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ABSTRACT

Audio super-resolution is a fundamental task that pre-
dicts high-frequency components for low-resolution audio,
enhancing audio quality in digital applications. Previous
methods have limitations such as the limited scope of audio
types (e.g., music, speech) and specific bandwidth settings
they can handle (e.g., 4 kHz to 8 kHz). In this paper, we
introduce a diffusion-based generative model, AudioSR, that
is capable of performing robust audio super-resolution on
versatile audio types, including sound effects, music, and
speech. Specifically, AudioSR can upsample any input audio
signal within the bandwidth range of 2 kHz to 16 kHz to
a high-resolution audio signal at 24 kHz bandwidth with a
sampling rate of 48 kHz. Extensive objective evaluation on
various audio super-resolution benchmarks demonstrates the
strong result achieved by the proposed model. In addition, our
subjective evaluation shows that AudioSR can act as a plug-
and-play module to enhance the generation quality of a wide
range of audio generative models, including AudioLDM,
Fastspeech2, and MusicGen. Our code and demo are avail-
able at https://audioldm.github.io/audiosr.

Index Terms— audio super-resolution, diffusion model

1. INTRODUCTION

Audio super-resolution (SR) aims to estimate the higher-
frequency information of a low-resolution audio signal, which
yields a high-resolution audio signal with an expanded fre-
quency range. High-resolution audio signals usually offer
a better listening experience, which is often referred to as
high fidelity. Due to the ability to enhance audio signal qual-
ity, audio super-resolution plays a significant role in various
applications, such as historical recording restoration [1].

Previous studies on audio super resolution have primar-
ily focused on specific domains, with a particular emphasis
on speech super resolution. Early research decomposes the
speech super resolution task into spectral envelope estima-
tion and excitation generation [2]. Recent works employing
deep learning techniques, such as AECNN [3], NuWave [4],
and NVSR [5], have shown superior performance compared
to traditional methods. In addition to speech, there have been

efforts to address music super resolution, including studies on
general music [6] and specific instruments [7].

Apart from the limited scope of audio, existing research
on audio super resolution also has primarily been conducted
in controlled experimental settings, limiting its applicability
in real-world scenarios. An important challenge in audio
super-resolution, as highlighted in [5], is the issue of band-
width mismatch. This occurs when the bandwidth of the test
data differs from that of the training data, leading to model
failure. However, this issue has not received significant at-
tention in the literature, as previous works typically assume
consistent bandwidth settings for both training and testing
data. In practice, the input bandwidth of test audio can vary
due to factors such as limitations in recording devices, sound
characteristics, or applied compression processes. Only a
few studies have explored flexible input bandwidth, including
NVSR [5] and NuWave2 [8]. However, these methods still
primarily focus on speech super resolution without generaliz-
ing to a broader domain.

In this paper, we propose a novel method that addresses
the limitations of previous work on limited audio types and
controlled sampling rate settings. We introduce a method
called AudioSR, which extends audio super resolution to a
general domain, including all audible sounds such as music,
speech, and sound effects. Moreover, AudioSR is capable of
handling a flexible input sampling rate between 4kHz and
32kHz, covering most of the use cases in real-world sce-
narios. It has been found that the prior knowledge learned
by the neural vocoder is helpful for reconstructing higher
frequency components in audio super resolution tasks [5].
Therefore, AudioSR follows [5] to perform audio super reso-
lution on the mel-spectrogram and utilizes a neural vocoder to
synthesize the audio signal. To estimate the high-resolution
mel-spectrogram, we follow AudioLDM [9] to train a latent
diffusion model on learning the conditional generation of
high-resolution mel-spectrogram from low-resolution mel-
spectrogram. Our experiment demonstrates that AudioSR has
achieved promising super resolution results on speech, mu-
sic, and sound effects with different input sampling rate
settings. Our subjective evaluation on enhancing the output
of text-to-audio model AudioLDM [9], text-to-music model
MusicGen [10], and text-to-speech model Fastspeech2 [11]
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show that AudioSR can be a plug-and-play module for most
audio generation models to enhance listening quality. Our
contributions are summarized as follows:

• Our proposed AudioSR is the first system to achieve audio
super resolution in the general audio domain, covering var-
ious types including music, speech, and sound effects.

• AudioSR can handle a flexible audio bandwidth ranging
from 2kHz to 16kHz, and extend it to 24kHz bandwith with
48kHz sampling rate.

• Besides the promising results on audio super resolution
benchmarks, AudioSR can also enhance audio quality as a
plug-and-play module for models like AudioLDM, Music-
Gen, and FastSpeech2.

