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Abstract

Polyphonic sound event detection aims to detect the types of sound events that occur in given audio clips, and
their onset and offset times, in which multiple sound events may occur simultaneously. Deep learning–based
methods such as convolutional neural networks (CNN) achieved state-of-the-art results in polyphonic sound event
detection. However, two open challenges still remain: overlap between events and prone to overfitting problem. To
solve the above two problems, we proposed a capsule network-based method for polyphonic sound event
detection. With so-called dynamic routing, capsule networks have the advantage of handling overlapping objects
and the generalization ability to reduce overfitting. However, dynamic routing also greatly slows down the training
process. In order to speed up the training process, we propose a weakly labeled polyphonic sound event detection
model based on the improved capsule routing. Our proposed method is evaluated on task 4 of the DCASE 2017
challenge and compared with several baselines, demonstrating competitive results in terms of F-score and
computational efficiency.
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1 Introduction
Sound event detection (SED) is the task of accurately
marking the onset and offset time information of each
event and its type in the input sound signal. With SED,
the computer can understand and respond to the sur-
rounding environment through sound. SED can be ap-
plied to many fields, such as environment-aware speech
recognition [1], remote medical monitoring [2], equip-
ment monitoring [3] and bio-acoustical monitoring [4].
SED systems can generally be divided into two cat-

egories, monophonic and polyphonic. The former de-
tects at most one sound event at each time instance,
while the latter can detect two or more concurrent
sound events [5]. The polyphonic SED is more useful in
practical applications as multiple sound events often
occur simultaneously in practice. However, it is a more
challenging task to design the polyphonic SED system,

as it is difficult to extract effective features to separate
multiple overlapping sound events [6].
Traditionally, the classifiers used in sound event detec-

tion include the Gaussian mixture model (GMM) [7],
hidden Markov model (HMM) [8], support vector ma-
chine (SVM) [9], and non-negative matrix factorization
(NMF) [10]. Despite their promising performance, most
of these classification methods are developed for the task
of monophonic sound event detection.
In recent years, with the increase in the amount of

training data, the models used for classification have
gradually become more complex. Among them, deep
learning has achieved remarkable performance in the
field of pattern recognition including sound event detec-
tion. As an example, convolutional neural networks
(CNN) can directly process multi-dimensional features
and extract high-dimensional abstract information
through the convolution method with local weight sharing
and pooling operation. This can mitigate impacts of trans-
lation and scaling ambiguities, and enhance the
generalization ability of the model. In [11], the author pro-
posed a CNN-based network structure for environmental
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sound classification, which contains two convolutional
layers and two fully connected layers. The convolutional
recurrent neural networks (CRNN) based methods have
achieved state-of-the-art results in the SED task, especially
in the case of polyphonic SED [5]. CRNN has CNN prop-
erties with local displacement invariance and the ability to
model short-term and long-term time dependence pro-
vided by the RNN layer.
The capsule network [12] has the ability to “route”

from low-level features to high-level features, which
greatly improves the ability of the model in detecting ob-
jects from overlapping features. In the capsule network,
local information from input features is used to predict
all classes by routing operations. Since the local informa-
tion at different locations contributes differently to the
prediction of different classes, the model can still detect
the events even when they overlap with each other.
However, the iterative operations in dynamic routing
make it computationally more expensive than other deep
networks [13], such as AlexNet [14] and ResNet [15].
Through the combination of capsule structure and

dynamic routing algorithm, the network can identify the
whole-part relationship between features [12], such as
the position of the nose with respect to the face in an
image. The capsule-based method has achieved promis-
ing results in the classification of highly overlapping
handwritten digital images. Recent research shows that
the capsule network is also suitable for sound event
detection [16] which uses gated convolution for feature
extraction, and at the end, an attention layer parallel to
the high-level capsule layer is added to implement the
attention mechanism. The final prediction result is
obtained by merging the outputs of the two layers. The
algorithm was evaluated on the weak label dataset of the
DCASE 2017 Challenge and achieved improved per-
formance. In [17], the capsule network was used for
polyphonic SED, which significantly improves the per-
formance of CNN in overlapping object detection. In
[18], the author proposed a parallel capsule neural net-
work–based system for sound event detection and used
different shapes and sizes of convolution kernels to im-
prove detection accuracy.
Traditionally, researchers have trained SED models

