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Abstract—Recently, Transformer shows the potential to exploit
the long-range sequence dependency in speech with self-attention.
It has been introduced in single channel speech enhancement to
improve the accuracy of speech estimation from a noise mixture.
However, the amount of information represented across attention-
heads is often huge, which leads to increased computational
complexity. To address this issue, the axial attention is proposed
i.e., to split a 2D attention into two 1-D attentions. In this paper,
we develop a new method for speech enhancement by leveraging
the axial attention, where we generate time and frequency sub-
attention maps by calculating the attention map along time- and
frequency-axis. Different from the conventional axial attention,
the proposed method provides two parallel multi-head atten-
tions for time- and frequency-axis, respectively. Moreover, the
frequency-band aware attention is proposed i.e., high frequency-
band attention (HFA), and low frequency-band attention (LFA),
which facilitates the exploitation of the information related to
speech and noise in different frequency bands in the noisy
mixture. To re-use high-resolution feature maps from the en-
coder, we design a U-shaped Transformer, which helps recover
lost information from the high-level representations to further
improve the speech estimation accuracy. Extensive experiments
on four public datasets are used to demonstrate the efficacy of the
proposed method. The code of the proposed method is available
at https://github.com/Yukino-3/U-shaped-Transformer-SE.

Index Terms—Transformer, speech enhancement, time-

frequency attention, U-shaped, frequency-band aware

I. INTRODUCTION

PEECH enhancement, aiming to improve the quality of

the desired speech, is a crucial topic of audio signal
processing, useful in many real-world applications, including
automatic speech recognition (ASR), teleconferencing, hearing
aids, and robotics [1]. Recently, numerous deep learning
approaches have been proposed [2]-[4], giving state of the
art performance.

Convolutional neural networks (CNNs) have been applied to
speech enhancement by taking a two-dimensional spectrogram
as an input [5]. The U-net was applied in speech enhancement
where the receptive field is increased via successive down-
sampling operations to improve the enhancement performance
[6]. The deep residual U-net (ResU-net) was proposed by
incorporating deep residual learning and dilated convolutions

Y. Li and S.M. Naqvi are with the Intelligent Sensing and Communications
Group, School of Engineering, Newcastle University, Newcastle upon Tyne
NEI1 7RU, U.K. (e-mails: [y.1li140, mohsen.naqvi]@newcastle.ac.uk)

Y. Sun is working with the Big Data Institute, University of Oxford, Oxford
OX3 7LF, U.K. (e-mail: yang.sun@bdi.ox.ac.uk)

W. Wang is with the Centre for Vision, Speech and Signal Processing, Uni-
versity of Surrey, Guildford GU2 7XH, U.K. (e-mail: w.wang@surrey.ac.uk)

into the U-Net architecture [7], which aggregates contextual
information by expanding receptive fields.

Following its success in natural language processing (NLP),
the Transformer has been introduced for speech enhancement
[8], which is based on the encoder and decoder architecture
with stacked self-attention and point-wise feed-forward layers
[9]-[12]. In the Transformer-based methods, the attention map
is extracted from the spectrogram to guide the models to focus
on important frames or channels. However, the Transformer
architecture suffers from a limitation that the network training
can be computationally expensive because significant amount
of information needs to be represented across attention-heads
[13]. To reduce its computational complexity, in another
Transformer model [14], the attention maps in weights and
heights of the feature maps are interleaved, which enables the
features to be extracted along the individual axes.

Most deep learning architectures for speech enhancement
are formulated in the full-band time-frequency (T-F) rep-
resentation of the noisy mixture [11], [12], [15]-[18]. By
using short-time Fourier transform (STFT), the state-of-the-art
methods estimate the spectrogram of the desired speech signal
from the noisy mixture spectrogram [19]-[21]. Moreover,
some recent works focus on the time domain to avoid the long
latency in calculating the spectra [9]. Tang et al. use speech
signals in the time-frequency domain and time domain jointly
to further improve the estimation accuracy [10]. However, it
has been shown that most of the background noises, e.g.,
factory noise, tend to be uniformly distributed across the
full band, while human speech mostly occupies in the lower
frequency band [22], [23].

In this work, we leverage the advantage of the Transformer
architecture for speech enhancement, and construct the atten-
tion maps along the time and frequency directions. We then
introduce skip connections in Transformer to reduce the loss
of feature information at each convolution [24]. We propose
to divide the whole T-F attention map into three sub attention
maps, i.e. time attention (TA), high frequency-band attention
(HFA), and low frequency-band attention (LFA), respectively.
Since most of the speech energy of the mixture is contained
in the lower band 0-4000 Hz [22], the LFA, such as the 16-
head attention with different learnable vectors for keys, values,
and queries, is weighted more to exploit the desired source
information, while the HFA is only trained with small weights
and an overall learnable vector to improve the efficiency.