2. PROBLEM FORMULATION

Given an analog signal that has been discretely sampled at a
rate of l samples per second, resulting in a low-resolution se-
quence of values xl = [xi]i=1,2,...T ·l, the goal of audio super-
resolution (SR) is to estimate a higher resolution signal yh =
[yi]i=1,2,...T ·h sampled at a rate of h samples per second,
where h > l and T is the total duration in seconds. Accord-
ing to Nyquist’s theory, xl and yh have maximum frequency
bandwidths of l/2 Hz and h/2 Hz respectively. Therefore, the
information contained between frequencies of h/2 − l/2 Hz
is missing from xl, and estimating this “missing” frequency
data is the core objective of the super resolution task.

In this paper, we follow the method proposed in NVSR [5]
to decompose the original audio super resolution task into two
steps, including (i) High-resolution Mel spectrogram Estima-
tion, and (ii) Mel Spectrogram to Waveform Reconstruction
with a Neural Vocoder. Specifically, we first resample xl to
xh using cubic interpolation, where xh has a higher sampling
rate h but with limited maximum bandwidth of l/2 Hz. We
follow the steps in [5] to calculate the mel spectrogram of both
xh and yh, resulting Xm×n and Ym×n, respectively, where m
is the number of time frames and n is the number of mel fre-
quency bins. Then we utilize a generative model to learning
the process of estimating Y based on X , which is denoted as
Gθ : X 7→ Ŷ , where θ are the parameters of model G. Finally,
a neural vocoder is employed to reconstruct the high sampling
rate audio signal based on the estimation of Y , which can be
formulated as Vϕ : Ŷ 7→ ŷh, where V is the neural vocoder
and ϕ are the learnable parameters.

3. METHOD

The architecture of the proposed AudioSR is demonstrated in
Figure 1. After resampling the low-resolution audio xl to xh,
the system first calculates both the STFT spectrogram and the
mel spectrogram of xh. Note that the higher frequency bins
in Xh are empty because xh does not have high-frequency in-
formation. Xh is then used as a conditioning signal to guide
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Fig. 1. The AudioSR architecture. The replacement-based
post-processing aims to preserve the original lower-frequency
information in the model output.

the pre-trained latent diffusion model to estimate the high-
resolution mel spectrogram Ŷh. To ensure consistency in the
low-frequency information between Xh and Ŷh, we replace
the lower frequency part of Ŷh with that of Xh. The mel-
spectrogram after low-frequency replacement serves as the
input to the neural vocoder, whose output is applied with a
similar technique to replace the low-frequency information
with that of the input low-resolution audio. We introduce the
training of the latent diffusion model and neural vocoder in
Section 3.1. The post-processing algorithm is elaborated in
Section 3.2.

3.1. High-resolution Waveform Estimation

Latent diffusion model (LDM) has demonstrated promis-
ing results in various domains, including image synthesis [12]
and audio generation [9]. In this study, we employ the LDM
to estimate high-resolution mel-spectrograms. The training
of our LDM is conducted within a latent space learned by
a pre-trained variational autoencoder (VAE) F(·). The VAE
is trained to perform autoencoding with a small compressed
latent space in the middle, denoted as F : X 7→ z0 7→
X̂ . By leveraging the lower-dimensional representation z0,
the LDM can learn the generation of z0 instead of X , re-
sulting in a substantial reduction in computational cost. We
adopt the methodology proposed in AudioLDM to optimize
the VAE model, including the use of reconstruction loss, Kull-
back–Leibler divergence loss, and discriminative loss.

We follow the formulation introduced in AudioLDM [9]
to implement the LDM, with improvements on the training
objective, noise schedule, and conditioning mechanism. It
has been found that the common noise schedule used in the
diffusion model is flawed [13], particularly because the noise
schedule in the final diffusion step of LDM does not corre-
spond to a Gaussian distribution. To address this issue, we
follow [13] to update the noise schedule to a cosine sched-
ule. This adjustment ensures that a standard Gaussian distri-
bution can be achieved at the final diffusion step during train-



ing. Additionally, we incorporate the velocity prediction ob-
jective [14] on reflection of using the new noise schedule. The
final training objective of our LDM is

argminGθ
||vk − G(zk, k,Fenc(Xl); θ)||22, (1)

