visual VAD assisted inter-
ference reduction algorithm is fairly reliable and robust against
the inaccurate visual VAD results. The influence of the video
quality on the BSS performance can be evaluated equivalently
by assessing the influence of visual VAD accuracy on the BSS
performance. For this reason, we synthetically generated inac-
curate VAD results, by alternating between one-second silence
and one-second activity. The overall accuracy of such a VAD
is therefore 50%, which given we only have two classes is no
better than chance. The inaccurate VAD results were then ap-
plied to the proposed interference removal scheme. Compared
to ‘Proposed’, the SIR results with inaccurate VAD suffers a
[1.0, 1.1, 1.2, 1.2] dB degradation for the four different room
types respectively. Still, it outperforms Mandel’s BSS algorithm
with [1.2, 1.6, 1.5, 1.1] dB improvement. This is because there
are still interference blocks being detected and removed, even
though the number of detected blocks is smaller than the situa-
tion when the accurate VAD cues are applied.
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Fig. 9. The perceptual evaluation of speech quality (PESQ) comparison for
four different rooms (a) without and (b) with 10 dB Gaussian white noise cor-
ruption. The higher the PESQ, the better the performance. The thin solid line
represents the performance of the proposed algorithm.

We have also quantitatively evaluated the effect of the 2D
Gaussian smoothing on the interference reduction method. To
do this, we calculate the average SIR results in Room A for both
noise-free and 10 dB noisy situations, by varying the standard
deviations 47 and 62 of the 2D filters in Equation (11). 61 and 62
are scaled by the same factor to their default values as introduced
after Equation (11), and the factor is chosen from the candidates
[0,0.5,1,1.5,2], where 0 means no spectral smoothing and 1 the
default smoothing. The average result for noisy and noise-free
situations is obtained as: [13.72, 14.98, 16.31, 16.43, 15.35] dB
respectively. It can be observed that the best results are obtained
for the default values and their 1.5-scaled versions, which further
confirms the benefit of applying Gaussian filters before the inter-
ference detection. If the smoothing process is not applied before
the interference reduction, the performance of the proposed
interference reduction scheme will be approximately 3 dB lower.

Finally we compared the perceptual metric using PESQ.
From Fig. 9, we found that our VAD-assisted BSS method
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achieves better perceptual performance, for both noise-free
and noisy room mixtures. The PESQ evaluations overall are
consistent with the SIR results, even though the improvement
is not as obvious as the SIR evaluations. When two speakers
are near, the improvement is higher. However, some artificial
distortion is introduced in our interference removal scheme,
which degrades the accuracy to some extent. This is especially
the case when the audio-domain method already successfully
recovers the sources, for example, when two sources are far
away from each other, i.e. large input angle. Therefore, the
improvement is modest in that situation. In the most rever-
berant room D with noise, also the most adverse condition, our
proposed algorithm can recover the source signals almost as
good as the ideal masking, which shows the effectiveness of
our method in real-world auditory scenes.

In our work, the use of high-resolution coloured video se-
quences, is mainly to demonstrate the proof of concept that the
visual information of lipreading is very helpful for interference
reduction of the associated audio utterance, and therefore can
be used to improve the quality of speech sources separated by
an audio-domain BSS algorithm. The proposed algorithm can
be further improved when operated in a more realistic scenario,
with potentially larger variations in e.g. image resolution, il-
lumination, head movement, and/or the distance between the
speaker and the video camera, which, however, is out of the
scope of this work.

VII. CONCLUSION

In this paper, we have presented a system for the enhancement
of BSS-separated target speech, incorporating the speaker-in-
dependent visual voice activity detector obtained in the off-
line training stage. We have proposed a novel interference re-
moval scheme to mitigate the residual distortion of traditional
BSS algorithms, where the VAD cues are integrated to sup-
press the target speech in silence periods. Experimental results
show that the system improves the intelligibility of the target
speech estimated from the reverberant mixtures, in terms of
both signal-to-interference (SIR) ratio and perceptual evalua-
tion of speech quality (PESQ). However, due to the fixed block
analysis, which is not flexible to the size variation in different
phonemes, our algorithm cannot perfectly detect and remove all
the residual. But using the same principle, combined with more
advanced TF analysis techniques such as wavelet analysis, our
method could be further improved for interference suppression,
which is the priority of our future work.
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