The contributions of this paper are summarized as follows:

o A U-shaped Transformer, simplified as U-Transformer, is
introduced for the first time to address the speech enhancement



problem. The proposed method can address the limitation of
U-Nets and offers advantages in modeling long-range contex-
tual and spatial information. Furthermore, the skip connections
are added between the sub-layers in the encoder and decoders,
which can reduce the degradation caused by the increasing
depth of the network.

e The 2-D attention map is split into two 1-D sub-attention
maps over time and frequency, which enables parallel calcu-
lations of the attention maps and thus facilitates the training
process. In addition, independent learnable vectors for query,
keys and values are exploited as local constraints between the
frames of the sub-attention maps. For each location on the
feature map, a local squared region is extracted to serve as a
memory bank for computing the attention map.

e The multi-head attentions in time- and frequency-axis are
further refined into three attentions i.e., time attention (TA),
high frequency-band attention (HFA), and low frequency-band
attention (LFA). Furthermore, a different number of heads and
learnable vectors are used for the three multi-head attentions
to efficiently train the sub-attention maps.

II. RELATED WORK
A. Network Architectures in Speech Enhancement

Various network models for speech enhancement have been
developed in the deep learning community. Over the past
several years, increasing research efforts have been devoted
to improve the inference efficiency of DNNs for speech
enhancement. For example, in [15], three different techniques
are systematically investigated with feed-forward DNN-based
pipelines. The magnitude spectra of the clean speech signal
and the noisy mixture signal are used as the network input.
Moreover, as a natural choice for learning the temporal dy-
namics of speech, recurrent blocks are widely used to model
the speech signal in regression tasks in various methods. For
example, Leglaive et al. presented a generative approach to
speech enhancement based on a recurrent variational autoen-
coder (RVAE) with a variational expectation-maximization
algorithm [3]. In a way, a recurrent neural network (RNN)
can be viewed as a DNN with an infinite depth [25].

Different from RNNs, the Transformer processes the input
in parallel and does not necessarily depend on the inputs from
the previous frames to be processed. The Transformer adopts
the scaled dot-product attention of the query ) with all keys
K, followed by division of a constant [26]. After applying the
softmax function, the weights W on the values V' are obtained.
The attention of each head is the dot product of W and V. The
attentions of all heads are concatenated and linearly projected
again to obtain the final output [26].

U-shaped neural networks have recently been introduced in
speech enhancement [6], where the U-net architecture is used
to supplement a usual contracting network with successive
layers, where pooling operations are replaced by upsampling
operators [6]. Therefore, these layers increase the resolution
of the output. A successive convolutional layer can then learn
to assemble a precise output based on this information. The
network is based on the fully convolutional network and its
architecture has been modified and extended to work with

a reduced number of training samples and to yield perfor-
mance improvement [6]. A modified U-Net and a temporal
activation layer (TAU-Net) have been jointly optimized to
boost the speech enhancement performance in unseen noise
environments [27].

In order to further improve the performance, the residual
connection is introduced in speech enhancement [28], [29].
Instead of fitting each few stacked layer directly with a desired
underlying mapping, the layers are designed to fit with a
residual mapping. The deep residual networks are found to be
easy to optimize, which provide significant performance gain
with the greatly increased depth [28]. Moreover, in [7], the
residual connections are combined with the U-net to aggregate
contextual information by expanding the receptive fields. The
residual blocks are summed to yield high-level features, which
preserve and integrate the knowledge learned by all the stacked
blocks of ResU-net.

The U-shaped architecture is combined with self- and
cross-attention from Transformers known as U-Transformer
for image segmentation [30]. The conventional U-nets are
ineffective in modelling the long-range contextual interac-
tions and spatial dependencies, which, however, are crucial
for accurate segmentation in challenging contexts. The U-
Transformer augments the U-shaped fully connected layers
with Transformers [30]. To this end, attention mechanisms
are incorporated at two main levels: a self-attention module
leverages global interactions between encoder features, while
the cross-attention module in the skip connections allows a
fine spatial recovery in the U-Net decoder by filtering out the
non-semantic features. In this work, we leverage the U-shaped
Transformer, and adapt it for the speech enhancement problem.

B. Attention Based Speech Enhancement

Inspired by the huge success in natural language processing
(NLP), attention based network models have been introduced
to solve speech enhancement problem [31]. As a Squeeze-and-
Excitation (SE) block, an attention mechanism operates in two
steps. In the first step, it squeezes the input tensor over the time
and frequency axis to output a one-dimensional vector [32].
The squeezing operation is an average pooling that enables
the whole spatial information to be compressed into one bin.
It embeds the input data into a global vector so that contextual
information can be exploited in the second step. In the second
step, the one-dimensional vector is passed to a multi-layer
perception module composed of two fully-connected layers.

