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a b s t r a c t 

With the fast development of information acquisition, there is a rapid growth of multi-modality data, 

e.g., text, audio, image and video, in health care, multimedia retrieval and many other applications. Con- 

fronted with the challenges of clustering, classification or regression with multi-modality information, 

it is essential to effectively measure the distance or similarity between objects described with hetero- 

geneous features. Metric learning, aimed at finding a task-oriented distance function, is a hot topic in 

machine learning. However, most existing algorithms lack efficiency for high-dimensional multi-modality 

tasks. In this work, we develop an effective and efficient metric learning algorithm for multi-modality 

data, i.e., Efficient Multi-modal Geometric Mean Metric Learning (EMGMML). The proposed algorithm 

learns a distinctive distance metric for each view by minimizing the distance between similar pairs while 

maximizing the distance between dissimilar pairs. To avoid overfitting, the optimization objective is reg- 

ularized by symmetrized LogDet divergence. EMGMML is very efficient in that there is a closed-form 

solution for each distance metric. Experimental results show that the proposed algorithm outperforms 

the state-of-the-art metric learning methods in terms of both accuracy and efficiency. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Multi-modality data are booming with the ubiquitous usage of

digital devices and social network. In multi-media retrieval, there

exists a large variety of data, e.g., text, audio, image, and video on

the website. In biometric recognition, a person can be identified by

retina, face, iris, signature, fingerprint, or palmprint [1–5] . For face

recognition, a face image may be captured by cell phones, near-

infrared cameras or depth cameras [6–13] . An object is usually de-

scribed by different modalities with complementary information in

many computer vision and pattern recognition tasks. 

Learning a task-driven metric from massive multi-modality data

automatically is meaningful to diverse applications such as com-

puter vision, bioinformatics and information retrieval. Metric learn-

ing, which aims to train an appropriate measure from data, has

stimulated wide interests over the past decade. A large number of

approaches have been proposed, most of which intend to learn a

Mahalanobis-like metric. Generally, according to the optimality of

the solution, metric learning can be categorized into global meth-

ods and local methods. Global methods can be regarded as learn-

ing a linear geometric transformation over the input space [14–17] .
∗ Corresponding author. 
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hile the simplicity promotes their wide application, the global

etrics still suffer from the curse of dimensionality. Compared

ith global metrics, local metrics have been shown to be able to

exibly capture geometric variations across different feature spaces

18–20] . However, a major drawback of local metric learning is that

t may lead to overfitting [21] . In addition, they are generally con-

ronted with high computational cost. 

Despite the large amount of work on single modality, learn-

ng metrics for multiple modalities still remains largely unexplored

22] . Since single metrics ignore consensus & complementarity

roperties between different modalities, they may fail in multi-

odal learning. Under such circumstance, multiple kernel tech-

iques, which map the data to high-dimensional feature spaces

ith a set of nonlinear kernel matrices, have been introduced to

ddress these issues [7,23–25] . To our best knowledge, McFee and

anckriet [23] first utilized multiple kernel learning techniques to

ntegrate heterogeneous modalities into a single, unified similarity

pace. In their work, an optimal ensemble of kernel transforma-

ions is learned. Unfortunately, it is not applicable to large-scale

asks due to the high computational costs. Lu et al. [24] proposed a

eighted kernel embedding technique for metric learning, which is

hown to be effective in combining multiple features. Recently, Lu

t al. [7] exploited statistical information to represent image sets

nd developed a localized multi-kernel metric learning (LMKML)

ethod. Liang et al. [25] developed a semi-supervised online

ulti-kernel similarity learning framework, which is a multi-stage
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lgorithm consisting of feature selection, selective ensemble learn-

ng, active sample selection and triplet generation. While state-of-

he-art performance has been achieved, it remains an open prob-

em to develop an efficient strategy to improve the speed. Gener-

lly speaking, although multiple kernel learning may capture the

omplex data structure and avoid the curse of dimensionality, the

ime-consuming process in terms of parameter adjustment limits

ts scalability in large-scale tasks. 

A distance metric learning algorithm is evaluated in terms

f both accuracy and efficiency. Although these aforementioned

ethods outperform the state-of-the-arts, the high time complex-

ty limits their scalability in practical applications, especially in

andling multi-modality data. As time cost as well as the memory

equirement dramatically increases when dealing with large-scale

ata represented with high-dimensional multiple modalities, how

o develop an effective and efficient metric learning method has

ecome a hot topic. To solve the problem, online learning tech-

iques have been considered [26,27] . In [26] , a novel online mul-

iple kernel similarity (OMKS) learning framework is proposed to

earn a flexible proximity function with multiple kernels. In [27] ,

n online multi-modal distance metric learning (OMDML) scheme

s presented, which aims at learning distinctive metrics in individ-

al modality space and the weights for combining different modal-

ties via a joint formulation. While online approaches are more

calable compared with the batch processing techniques, they are

ore likely to suffer from high computational cost in projections

n that the iteration process used often involves a gradient descent

ethod. 