using strong labels that specify the types of sound events
and the onset and offset times. However, manually
obtaining such a label is very cumbersome and labor-
intensive. Therefore, in practice, the training data is
often weakly labeled, i.e., only the types of sound events
are provided, but without their onset and offset times.
For example, AudioSet [19] released by Google is a
large-scale weakly labeled corpus of this kind.
For weakly labeled SED, multiple instance learning

(MIL) is a popular framework [20]. In the weakly labeled
SED, the audio clip is divided into many frames, each

frame is regarded as an instance, and the whole clip is a
bag. We only know the label of bags but not the label of
each instance. In this approach, the neural network pre-
dicts the probability of each sound event occurring in
each frame. The frame-level probabilities are then aggre-
gated to the clip-level probability by a pooling function.
Methods based on CNN, RNN, and their combinations

are shown to provide state-of-the-art performance on
the weakly labeled SED task. In [21], the authors pro-
posed a CRNN for weakly labeled SED with learnable
gated linear units (GLUs). By GLUs, the network can
focus on sound events and ignore irrelevant sounds. In
[22], bidirectional long short-term memory (BLSTM)
was applied to weakly labeled learning. Since weakly la-
beled data was used, accurate error calculation cannot
be performed to update the parameters of BLSTM. The
authors introduce connectionist temporal classification
(CTC) to calculate the loss. At the same time, the adap-
tive pooling operators are shown to offer better perform-
ance on the weakly labeled SED task compared with
commonly used pooling operators, such as max-, or
average-pooling [23–25]. Although these methods have
obtained promising results, they have not fully addressed
the problems such as overfitting. This is especially a
problem for small data sets. Although the capsule-based
method [16] is not prone to overfitting, the complex dy-
namic routing process will greatly slow down the model
training process, resulting in a longer model training
time. Here, we focus on addressing these limitations.
This paper proposes a weakly labeled polyphonic SED

model based on the improved capsule routing, in which
the convolution layer uses the early fusion parallel con-
volution structure proposed in [18] and adds a recurrent
layer after the capsule layer to perform the time-
dependent modeling. The computational cost of the
conventional capsule network is much higher than that
of the convolutional neural network due to the iterative
operations used, which lead to slow speed in network
training. In this paper, we replace the conventional dy-
namic routing with the weight-sharing dynamic routing
proposed in [26] to reduce the amount of parameters
and speed up the training process. The results show that,
the model greatly accelerates the training speed. We
evaluated the model on the weakly labeled SED task data
set of the 2017 DCASE Challenge [27]. The experimen-
tal results show that the proposed method offers signifi-
cant performance improvement as compared with the
capsule baseline in [16]. Overall, the main contributions
of our work are summarized below.

� First, we introduce an early fusion–based parallel
convolution structure with a recurrent layer, so that
the model can make an effective use of the original
feature information.
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� Second, we apply the capsule network to weakly
labeled data sets by leveraging its strong
generalization ability, which helps address the data
scarcity issue in model training.

� Third, we use weight-sharing dynamic routing [26] to
reduce computational overhead and the number of
model parameters and to improve the training speed.