In recent years, different kinds of attention based variants
are developed. Self-attention is a core building block of
the Transformer, which not only enables parallelization of
sequence computation, but also provides the paths of constant
length between the symbols that are essential to learning
long-range dependencies [33]. Compared to the conventional
attention mechanism, the self-attention minimizes the total
computational complexity per layer and maximizes the amount
of parallelizable computations [17].

Rather than estimating the attention block only once, the
scaled dot-product attention is utilized for the parallel cal-
culation of the multi-head attention multiple times [34]. The
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Fig. 1. The overall architecture of the proposed U-Transformer. As the input of the encoder, the features extracted from the noisy spectrogram are split into
time- and frequency-axis, and masked by multi-head attentions. The weights for time and frequency Wy and W are separately calculated in time attention
and frequency attention, respectively. The attention maps of the two attentions M; and M} are output from each time-frequency attention. However, the

dimensions of My and My from each attention block are halved compared with the previous block. For example, d2 . is half of d}

After the feature is

layer layer”

recovered by the De-Conv layers in the decoder, the reconstructed spectrogram is obtained as the output. The masking module and feed-forward network are

presented in (b) and (c), respectively.

independent attention outputs are simply concatenated and
linearly transformed to match the expected dimensions [35].
In addition, for each multi-head attention block, the feed-
forward layer, followed by a layer normalization, is used to
process the output from the attention layer, which allows
the input to be rescaled and fit for the next sub-layer [33].
The two linear transformations exploited in the feed-forward
layer share the same architecture across different positions,
however, they employ different parameters between the two-
layer normalization [36].

As aforementioned, Transformer has the limitation that the
network training requires huge computational cost due to
massive information represented across attention-heads [13].
To address this issue, Wang et al. proposed an axial method
attention where the 2D self-attention is factorized into two 1-
D self-attentions for panoptic segmentation [37]. The authors
employed two axial-attention layers consecutively for the
height-axis and width-axis of the feature map. Motivated by
this idea, in this paper, we develop a method for speech
enhancement based on axial attention where the attention map
is calculated along the time- and frequency-axis. However,
different from the conventional axial attention, in our work,
independent learnable vectors are exploited for query, keys
and values, and used as local constraints added between the
frames of the sub-attention maps e.g., for each location on the
feature map, a local squared region is extracted to serve as a
memory bank for computing the attention map. This has an
advantage in further reducing the computational cost involved
in the conventional axial attention.

III. PROPOSED METHOD

In this section, we present the T-F attention based U-
Transformer with the frequency-band aware attentions. Each
block in the overall architecture of the network is introduced in
the first subsection, followed by the description of the encoder-
decoder U-Transformer, T-F attention and frequency-band
aware attention with different multi-head attention parameters
in the remaining subsections.

A. Speech Enhancement U-Transformer

The overall architecture of the proposed U-Transformer is
presented in Fig. 1. The aim of speech enhancement is to
estimate the desired speech signal Y = {y*,...,y'} from the
t-length inputs X* = {x?,...,x'}, where x! and y* represent
the ¢-th frame of the magnitude spectrogram of noisy mixture
and estimated speech, respectively.

Initially, the noisy mixture is generated with the clean
speech signal and the noise interference. The encoder con-
sists of four Transformer blocks, and each block has a T-F
multi-head attention, a feed-forward network, and two layer-
normalizations.

The conventional Transformer encoder consists of three
important modules: positional encoding, multi-head attention,
and position-wise feed-forward network. However, in speech
enhancement, the positional encoding part is removed since
it is not suitable for acoustic sequence [33]. As shown in
Fig. 1, the encoder is comprised of four sub-layers and
each encoder layer has a multi-head attention and a feed-
forward network. The residual connection [28] is exploited



in both multi-head attention mechanism and feed-forward
network. In the proposed T-F attention method, two multi-
head attention blocks are applied on sub attention maps
to extract the desired information at time- and frequency-
axis, respectively. Different from the conventional Transformer
encoder, in the feed-forward network, the first fully connected
(FC) layer is replaced by a gated recurrent unit (GRU) [38]
layer because the GRU shows a better performance in recent
speech enhancement works [39]. In addition, the GRU layer
has a simpler structure, and thus, it is easier to implement,
and also faster to train [38]. Moreover, the same dimension
of attentions maps is obtained from the input and output of
one sub-layer in the U-Transformer, e.g., diayer = 512 in the
first sub-layer, to facilitate the residual connections. A layer
normalization is followed by both the multi-head attention and
the feed-forward network before and after the operations.