As the iterative gradient descent or eigenvalue decomposition

s used in solving the optimization problem, most of these met-

ic learning algorithms are computationally expensive. Remark-

bly, Zadeh et al. [28] developed geometric mean metric learn-

ng (GMML), which formulates metric learning as an unconstrained

mooth and strictly convex optimization problem. GMML is very

fficient for large-scale tasks in that it admits a closed form solu-

ion. Additionally, for multi-modal learning, the commonness and

ndividuality should be made good use of to improve the discrimi-

ation ability of the learned metrics. 

In this paper, we develop a novel efficient multi-modal ge-

metric mean metric learning (EMGMML) framework to handle

ata with multiple modalities, which is here referred specifically

o multiple visual features extracted from media objects. EMG-

ML learns the metrics for multiple features in a joint optimiza-

ion problem by pulling similar pairs close whereas pushing dis-

imilar pairs away. To exploit the complementarities among dif-

erent modalities, the learned metrics for different modalities are

equired to be close to a common prior metric by symmetrized

ogDet divergence. Meanwhile, to highlight the difference of multi-

odalities, we assign a weight to each modality. Specifically, the

etric associated with each modality can be addressed in a closed

orm solution. Then, the metric learning problem can be converted

nto a quadratic programming in terms of weights. Compared with

xisting metric learning approaches, EMGMML is highly scalable

nd efficient since the commonly used kernel mapping and the op-

imization of a semi-definite programming problem are no longer

equired. Empirical results on benchmark datasets with hundreds

f dimensions verify that multiple weighted metrics obtained by

ur algorithm give prominent performance boost in terms of visual

earch. 

The remainder of this paper is organized as follows.

ection 2 briefly reviews the GMML algorithm in [28] . In

ection 3 , we introduce our proposed EMGMML algorithm for

igh-dimensional multi-modal data. Section 4 analyzes experi-

ental results on both qualitative and quantitative point of view.

ection 5 concludes our study and gives an outlook for our future

ork. 
. Geometric mean metric learning model 

In this section, we review geometric mean metric learning

GMML) [28] algorithm. 

.1. Formulation 

We aim to learn a Mahalanobis distance 

 A (x , x ′ ) = (x − x ′ ) T A (x − x ′ ) , (1)

here x , x ′ ∈ R 

d are data vectors and A is a d × d real and sym-

etric positive definite (SPD) matrix to be solved. Constraints are

rovided in the form of positive / negative pairs 

 := { (x i , x j ) | x i and x j are in the same class } 

 := { (x i , x j ) | x i and x j are in different classes } . 
The objective is to minimize the sum of distances between sim-

lar points with a matrix A and distances between dissimilar points

ith A 

−1 

∑ 

x i , x j ) ∈S 
d A (x i , x j ) + 

∑ 

(x i , x j ) ∈D 
d A −1 (x i , x j ) (2)

The idea is that increasing the distance d A ( x , y ) between dis-

imilar pairs is equivalent to decreasing d A −1 (x , y) . The gradients

f d A and d A −1 are in opposite directions, which can confirm the

ationality of the idea. 

Substituting the distance with traces, we get 

min 

A �0 

∑ 

(x i , x j ) ∈S 
tr (A (x i − x j )(x i − x j ) 

T ) 

+ 

∑ 

(x i , x j ) ∈D 
tr (A 

−1 (x i − x j )(x i − x j ) 
T ) (3) 

We denote two crucial matrices 

 := 

∑ 

(x i , x j ) ∈S 
(x i − x j )(x i − x j ) 

T , 

 := 

∑ 

(x i , x j ) ∈D 
(x i − x j )(x i − x j ) 

T , 
(4) 

hat are the similarity and dissimilarity matrices, respectively. Uti-

izing (4), we rewrite (3) as 

in 

A �0 
h (A ) := tr (AS) + tr (A 

−1 D ) . (5)

h ( A ) has some key properties such as geodesic convexity. Here

re several concepts of geodesically convex functions. 

Geodesic convexity is a generalization of linear convexity for

ets and functions to nonlinear Riemannian manifolds [29] . The

eodesic curve locally minimizes the Riemannian distances be-

ween two points. The connection between A and B on the SPD

anifold is defined as 

 � t B = A 

1 / 2 (A 

−1 / 2 BA 

−1 / 2 ) t A 

1 / 2 , t ∈ [0 , 1] . 