2 Capsule network
The concept of capsule network was proposed by Hin-
ton in 2017 [12]. The main idea is to change the input
and output of neurons from a scalar form to a vector
form, in order to reduce the loss of feature information
and improve the feature extraction ability of the model.
Capsule vector neurons and normal scalar neurons are
shown in Fig. 1, where xi, i = 1, 2, …, n represents the in-
put of the scalar neuron, ui, i = 1, 2, …, n represents the
low-level capsule, û j; j ¼ 1; 2;…; n represents the predic-
tion of ui to high-level capsule v, b represents bias and
wi, i = 1, 2, …, n represent corresponding weights, ∑ rep-
resents weighted summation, and g and squash represent
activation functions.
The length of the capsule represents the probability of

occurrence of the corresponding category, and each di-
mension of the capsule represents some attributes of the
modeled category. Each layer of the capsule network has
a number of nodes, with each node representing a cap-
sule. The weight connecting the low-level capsule with
the high-level capsule will change in the learning
process, which causes the change of the node connection
degree, via dynamic routing.
The operation of the dynamic routing algorithm is

shown in Fig. 2.
For the high-level capsule j, its output vj can be calcu-

lated as follows:

û jji ¼ W ijui ð1Þ

s ¼ j
X

i

cijû jji ð2Þ

v j ¼
s j

�� ��

1þ s j
�� ��2

2
s j
s j

�� �� ð3Þ

where ui is the output of low-level capsule i, û jji is the
prediction of ui to vj, and Wij is the corresponding
weight matrix. All prediction vectors of vj are weighted
by a set of coupling coefficients cij and are compressed
by a nonlinear squashing function (3) to represent the
probability of the existence of the target. The coupling
coefficient cij in (2) is determined by a dynamic routing
algorithm. The updated formula for cij is as follows:

cij ¼
exp bij

� �
P

k exp bikð Þ ð4Þ

bij←bij þ û jji � v j ð5Þ

The higher the similarity between û jji and vj (mea-
sured by the inner product), the more increment cij gets.
In (5), bij is the parameter used to update the coupling

coefficient cij. In each forward propagation, bij is initial-
ized to 0, and the initial value of the coupling coefficient
cij is calculated from Eq. (4), and then vj is calculated
from the forward propagation of the network. The value
of bij is updated in terms of (5), which is used to update
the value of cij and to further modify the value of sj by
forward propagation in order to change the value of the
output vector vj. Finally, an optimal set of coupling coef-
ficients is obtained.
The differences between vector neurons and scalar

neurons are summarized and presented in Table 1.

Fig. 1 Scalar and vector neurons
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3 Polyphonic sound event detection model based
on capsule network with weak labeling
3.1 Parallel convolutional layer
In this section, the parallel convolution layer proposed
in [18] will be introduced, as shown in Fig. 3. In the cap-
sule network, the parallel convolution layer is used to
extract local features from the input features.
The parallel convolution layer is composed of three

parallelized convolution layers with the same parameters
except kernel sizes. The kernel size is set asymmetrically
in the frequency axis and time axis, and the larger size is
used in the time axis to obtain more temporal informa-
tion [28]. In the convolutional layer, different convolu-
tion kernel sizes are used to obtain information of
different resolutions. After each convolution layer, max
pooling is used to reduce the dimensionality. Through
the features extracted by the parallel convolutional
layers, the model can obtain information of different res-
olutions, so that the original feature information can be
used more efficiently.

3.2 Improved dynamic routing
In the dynamic routing process proposed in [12], each
low-level capsule ui, i = 1, 2, …, n must be multiplied by
a weight matrix to obtain the prediction vector of the
high-level capsule vi, i = 1, 2, …, n, as shown in Fig. 4.
In order to speed up the training process and reduce

the number of parameters, the weight-shared capsule
[26] was used in this work. The idea is based on weight
sharing in convolution networks, where weight matrices
are shared between capsules. For the high-level capsule
j, the transformation matrix connected to all the low-
level capsules is shared, so the number of weight matri-
ces is the same as the number of high-level capsules (as
shown in Fig. 5). Equation (1) can be expressed as:

û jji ¼ W jui ð6Þ

By sharing the weight matrix among the capsules, the
number of parameters of the model can be greatly re-
duced, and the training speed of the model can be sig-
nificantly improved.