where zk represents the data of z0 at diffusion step k ∈
[1, ...,K], || · ||2 denotes the Euclidean distance, Fenc denotes
the VAE encoder, and as described in [13], vk is calculated
based on z0, representing the prediction target of G at time
step k. We adopt the Transformer-UNet architecture pro-
posed in [15] as G. The input to G is obtained by concatenat-
ing zk with the Fenc(Xl), which is the VAE latent extracted
from the low-resolution mel-spectrogram Xl. To incorpo-
rate classifier-free guidance, following the formulation in [9],
we replace Fenc(Xl) with an empty tensor at a random rate
(e.g., 10%) during training. After training the latent diffusion
model, we perform sampling using the DDIM sampler [16].
Neural Vocoder. The LDM is capable of estimating high-
resolution mel spectrograms. However, since mel-spectrograms
are not directly audible, we employ a neural vocoder based
on HiFiGAN [17] to convert the mel-spectrograms into wave-
forms. To address the issue of spectral leakage when imple-
menting the original HiFiGAN, we adopt the multi-resolution
discriminator [18] into the HiFiGAN vocoder. We optimize
the vocoder using diverse audio data, as discussed in Sec-
tion 4, resulting in a vocoder that operates at a sampling rate
of 48kHz and can work on diverse types of audio.

3.2. Post-processing and Pre-processing

Post-processing. The input low-resolution audio features Xh

and xh are identical to the lower frequency bands in the esti-
mation target, Yh and yh. As a result, we can reuse the avail-
able information from Xh and xh to enhance both the LDM
output Ŷh and neural vocoder output ŷh. To accomplish this,
we first determine the 0.99 roll-off frequency c of the entire
input audio based on an open-source method1 applied to both
Xh and the STFT spectrogram of yh. Subsequently, we re-
place the spectrogram components below the cutoff frequency
in the LDM output Ŷh and vocoder output ŷh, with the cor-
responding information in the Xh and xh, respectively. This
post-processing method can ensure the final output does not
significantly alter the lower-frequency information.
Pre-processing. To minimize the mismatch between model
training and evaluation, we perform preprocessing to the in-
put audio during evaluation with a lowpass-filtering opera-
tion. We use the same method in post-processing to calculate
the 0.99 roll-off frequency and perform lowpass filtering with
an order 8 Chebyshev filter.

4. EXPERIMENT

Training Datasets. The datasets used in this paper in-
clude MUSDB18-HQ [19], MoisesDB [20], MedleyDB [21],

1https://librosa.org/doc/main/generated/librosa.
feature.spectral_rolloff.html

FreeSound2 [22], and the speech dataset from OpenSLR3,
which are downloaded by following the link provided by
VoiceFixer [1]. All the audio data used are resampled at
48kHz sampling rate. The total duration of the training data
is approximately 7000 hours. We utilize all these datasets to
optimize VAE, LDM, and HiFi-GAN.
Training Data Simulation. We follow the method intro-
duced in NVSR [5] to simulate low-high resolution audio data
pairs. Given a high-resolution audio data yh, we first per-
form lowpass filtering to the audio with a cutoff frequency
uniformly sampled between 2kHz and 16kHz. To address the
filter generalization problem [3], the type of the lowpass filter
is randomly sampled within Chebyshev, Elliptic, Butterworth,
and Boxcar, and the order of the lowpass filter is randomly se-
lected between 2 and 10.
Evaluation Datasets. We performed both subjective and ob-
jective evaluations. For subjective evaluations, we adopt the
output of MusicGen (caption from MusicCaps [23]), Audi-
oLDM (caption from AudioCaps [24]), and Fastspeech2 (tran-
scription from LJSpeech [25]) to study if the AudioSR can
enhance the quality of the generation. For MusicGen we use
audio tagging4 to filter out the non-musical generation output.
Finally, we collected 50 samples from MusicGen, 50 samples
from AudioLDM, and 20 samples from FastSpeech2, and
processed them with AudioSR for subjective evaluations on
listener preference. Besides, we curate three benchmarks for
objective evaluation, including ESC50 (sound effect) [26],
AudioStock (music)5, and VCTK (speech) [5]. The AudioS-
tock dataset is built by hand-picking 100 high-quality music
with 10 different genres. We only use the fold-5 in the ESC50
dataset as the evaluation set.
Evaluation Metrics For objective evaluation, we adopt the
Log-Spectral Distance (LSD) metric, as used in prior stud-
ies [3, 5]. Following the setup of [15], we conduct two types
of subjective evaluation on Amazon Mturk6: Overall quality
rating and preference comparison. In the overall quality rat-
ing, raters assign a score between 1 and 5 to reflect the audio
quality. In the preference comparison, raters compare two au-
dio files and select the one that sounds better.