On the entire set of SPD, the definition of geodesically convex

unctions is given as follows [30] 

efinition 1. A function f on a geodesically convex subset of a Rie-

annian manifold is geodesically convex , if for all points A and B in

his set, it satisfies 

f (A � t B ) ≤ t f (A ) + (1 − t) f (B ) , t ∈ [0 , 1] . 

If for t ∈ (0, 1) the above inequality is strict, the function is

alled strictly geodesically convex. 

Key properties of h ( A ) is summarized as follows [28] 

heorem 1. The cost function h in (5) is both strictly convex and

trictly geodesically convex on the SPD manifold. 
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2.2. Solution 

According to the convexity of the objective function, we can ob-

tain its global minimum by setting the gradient as zero 

∇h (A ) = S − A 

−1 DA 

−1 = 0 

Thus 

ASA = D . (6)

Actually, the sole solution of (6) is the midpoint on the geodesic

connecting S −1 and D [31] , namely 

A = S −1 � 1 / 2 D = S −1 / 2 (S 1 / 2 DS 1 / 2 ) 1 / 2 S −1 / 2 . 

Following the above definition, we know that A is SPD. 

While GMML obtains a closed-form solution, owing to the in-

verse matrix calculation, it is still computationally expensive in

handling high-dimensional multi-modal tasks. Furthermore, the

performance may suffer due to the ignorance of the correlation be-

tween different modalities. To solve this problem, we propose the

framework of EMGMML as follows. 

3. Efficient multi-modal geometric mean metric learning 

model 

In this section, we describe how to learn a geometric mean

metric on multi-modality data. 

3.1. Formulation 

Given a set of samples X = [ x 1 , x 2 , . . . , x N ] , each sample x i is

represented with m modalities x 1 
i 
, x 2 

i 
, . . . , x m 

i 
, we aim at learning

such a weighted Mahalanobis distance 

d { A p ,w p } m p=1 
(x i , x j ) = 

m ∑ 

p=1 

w p 

(
x p 

i 
− x p 

j 

)T 
A p 

(
x p 

i 
− x p 

j 

)
, (7)

where x 
p 
i 
, x 

p 
j 

∈ R 

d p are the i th and j th point on the p th modal-

ity, respectively. w p is a weight that determines the importance

of the p th modality in distance metric learning. A p is a d p × d p 
real and symmetric positive definite matrix to be learned for the

p th modality. Similarly, supervision information is given by sets of

pairs in terms of each modality 

S p : = 

{(
x p 

i 
, x p 

j 

) | x p 
i 

and x p 
j 

are in the same class 
}

D p : = 

{(
x p 

i 
, x p 

j 

) | x p 
i 

and x p 
j 

are in different classes 
}
. 

Referring to the GMML algorithm, the objective can be 

m ∑ 

p=1 

w p 

( ∑ 

(x p 
i 
, x p 

j 
) ∈S p 

d A p 
(
x p 

i 
, x p 

j 

)
+ 

∑ 

(x p 
i 
, x p 

j 
) ∈D p 

d A −1 
p 

(
x p 

i 
, x p 

j 

))
(8)

Rewriting the objective with traces, we turn (8) into 

min { A p } m p=1 
�0 

m ∑ 

p=1 

w p 

( ∑ 

(
x p 

i 
, x p 

j 

)
∈S p 

tr 
(
A p 

(
x p 

i 
− x p 

j 

)(
x p 

i 
− x p 

j 

)T )

+ 

∑ 

(x p 
i 
, x p 

j 
) ∈D p 

tr 
(
A 

−1 
p (x p 

i 
− x p 

j 
) 
(
x p 

i 
− x p 

j 

)T ))
(9)

We now define the following two matrices S p and D p to repre-

sent similarity and dissimilarity matrices for the p th modality 

S p : = 

∑ 

(
x p 

i 
, x p 

j 

)
∈S p 

(
x p 

i 
− x p 

j 

)(
x p 

i 
− x p 

j 

)T 
, 

D p : = 

∑ 

(x p 
i 
, x p 

j 
) ∈D p 

(
x p 

i 
− x p 

j 

)(
x p 

i 
− x p 

j 

)T 
, (10)
Therefore, we can get the basic formulation of EMGMML 

min 

 A p } m p=1 
�0 

h ({ A p } m 

p=1 ) := 

m ∑ 

p=1 

w p ( tr (A p S p ) + tr (A 

−1 
p D p )) . (11)