3.3 Proposed method
The architecture of the proposed method is shown in
Fig. 6, which includes three parts: convolutional layer,
capsule layer, and recurrent layer. Hyperparameters used
are presented in Tables 2 and 3.

3.3.1 Convolutional layer
The convolutional layer consists of three parallel convo-
lutional paths, each path contains 4 convolutional layers,
and the convolution kernel of the same path has the
same size.

Fig. 2 Capsule network architecture

Table 1 Differences between vector neurons and scalar
neurons

Vector neurons Scalar neurons

Input ui xi

Affine transformation û jji ¼ W ijui -

Weighted sum s ¼ j
X

i

cijû jji a j ¼
X

i

wixi þ b

Nonlinear activation v j ¼ ks jk
1þks jk2

2 s j
ks jk

hj = g(aj)

Output vj hj
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Fig. 3 The parallel convolution layer includes three convolution paths, with each path containing asymmetric kernels of different kernel sizes

Fig. 4 Full contact capsule
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Before being transported to the capsule layer, the out-
put of the convolution layer is concatenated so that the
capsule layer has all the features of the convolution
layer. The input feature vector has a shape T × F, where
T is the number of time frames, and F is the number of
frequency bins in the input feature. The output of the
convolutional layer is a tensor of dimension T' × F' ×Q,
where Q is the number of the feature maps obtained
after the outputs of the three paths are concatenated,

and T' and F' are the number of frames and frequency
bands after feature extraction of the convolutional layer.

3.3.2 Capsule layer
The first capsule layer is a convolutional layer with 32
channels, each consisting of an 8-dimensional capsule.
In the second capsule layer, the prediction vector of the
high-level capsule is first calculated by multiplying the
output of the low-level capsule by a weight matrix. Then

Fig. 5 The capsule for parameter sharing

Fig. 6 The proposed neural network structure, which consists of three parts. (1) Feature extraction: parallel convolution layer with different kernel
sizes. (2) Capsule layer: the outputs of convolutional layers are fed into two capsule layers. (3) Recurrent layer: a bidirectional GRU and one FC
layer are used to learn temporal context information and estimate event activity probabilities
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the prediction vector is weighted and summed to obtain
the output vector, the weight of which is determined by
the so-called dynamic routing, and its purpose is to
allow the low-level capsule to independently choose the
best path to transmit information to the high-level cap-
sule. Finally, the output vector is non-linearly mapped to
obtain the final output vector.
The main process of the capsule layer can be summa-

rized as follows:

� In the first capsule layer, T' × F' 8-dimensional
capsules are used in each channel.

� The second capsule layer is used to calculate the K
16-dimensional high-level capsules representing
event categories based on the input capsules from
each frame, which leads to a tensor of shape
T' × 16 × K.

3.3.3 Recurrent layer
A recurrent layer is added after the capsule layer to learn
temporal context information, as in [5, 6, 29]. The out-
put is reshaped into a tensor of dimension T' × (K × 16)
after the second capsule layer, by combining K 16-
dimensional capsules in each frame. Then the bidirec-
tional gated recurrent unit (GRU) is adopted to learn
temporal context information from the combined vec-
tors. Use a feedforward layer with a sigmoid activation
function after the recurrent layer to get probabilities of
event activity per frame. The output of the recurrent
layer is a tensor of T' × K. By adding a recurrent layer,

the model can learn more temporal information, thereby
improving the accuracy of temporal localization of
events.
The output of the recurrent layer is frame-level predic-

tion, that is, the probability of each sound event on each
frame. However, in the case of weak labeling, there are
no frame-level tags, and only clip-level tags are available.
Therefore, it is necessary to aggregate the frame-level
predictions into clip-level predictions to calculate the
loss function. We use the softmax pooling function,
which is defined as follows:

yl ¼
P

iyi exp yið ÞP
i exp yið Þ ð7Þ

where yi ∈ [0, 1] is the frame-level predicted probability
of one sound event type, and yl ∈ [0, 1] is the clip-level
aggregation probability of the event.
The softmax pooling function calculates yl as a

weighted average of yi, where a larger yi will yield a lar-
ger weight. In this way, the clip-level probability is
mainly determined by the larger frame-level probability,
but a frame with a lower probability also has a chance to
receive an error signal.
Choosing a threshold τ1 for event l, when yl > τ1, the

event occurs. In order to calculate the onset time and
offset time, another value τ2 is selected as the frame-
level prediction threshold, and then the onset and offset
time can be determined from the obtained binary
matrix.