5. RESULT

We trained two versions of AudioSR for evaluation: the ba-
sic AudioSR that works on arbitrary audio types and input
sampling rates, and a speech data fine-tuned variant called
AudioSR-Speech. Our primary baseline for comparison is
NVSR [5], which employs a similar mel-spectrogram and
vocoder-based pipeline for audio super resolution tasks. The
main distinction between AudioSR and NVSR lies in the

2https://labs.freesound.org/
3https://openslr.org/
4https://github.com/kkoutini/PaSST
5https://audiostock.net/
6https://www.mturk.com/
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Objective Evaluation Subjective Evaluation
VCTK (Speech) AudioStock (Music) ESC-50 (Sound Effect) ESC-50 (4kHz Cutoff Freq)Cutoff-frequency 4kHz 8kHz 12kHz

GT-Mel 0.64 0.64 0.64 Cutoff-frequency 4kHz 8kHz 16kHz 4kHz 8kHz 16kHz System Overall Quality
Unprocessed 5.15 4.85 3.84 GT-Mel 0.61 0.61 0.61 0.84 0.84 0.84 GT-Mel 4.35
NuWave [4] 1.42 1.36 1.22 Unprocessed 4.25 3.48 1.99 3.90 3.07 2.25 Unprocessed 3.01
NVSR [5] 0.91 0.81 0.70 NVSR-DNN 1.67 1.49 1.13 1.64 1.59 1.76 NVSR-DNN 2.84
AudioSR 1.30 1.11 0.94 NVSR-ResUNet 1.70 1.34 0.95 1.80 1.69 1.67 NVSR-ResUNet 3.16

AudioSR-Speech 1.03 0.82 0.69 AudioSR 0.99 0.74 0.73 1.74 1.57 1.35 AudioSR 4.01

Table 1. Objective and subjective evaluation results for 48kHz audio super resolution of speech, music, and sound effect data
with varying cutoff frequencies in the input audio. The objective metric used for evaluation is the LSD, where lower values
indicate superior performance. The subjective metric measures the overall listening quality, with higher values indicating better
performance.

Unprocessed NVSR-DNN NVSR-ResUNet AudioSR Ground Truth

Fig. 2. Comparison of different systems. AudioSR performs significantly better than the baseline NVSR models.

Fig. 3. Subjective evaluation shows that applying AudioSR for
audio super-resolution on the output of audio generation mod-
els can significantly enhance the perceptual quality.

mel-spectrogram estimation approach: AudioSR utilizes a
latent diffusion model, while NVSR employs either a multi-
layer perceptron (NVSR-DNN) or a residual UNet (NVSR-
ResUNet). For speech super resolution, we also compare
with NuWave [4] as a baseline model, which also employs a
diffusion model for audio super resolution.

Table 1 shows AudioSR has achieved promising results
on both objective and subjective evaluation. For music su-
per resolution, AudioSR achieves state-of-the-art performance
across all cutoff frequency settings, outperforming the base-
line NVSR model by a large margin. For speech super reso-
lution, AudioSR-Speech achieves the best performance on the
24kHz to 48kHz upsampling task. Also, the comparison be-
tween AudioSR and AudioSR-Speech indicates that finetuning
on a small domain of data can significantly improve the LSD.

The LSD metric does not always align with perceptual
quality. In the 8kHz (i.e., 4kHz cutoff frequency) to 48kHz
upsampling task on the ESC-50 dataset, we observed that
NVSR-DNN achieved the best performance with an LSD
score of 1.64. However, subjective evaluations indicated that
the perceptual quality of NVSR-DNN was the worst with a
score of 2.84, significantly lower than AudioSR’s score of
4.01. These findings suggest that LSD may not be a suitable
evaluation metric for audio super resolution tasks on sound

effect data, warranting further investigation in future research.
As depicted in Figure 3, our subjective preference test

demonstrates that the utilization of AudioSR significantly en-
hances the perceptual quality of the AudioLDM, MusicGen,
and FastSpeech2 output. It is worth noting that the output of
MusicGen is already in a high sampling rate of 32kHz, which
may contribute to the relatively high rate of “No Clear Differ-
ence” responses. However, MusicGen still exhibits a signifi-
cantly improved perceptual quality after applying AudioSR.

6. CONCLUSION

This paper presents AudioSR, a 48kHz audio super-resolution
model that is capable of working with diverse audio types and
arbitrary sampling rate settings. Through evaluation of mul-
tiple audio super-resolution benchmarks, AudioSR demon-
strates superior and robust performance on various types of
audio and sampling rates. Additionally, our subjective eval-
uation highlights the effectiveness of AudioSR in enabling
plug-and-play quality improvement for the audio generation
models, including AudioLDM, MusicGen, and Fastspeech2.
Future work includes extending AudioSR for real-time ap-
plications and exploring appropriate evaluation protocols for
audio super-resolution in the general audio domain.
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