As the matrix S p may be near-singular or non-invertible, we add

 regularizer to the objective [28] 

min 

 A p } m p=1 
�0 

m ∑ 

p=1 

w p ( tr (A p S p ) + tr (A 

−1 
p D p )) + λ

m ∑ 

p=1 

w p D sld (A p , A 0 ) , 

(12)

here A 0 is a prior metric (set as discussed in Section 4.4 ) and D sld 

s the symmetrized LogDet divergence 

 sld (A p , A 0 ) := tr (A p A 

−1 
0 ) + tr (A 

−1 
p A 0 ) − 2 d, (13)

It is noteworthy that another variable is w p . To ensure the dis-

ance is positive, we require w p to be non-negative. However, as

he distance and divergence are both non-negative, the objective

btains the minimum when each w p equals 0. Since we hope each

odality can make its own contribution, most w p should be pos-

tive. Thus, we let the sum of w p be a constant. At this point, the

bjective becomes a linear programming, which, as a result, may

ead most of the weights to nearly zero. To avoid overfitting, we

ntroduce a regularizer term of w p . Ultimately, the regularized ver-

ion of EMGMML is 

min { A p ,w p } m p=1 

m ∑ 

p=1 

w p ( tr (A p S p ) + tr (A 

−1 
p D p )) 

+ λ
m ∑ 

p=1 

w p D sld (A p , A 0 ) + γ
m ∑ 

p=1 

w 

2 
p , 

s.t. A p � 0 , p = 1 , 2 , . . . , m 

w p ≥ 0 , p = 1 , 2 , . . . , m 

m ∑ 

p=1 

w p = 1 (14)

et w = [ w 1 , w 2 , . . . , w m 

] be an m -dimensional vector, then
 m 

p=1 w 

2 
p equals ‖ w‖ 2 

2 
. 

.2. Solution 

In the following, we develop an efficient optimization approach

o solve (14) . An alternating strategy is introduced in the solving

rocedure. Observing that the only constraint of A p is the positive

efiniteness, we consider to solve A p at first. For simplicity, we de-

ote the function 

 ({ A p } m 

p=1 ) = 

m ∑ 

p=1 

w p ( tr (A p S p ) + tr (A 

−1 
p D p )) 

+ λ
m ∑ 

p=1 

w p D sld (A p , A 0 ) (15)

The derivative of L with respect to A p is 

∂L 

∂A p 
= w p (S p − A 

−1 
p D p A 

−1 
p ) + λw p (A 

−1 
0 − A 

−1 
p A 0 A 

−1 
p ) 

Setting it to zero leads to 

 p = 0 , or S p − A 

−1 
p D p A 

−1 
p + λ(A 

−1 
0 − A 

−1 
p A 0 A 

−1 
p ) = 0 

However, if w p = 0 holds for all p = 1 , 2 , . . . , m, then we can not

atisfy the constraint 
m ∑ 

p=1 

w p = 1 . Therefore 

 p − A 

−1 
p D p A 

−1 
p + λ(A 

−1 
0 − A 

−1 
p A 0 A 

−1 
p ) = 0 . (16)
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Table 1 

Basic descriptions of datasets. 

Datasets # Classes # Dimensions # Samples 

Corel 800 10 2835 800 

ImageCLEF 10 2323 800 

Indoor 10 2835 600 

Caltech 10 10 2835 800 

Birds 6 2835 600 

Corel 5k 50 2835 50 0 0 
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We can obtain the solution 

 p = (S p + λA 

−1 
0 ) −1 � 1 / 2 (D p + λA 0 ) , (17)

From the form of geometric mean, we may conclude that A p is

PD. Once the A p is determined, the problem (14) is transformed

o a quadratic programming on w p . 

.3. Weighted version 

To generalize the scope of the solution, we propose the

eighted EMGMML objective with the optimal w p [28,31] 

min 

 A p } m p=1 
�0 

h t ({ A p } m 

p=1 ) : = (1 − t) 
m ∑ 

p=1 

w p δ
2 
R (A p , S 

−1 
p ) 

+ t 

m ∑ 

p=1 

w p δ
2 
R (A p , D p ) , (18) 

here δR is the Riemannian distance on SPD matrices 

R (X , Y ) := ‖ log (Y 

−1 / 2 X Y 

−1 / 2 ) ‖ F f or X , Y � 0 , 

As the w p is fixed and positive, S p and D p are known, the prob-

em (18) is equivalent to the following m tasks: 

in 

A p �0 
h t (A p ) = (1 − t) δ2 

R (A p , S 
−1 
p ) + tδ2 

R (A p , D p ) , (19)

The unique solution is the weighted geometric mean 

 p = S −1 
p � t D p , (20)

Therefore, the regularized form of the solution is 

 p = (S p + λA 

−1 
0 ) −1 � t (D p + λA 0 ) , t ∈ [0 , 1] 

The algorithm is summarized in Algorithm 1 . 