4 Experiment
4.1 Datasets and performance indicators
Because the method we propose is for weakly labeled
polyphonic SED, we use the weakly labeled data set pro-
vided by DCASE 2017 task 4 for evaluation. This data
set is a subset of AudioSet, consisting of 17 sound
events, divided into two categories: “Warning” and “Ve-
hicle”. Each audio segment has a maximum duration of
10 s and may correspond to more than one potentially
overlapping sound event. We evaluated two tasks on this
dataset: audio tagging and sound event detection.

Table 3 Model parameters (capsule layers, recurrent layer)

Capsule layers recurrent layer

First capsule layer Second capsule layer GRU FC

Kernel sizea 32 @ 3 × 3 – – –

Stride 1 × 1 – – –

Pooling size – – – –

Activation function Squashing Squashing – Sigmoid

Num. of hidden units – – 256 17

Capsule dimension 8 16 – –
aTake a path as an example

Table 2 Model parameters (feature extraction)

Feature extraction

Conv1 Conv2 Conv3 Conv4

Kernel sizea 64 @ 3 × 3 64 @ 3 × 3 64 @ 3 × 3 64 @ 3 × 3

Stride 1 × 1 1 × 1 1 × 1 1 × 1

Pooling size 1 × 2 1 × 2 2 × 2 2 × 2

Activation function ReLU ReLU ReLU ReLU

Num. of hidden units – – – –

Capsule dimension – – – –
aTake a path as an example
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Among them, audio tagging aims to predict the type of
sound event included in an audio clip, and the sound
event detection also predicts the onset and offset time of
the event. For these two tasks, the precision, recall, and
the micro-average of the F-score are used to evaluate the
performance of the model. For SED, we also calculated a
segment-based error rate with 1-s resolution. The sed_
eval [30] toolbox was used to evaluate SED tasks.

4.2 Baseline system
We compare the proposed method with the following
baseline systems:
GCCaps is the system proposed in [16], which consists

of three gated convolution blocks, two capsule layers,
and a layer of attention parallel to the high-level capsule
layer. Each convolution block is composed of two gated
convolution layers.
GCRNN is the system proposed in [21], where the

gated linear units are used to replace the ReLU activa-
tion function, and shown to provide the state-of-the-art
performance in the audio tagging subtask of DCASE
2017 task 4. In the system, the gated convolutional layer
is used to extract features, which are stacked over the
frequency axis and then passed to a bi-directional GRU
layer. The outputs of the two parallel feedforward layers
with different activation functions are fused to get the
final output.
GCNN is the baseline from work [16], similar to

GCRNN but without a recurrent layer.
Capsnets-RNN is the method proposed in the first

section of this article. The output of parallel convolu-
tional layer is concatenated before being sent to the cap-
sule layer. In the training process, the pooling function
aggregates the frame-level prediction probabilities into
the clip-level prediction and performs iterative training
by calculating the binary cross-entropy loss.
Capsnets-RNN (conventional routing) is similar to

the proposed Capsnets-RNN, except that the conven-
tional routing algorithm is used in the dynamic routing
part.
Capsnets-RNN (single) uses a single path convolu-

tional layer. The convolutional kernel uses the 7 × 3 con-
volutional kernel, where the frequency axis is 3 and the
time axis is 7.