.4. Discussion 

Let the dimension of the p th modality be d p and d max =
ax p∈ [1 ,m ] d p . The total dimension is d = 

∑ m 

p=1 d p . The number of

he pairs is denoted as T . The time cost of GMML mainly lies in

wo parts: the computation of matrices S , D and distance ma-

rix A . The time cost of the first part is O ( Td 2 ). The second part

nvolves the matrix power and multiplication, which costs both

 ( d 3 ). Therefore, the total time cost for GMML should be O (T d 2 +
lgorithm 1 The optimization of EMGMML. 

nput: 

Constraint sets in terms of positive pairs {S p } m 

p=1 
and negative 

pairs {D p } m 

p=1 
, 

Step length of geodesic t , Regularization parameters λ, γ , Prior 

knowledge A 0 

1: for p = 1 to m do 

2: Compute the similarity and dissimilarity matrices 

S p = 

∑ 

(x 
p 
i 
, x 

p 
j 
) ∈S p 

(x 
p 
i 

− x 
p 
j 
)(x 

p 
i 

− x 
p 
j 
) T , 

D p = 

∑ 

(x 
p 
i 
, x 

p 
j 
) ∈D p 

(x 
p 
i 

− x 
p 
j 
)(x 

p 
i 

− x 
p 
j 
) T 

3: Return the transformation matrix 

A p = (S p + λA 

−1 
0 

) −1 � t (D p + λA 0 ) 

4: end for 

5: Take A p into (14) and solve the quadratic programming 

utput: 

Transformation matrices { A p } m 

p=1 
and combination weights 

{ w p } m 

p=1 

s  

B  

o  

F  

t  

f  

p  

m

 

s  

b  

e  

s

4

 

a  

t  
 

3 ) . As for EMGMML, the first part costs O (mT d 2 max ) while the sec-

nd one is O (md 3 max ) . The extra term induced by the quadratic pro-

ramming is O ( m 

2 ). As m is much smaller than d max , the time

omplexity of EMGMML is O (mT d 2 max + md 3 max ) . From the above

nalysis, we know that as an extended version, EMGMML inher-

ts the advantages of GMML in scalability. It is even more efficient

n dealing with multi-modality high-dimensional data. 

Overall, our proposed EMGMML framework projects multiple

odalities onto distinctive feature subspaces, and then exploits a

eighted combination to integrate corresponding metrics. An al-

ernating strategy is used for solving the joint objective of metrics

s well as weights, which is shown to be both effective and effi-

ient by empirical results in Section 4 . 

. Experiments 

In this section, we empirically analyze the performance of EMG-

ML. We first describe the datasets and descriptors as well as

he evaluation criterion. Then we elaborate the compared methods

nd parameter setting and tuning. Finally, we compare EMGMML

ith state-of-the-arts in terms of effectiveness and efficiency on

etrieval. 

.1. Datasets and environment 

We carry out the experiments on image datasets including

orel [15] , ImageCLEF 1 , Indoor 2 , Caltech256 3 and Birds [32] . Some

mages are shown in Fig. 1 . For each dataset, several types of vi-

ual descriptors are exploited. Global features contain color his-

ogram (256 dimensions for gray images and 768 dimensions for

olor images), GLCM coefficients (16 dimensions), LBP (59 dimen-

ions) and GIST features (512 dimensions). Local features include

he SIFT, dense-SIFT, SURF, Geometric Blur and PHOG (680 dimen-

ions) descriptors. All of these local descriptors are represented by

ag-of-Words (BOW) with vocabulary size as 200 except the last

ne. The basic information of these datasets is listed in Table 1 .

or image retrieval, we split the dataset into several parts: 50% for

raining (5% labeled and 45% unlabelled), 10% for validation, 10%

or query, and the remaining 30% as pooling set. The experiment is

erformed on a machine with 3.40 GHz Intel processor and 8 GB

emory, and the Matlab software. 

Referring to early literatures [33] , we generate similar pairs by

electing two samples from the same category and dissimilar pairs

y picking up two samples from distinct classes. The only differ-

nce is that we exploit all the samples from the training set in-

tead of performing random selection. 

.2. Evaluation criterion 

In this paper, we use mean average precision (MAP) to evalu-

te the performance of image retrieval. MAP is defined on the re-

rieved ranking list of queries. It is such a measurement of how
1 http://imageclef.org/ . 
2 http://web.mit.edu/torralba/www/indoor.html . 
3 http://www.vision.caltech.edu/Image _ DataSets/Caltech256/ . 

http://imageclef.org/
http://web.mit.edu/torralba/www/indoor.html
http://www.vision.caltech.edu/Image_DataSets/Caltech256/
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Fig. 1. Several image examples in our experiments. 
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Fig. 2. Retrieval performance versus log λ on EMGMML. Other parameters are tuned 

to the best on the validation set. 
the retrieved samples relate to the query. Given a query and its R

retrieved images, the Average Precision is defined as [34] 

AP = 

1 

L 

R ∑ 

r=1 

prec(r) δ(r) , (21)

where L is the number of relevant samples in the retrieved set,

prec ( r ) is the precision at the r th position. δ( r ) represents whether

the r th retrieved image is relevant to the query or not. δ(r) = 1

when they are relevant and 0 otherwise. The MAP is computed as

the average AP of all the queries. We set R as the number of each

class in the pooling set for small datasets, while we set R as 10 for

large datasets like Corel 5k. 

4.3. Comparison methods 

We compare the proposed algorithm with eight baseline meth-

ods. 

• DCA . An efficient metric learning scheme which exploits both

positive and negative constraints [15] . 
• LRML . A novel metric learning technique that integrates both

labeled and unlabelled data into an effective graph regulariza-

tion framework [16] . 
• OASIS . A supervised online dual approach that learns a bilinear

similarity measure [35] . 
• EMR . A scalable graph-based manifold ranking algorithm [36] . 
• DML-eig . An efficient eigenvalue optimization framework for

metric learning [37] . 
• OMKS . An efficient online metric learning algorithm which

learns a flexible nonlinear proximity function with multiple

kernels for improving visual search [26] . 
• SERAPH . An information-theoretic semi-supervised metric

learning approach that does not rely on the manifold assump-

tion [17] . 
• GMML . A supervised metric learning method that is based on

geometric intuition and has a closed form solution [28] . 

To observe the effect of weights on performance, we add an-

other method called UGMML , which learns an optimal metric with

GMML for each modality, and then uniformly combines all these

metrics. All of the distance metric learning approaches, except
MGMML, UGMML as well as OMKS, are performed on the con-

atenated feature vectors from different modalities. 

.4. Parameter setting and tuning 

As for parameters, we only tune several key parameters on

alidation datasets for the best results and set all the others

o default values. For GMML, we set the parameter λ = 0 . 1 .

he prior matrix A 0 is set as an identity matrix [28] . The step

ength t is adjusted in [0, 1] with a step size 0.1. For EMGMML,

he parameter γ is tuned with the grid-search” strategy from

 10 −4 , 10 −3 , 10 −2 , 10 −1 , 1 , 10 , 10 2 , 10 3 , 10 4 } . The parameter settings

f λ, A 0 and t are the same with GMML. Fig. 2 gives the influence

f λ on EMGMML. In fact, λ controls the importance of the regu-

arization term with respect to each learned metric A p . It is clear

hat the performance on ImageCLEF is sensitive to the choice of the

arameter λ, while for other datasets the performance remains rel-

tively stable. For DML-eig, we tune the parameter k in k NN from
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Table 2 

MAP of nine competing metrics for image retrieval. The best and the second best results are shown in bold and underlined, respectively. 