4.3 Experimental setup
To make a fair comparison with [16], we also use the
log-Mel spectrogram to be the input feature, which is es-
sentially a short-time Fourier transform, followed by a
Mel filter bank and logarithmic nonlinear operation. Be-
fore extracting features, each audio segment was
resampled to 16 kHz. The logarithmic Mel feature is cal-
culated using 64ms frame length, 20ms overlap, and 64
Mel frequency units per frame. For each 10-s sample, a
feature vector of 240 × 64 will be generated.
In order to reduce the occurrence of over-fitting and

accelerate the speed of convergence, we use batch
normalization after each convolutional layer and primary
capsule layer [31]. For the number of routing iterations,
we set it to r = 4. We use an Adam optimizer for training
and set the learning rate to 0.001 which was decayed by
a factor of 0.9 every two epochs. For loss function, we
used binary cross-entropy and calculated the gradient by
a mini-batch size of 44. A total of 30 epochs were
trained.
The number of events in the test set and the evalu-

ation set is balanced, while the training set is not, which
will lead to classification bias. The data balancing tech-
nique proposed in [21] was used to reduce the impact of
this problem.
In the inference process, we average the predictions of

the obtained models to get the final result. Here we
choose the five models (epochs) with the highest accur-
acy on the validation set. In our system, the detection
threshold is set to τ1 = 0.3 and τ2 = 0.6. For SED, the ex-
pansion and corrosion sizes are set to 10 and 5,
respectively.

Table 4 Performance results of audio tagging subtask

Method F-score Precision Recall

Capsnets-RNN 61.1% 53.9% 70.4%

Capsnets-RNN (conventional routing) 61.5% 54.2% 71.1%

Capsnets-RNN (single) 55.2% 52.3% 62%

GCCaps 58.6% 59.2% 57.9%

GCRNN 57.3% 53.6% 59.6%

GCNN 57.2% 59.0% 57.2%

Table 5 Performance results of sound event detection subtask

Method F-score Precision Recall Error
rate

Capsnets-RNN 50.5% 60.4% 43.4% 0.74

Capsnets-RNN
(conventional routing)

49.9% 60.1% 42.7% 0.73

Capsnets-RNN (single) 49.5% 59.7% 42.3% 0.79

GCCaps 46.3% 58.3% 38.4% 0.76

GCRNN 43.3% 57.9% 34.8% 0.79

GCNN 37.5% 46.6% 31.1% 0.88

Table 6 Comparison of the FLOPs, number of trainable
parameters (the second capsule layer), and training time per
step

Method FLOPs Params Seconds/
step

Capsnets-RNN (conventional routing) 3423786 278528 3.1

Capsnets-RNN (weight sharing routing) 2871082 2176 2.6
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4.4 Results and discussion
The results of audio tagging and sound event detection
are shown in Table 4 and Table 5. For audio tagging, the
early fusion method using conventional routing per-
forms best, with an F-score of 61.5%, which is slightly
higher than the weight-sharing strategy routing method.
The single-path model score is slightly higher than
GCCaps. In this subtask, GCRNN and GCNN provide
roughly the same performance.
For SED, Capsnets-RNN (conventional routing)

achieved the highest F-score and the lowest error rate.
The error rate of the single path model is higher than
that of Capsnets-RNN. GCCaps performed slightly bet-
ter than GCRNN, with an F-score of 46.3% and an error
rate of 0.76. The introduction of the recurrent layer en-
hances the time positioning ability of the GCRNN
model, because its score is significantly higher than that
of GCNN, and the error rate is relatively low.
In order to show the benefit for training speed brought

by weight sharing, we show in Table 6 the floating-point
operations (FLOPs) [32] of conventional routing and
weight sharing routing, the number of trainable parame-
ters of the second capsule layer, and the training time
per step. It can be seen from Table 6 that the weight-
sharing strategy can greatly reduce the complexity of the
model. Among them, weight sharing reduces the num-
ber of FLOPs of the model by 16%, and the trainable pa-
rameters of the second capsule layer by 99%. As a result,
the training speed is increased by 0.5 s/step.
We also refer to the method proposed in [28] and

tested different kernel sizes in Capsnets-RNN (single).