Datasets 

Algorithm Corel 800 ImageCLEF Indoor Caltech 10 Birds Corel 5k 

EMR 0 .0419 0 .0562 0 .0434 0 .0436 0 .0498 0 .0102 

PCA + EMR 0 .0419 0 .0560 0 .0434 0 .0436 0 .0498 0 .0102 

LRML 0 .0649 0 .1047 0 .0649 0 .0721 0 .0607 0 .0253 

PCA + LRML 0 .0705 0 .1213 0 .0673 0 .0762 0 .0677 0 .0398 

SERAPH 0 .1205 0 .1408 0 .1319 0 .1376 0 .0965 0 .0393 

PCA + SERAPH 0 .0621 0 .0867 0 .0512 0 .0536 0 .0577 0 .0236 

OASIS 0 .0528 0 .0500 0 .0753 0 .0324 0 .0637 0 .0156 

PCA + OASIS 0 .0274 0 .0361 0 .0316 0 .0368 0 .0473 0 .0065 

DML-eig 0 .0429 0 .0628 0 .0551 0 .0501 0 .0538 0 .0209 

PCA + DML-eig 0 .0513 0 .0546 0 .0528 0 .0576 0 .0558 0 .0241 

DCA 0 .1281 0 .3665 0 .1183 0 .0915 0 .0626 0 .0738 

PCA + DCA 0.1363 0 .3840 0 .1006 0 .1034 0 .0661 0.0747 

OMKS 0 .1373 0 .4372 0.1583 0 .2170 0.1280 0 .0504 

GMML 0 .1183 0 .4288 0 .1231 0 .1611 0 .0964 0 .0628 

PCA + GMML 0 .1215 0 .4399 0 .1237 0 .1620 0 .0970 0 .0680 

UGMML 0 .1088 0.4775 0 .1198 0 .1716 0 .0960 0 .0596 

EMGMML 0 .1337 0 .5492 0 .1846 0.2012 0 .1395 0 .0916 
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a  
 to the number of the labeled training images per class minus one

37] . As for LRML, we set the regularization parameters γ s , γ d as

 and vary the parameter k of k -NN in 5–20 [16] . We set the num-

er of the landmarks picked p in EMR as 50. In OMKS, there are

hree parameters to be tuned, that is, the Gaussian kernel parame-

er γ , discount weight β as well as the trade-off parameter C [26] .

is tuned from 0.01 to 0.1 with 0.01 interval. β is adjusted in the

ange of 0–1 with 0.01 interval and C is tuned in [0.001, 0.01] with

.001 interval. 

.5. Performance comparisons 

We report the MAP values for all the competing methods in

able 2 . Methods with ‘PCA’ as their prefixes indicate that we use

CA to reduce the dimension of original feature vectors to 200,

nd then perform retrieval with the corresponding metric. It can

e seen that EMGMML consistently outperforms GMML in retrieval

asks. From top to down are unsupervised, semi-supervised and

upervised methods. EMGMML improves the most on the Indoor

ataset with an increasement about 49.96%. On Corel 800 dataset,

he performance of OMKS is equivalent to that of EMGMML, per-

aps owing to the capability of non-linear metrics for capturing

ubtle differences. While UGMML is sometimes inferior to GMML,

or instance, on Corel 800, Indoor and Corel 5k datasets, our EMG-

ML achieves a great improvement due to the learned appropriate

eights. In our method, multiple metrics and weights are jointly

erformed to achieve the optimality, thus yielding much better

erformance. 

Fig. 3 presents the top-n ( n = 1,2,...,5) precision results on two

atasets. It is clear that OMKS and EMGMML show comparative

erformance on Caltech 10. However, EMGMML significantly out-

erforms all the other state-of-the-art metric learning algorithms

n the Indoor dataset. 

Fig. 4 shows the performance with respect to parameter t and γ
n the validation set. In general, when t is relatively smaller and γ

s comparatively larger, we obtain better retrieval performance. Ac-

ually, when t gets closer to 0, the learned metric for each modal-

ty A p approaches S p + λA 

−1 
0 

. When γ is large, the regularization

erm works and each modality can contribute fully to the learning

asks. Among these datasets, ImageCLEF is more sensitive to these

arameters, which is partly due to the fact that it is the only gray

mage dataset and thus much simpler. 

Our EMGMML method learns weights for each modality, which

epresents its importance in learning metrics. Intuitively, the

odality that has good performance should be assigned a large
eight. To observe the correlation, we run the GMML method

ith each modality feature and then compare the results with its

eight value. Fig. 5 shows the learned weights versus the mAP

alues of each modality with GMML on four datasets. From the

lot, we observe that these two variables reveal positive correla-

ion in general. We also utilize the correlation coefficient to exam-

ne the relations. The coefficient is 0.1721 on Corel 800, 0.2718 on

altech 10, 0.4861 on ImageCLEF and 0.1027 on Indoor. In statis-

ics, two variables are viewed as real correlated if their coefficient

s between ± 0.3–± 0.5, significantly related with coefficient in

he range of ± 0.5–± 0.8. According to the criterion, most of the

earned weights for each modality can be regarded as positively

elated to its retrieval performance. 

Table 3 lists the running time of each metric learning algorithm

n datasets. The time is computed for fixed values of parameters

uned. It is clear that our EMGMML runs faster than GMML. Com-

ared with GMML, the speed of EMGMML upgrades about 5 times

n small datasets, i.e. Corel 800, Birds, Caltech 10 and so on. In

act, for color images d = 2835, d max = 768 and m = 9. Take these

arameters into the time complexity expressions, we get the ratio

.589, which is consistent with our experimental results. By com-

arison with UGMML, the quadratic programming only takes a few

econds. OASIS is substantially time-consuming and it takes about

 hours. Considering the fact that its complexity grows rapidly

ith dimension, we conclude that it is not applicable to deal with

igh-dimensional data. Although the unsupervised metrics such as

MR reveal their superiority in efficiency due to the lack of train-

ng process, it is much more inferior with respect to effectiveness.

n addition, it is noteworthy that EMGMML is more scalable in

andling the large datasets, i.e. Corel 5k. However, the multiple

ernel method OMKS takes a long time, almost 13 hours to con-

erge in an iteration. 