As shown in Table 7, the model performance is optimal
when the kernel size is 7 × 3. The increase of the kernel
size in the time axis results in better performance in the
SED subtask. However, further increasing the convolu-
tion size in the time axis will increase the complexity of
the model. Increasing the convolution kernel size in the
frequency axis did not seem to improve the perform-
ance. The main reason is that the pooling operation is
performed along the frequency axis. If the size of the
convolution kernel is large, the features extracted may
be from the extended area rather than the local details
of the signal [18].
Table 8 and Table 9 show the results of all sound

events by the proposed model on the two subtasks. For
audio tagging, some sound events such as “civil defense
siren” and “screaming” have higher classification accur-
acy while other sound events such as “car passing by”
and “bus” are difficult to recognize. For SED, some clas-
ses such as “civil defense siren” and “train” have a lower
error rate, while other classes such as “bicycle” and “car
passing by” have a higher error rate.
We use the improved dynamic routing method pro-

posed in Section 3.2 in the Capsnets-RNN model. In the
experiments, we found that this method can reduce the
complexity of the model. Specifically, it can reduce the
amount of floating-point calculations and trainable pa-
rameters of the model, thus speeding up the training
process. At the same time, the routing process of the
capsule network enables the model to recognize the
whole-part relationship, which can enhance the
generalization ability of the model. Coupled with the
parallel convolutional layer, the model can make full use
of the original feature information. Finally, the use of the
asymmetric convolution kernel and the addition of RNN
enable the model to capture more temporal information
from data. Therefore, the model achieves promising per-
formance on both subtasks of audio tagging and sound
event detection.
These results show that the use of an improved dy-

namic routing method leads to a small reduction in the
accuracy of audio tagging subtask, but compared to the
improvement in training speed, the drop in performance
is minor. At the same time, the introduction of RNN
can enable the model to learn contextual information
and enhance the model’s ability in temporal localization.

Table 7 Comparison of different kernel size

Kernel size Error rate

3 × 3 1.10

3 × 5 1.21

3 × 7 1.15

5 × 3 1.09

5 × 5 1.22

5 × 7 1.24

7 × 3 0.79

7 × 5 1.24

7 × 7 1.25

Table 8 F-score of audio tagging subtask for each event

Train horn Air horn, truck
horn

Car
alarm

Reversing
beeps

Bicycle Skateboard Ambulance
(siren)

Fire engine, fire truck
(siren)

Civil defense
siren

59.1% 66.7% 64.3% 46.2% 44.8% 63.5% 65.2% 64.3% 85.0%

Police car
(siren)

Screaming Car Car passing
by

Bus Truck Motorcycle Train Micro average

61.3% 86.4% 66.7% 34.9% 40.2% 46.2% 61.3% 75.6% 61.1%
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The introduction of the multi-path convolutional layer
can enhance the generalization ability of the model, so
that the model can learn more information, which is
consistent with the conclusion obtained in [18].

5 Conclusion
In this paper, a polyphonic SED method based on cap-
sule routing is proposed to address the problem of
sound event detection with overlapping events. The
multi-path convolution layer is used to extract different
resolution features, which is helpful to enhance the
generalization ability of the model. Among them, using a
convolution kernel with a larger convolution size in the
time axis can lead to better performance. By sharing the
weights in the capsule layer, the parameters of the model
are reduced, and the training speed is improved. The
introduction of the recurrent layer enhances the tem-
poral localization ability of the model. Experimental re-
sults show that through the dynamic routing algorithm,
the model can extract the most representative features
of sound events, thus improving the accuracy of poly-
phonic SED. Our next research directions include find-
ing more effective feature extraction methods and
studying the recently proposed expectation–maximization
algorithm [33] to further improve the ability of vector
capsules in extracting complex features. We are also inter-
ested in self-supervised sound event detection and the use
of capsule networks for other low-class discrimination
data.
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