The experiments above are performed with a set of fixed la-

eled training data which accounts for 10% in the training set. In

he following section, we discuss the influence of different labeling

ates for EMGMML as well as GMML, UGMML and BGMML which

utputs the best results of multiple modalities with GMML. Fig. 6

resents the retrieval results of different GMML-like metrics with

arious labeling rates on two datasets. It is clear our EMGMML sig-

ificantly outperforms all the other metric learning methods under

aried labeling rates, and BGMML follows next. From the results,

e notice that as the labeling rate increases, different approaches

eveal different trends. Specifically, EMGMML and BGMML achieve

etter performance with larger labeling rate, while GMML as well

s UGMML does not. This may be partly due to the ignorance of
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Fig. 3. Top-n precision results on Indoor and Caltech 10 datasets. 
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Fig. 4. Retrieval performance along with EMGMML in terms of t and γ . 
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complementarity between different modalities, as UGMML treats

all of the modalities equally. As for GMML, although it learns met-

rics in a supervised manner, it handles multiple modalities as a

single modality in a high-dimensional feature space, more labeled

training data can not guarantee the performance improvement. 

In the end, we randomly sample several query images and com-

pare the top 5 ranked images retrieved with different metrics.

Fig. 7 shows the qualitative comparisons of six different queries

obtained by GMML and EMGMML. Generally, EMGMML retrieves

more relevant images compared with GMML. For instance, for

query 4, EMGMML obtained all of the 5 images, while GMML only
 i  
btained 2. This visual result clearly shows that EMGMML is much

ore effective than GMML in learning metrics for multiple modal-

ties. 

. Conclusion and future work 

We have introduced a general framework of multi-modal met-

ic learning based on geometric mean metric learning to learn a

etric for high-dimensional multi-modal data. Traditional metric

earning approaches aim to learn a global linear metric, which

s not appropriate for handing multiple modalities. In this study,
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Fig. 5. Scatter plots of weights versus mAP values on Corel 800, Caltech 10, ImageCLEF and Indoor datasets. 

Table 3 

Time cost (seconds) of nine competing metrics for image retrieval. The best and the second best results are shown in bold and underlined, 

respectively. 

Datasets 

Algorithm Corel 800 ImageCLEF Indoor Caltech 10 Birds Corel 5k 

EMR 3.10 2.02 2.48 2.57 2.07 68.83 

LRML 1.87 1.37 1.88 1.85 1.94 3.97 

SERAPH 172.65 54.60 181.87 91.96 121.27 152.52 

OASIS 18018.31 10249.82 17082.07 15078.70 20788.12 16877.20 

DML-eig 78.90 42.45 31.48 57.73 40.64 43.32 

DCA 7.82 5.10 9.16 8.22 5.58 99.44 

OMKS 70.04 51.61 58.36 68.59 50.11 47567.19 

GMML 25.17 14.30 28.32 27.97 25.82 25.81 

UGMML 4.54 3.53 4.22 4.26 4.40 9.16 

EMGMML 5.00 3.90 4.87 5.36 5.07 9.78 
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b  
e have studied the potential of exploiting the consensus & com-

lementarity properties among different modalities. The proposed

ethod has the following advantages over most of existing meth-

ds: 1) the learned metric achieves excellent performance com-

ared with the state-of-the-arts; 2) its time complexity is only re-
ated to the maximum dimension of the modalities rather than m  
he entire dimension nor the sample size. Extensive experiments

n image data for visual search demonstrate the excellent perfor-

ance of our method. 

In practical applications, only a small amount of data are la-

eled while the majority remain unlabelled. Therefore, how to

ake full use of these massive unlabelled data remains an open
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Fig. 6. Evaluation of labeling rate on Corel 800 and ImageCLEF datasets. 

Fig. 7. Examples of image retrieval on Corel 800, Caltech 10 and Birds from top to bottom by GMML (first row) and EMGMML (second row). “
√ 

” represents the images of 

the same class with the queries, and “× ” represents the images from different classes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

problem. Moreover, the kernel technique which has shown advan-

tages in mining complex patterns, has great potential for met-

ric learning. In future work, we would like to consider geometric

mean metric for semi-supervised and multiple kernel learning sce-

narios [38] . 
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