The output from the encoder stack is provided to the
masking module which consists of two 2-D convolutional
layers with ReLU and PReLU activation functions. We use two
different activation functions here for the following reasons.
With PReLu, which has the slope as a parameter of the model,
the speech source can be estimated more accurately because
of the flexible range of values of the attention map, including
both negative and non-negative values. However, the ideal ratio
mask (IRM) is estimated with the energy of the attention maps
of clean speech and noisy mixture, which involves only non-
negative values. Therefore, we use ReLu for the outputs from
the IRM estimation, but use PReLu for the estimation of the
speech source.

Because information is propagated along time- and
frequency-axis, to utilize the conditioning information, i.e.,
the relationship between each time and frequency point, the
masking module is exploited between the encoder and decoder.
The encoded representation is shifted up for the causality of
the conditioning information with the IRM to estimate the
target speech signal from the noisy mixture as [40]:

52 B
IRM = <5’2+I2> (1
where S? and I? are speech energy and interference energy,
respectively, which can be calculated from each T-F point.
According to [40], the tunable parameter 3 is typically set to
0.5 as an appropriate choice. In the sub-layer of the decoder,
the feed-forward network obtains the masked attention maps
from two inputs: (1) The attention map from the corresponding
sub-layer in the encoder is introduced by a skip connection,
which helps reduce the loss of feature information at each con-
volution [24]. (2) The output from the T-F attention block of
the decoder. A concatenation operation is applied in the feed-
forward network at each sub-layer of the decoder to integrate
two inputs. Different from the conventional Transformer [26],
the proposed U-Transformer benefits from the concatenation
as combining the information from different compression
levels is found empirically to improve performance in speech
enhancement, as shown later in our experiments. Moreover,
similar to the encoder, a layer normalization and residual
blocks are added between the multi-head attention and the

feed-forward network. The enhanced speech can be obtained
from the output layer after the 1-D convolutional layer.

B. Time-frequency Attention

In the proposed U-Transformer, a self-attention layer is
implemented in each sub-layer to take an L-length sequence
of embeddings as input and to produce a same size output
sequence. The output of the attention matrix is represented as

[26]: .
QK

A(Q, K, V) = Softmax ( Vi ) \% ()
where A is attention and T is the symbol for matrix transpose.
Initially, the full attention map of dimension 1" X F' X djayer is the
input to each sub-layer of the encoder. Different from the axial
attention [14], due to the requirement of the speech signal, the
proposed T-F attention applies global average pooling along
time- and frequency-axis to split the 2-D attention map into
two 1-D sub maps as T'X djayer and I’ X djayer, Tespectively. Each
sub attention map propagates information along one specific
axis. Moreover, the dimensions of (), K, and V are T' x F' x
diayer, and are changed to T' X djayer OF I X diayer after the axial
transformation. Two sub attention maps are constructed for
parallel calculations on multiple GPUs to optimize the training
process. The multi-head attention for the time direction can be
represented as:

multihead(Qy, K;, Vi) = [hy;...; h g] WP

with h; = A (QtWtQ, KWK, VtWtV) )
where WO € REXdoXdiyer WtQ € Riwexde K ¢
Riwer Xdi - and W)Y € R¥werxdv are the weights required to
be trained. In the time attention map, the query, keys and
values are denoted as Q;, K;, V4, respectively. The number of
heads is set empirically to 8 and the index of each head is
denoted as ¢ in the proposed T-F attention method similar to
the original Transformer [26]. The dimension of the hidden
layers in each head is set empirically to 512 in our work.
Similarly, for frequency attention, we use same equations but
different notation f:

multihead(Qy, Ky, Vy) = [hy;...; h s] W

where h; = A (QW R, KW, VW) @
The multi-head attention mechanism shows high efficacy to
learn the long-term dependencies because a direct connection
between the frames is used. The weights of the multi-head
attention layer are computed by pooling over the query-key
affinities (Q; K, and the key-dependent bias term K Crf_tt:

WtQ = Z (Qi K + Kcrf_tt)rl/it ®)
CENIXN(t)
Wi = Z Qtr?jtrl@t (6)
CENIXn(t)
W) = Z (Qi K + Qth?:t +EKo)Ve (D

CGNan(t)



where Ay, (¢) is the local 1 X n region around the frame
c. The location similarity is estimated by the inner product
Qtrg’?_tt between the frames (¢,c). Then, r._;s are learnable
vectors to update the weights and the superscripts refer to
the multi-head attention parameters. The outputs of time and
frequency attentions can be written as:

M; = multihead(Qy, K¢, V;) 8)
My = multihead(Qf7 Ky, Vf) )]

Then, the masked attention maps are integrated and processed
by a feed-forward network to obtain the output of the improved
Transformer decoder at time ¢, where residual connections and
layer normalization h(-) are added as well.

y! = ReLU(h(M; + My + M,))W; + b; (10)

where the i-th weight W; € R%ever*T and the i-th bias
b; € RT are trained with the output from the previous layer
M,,. The desired speech signal Y is estimated by integrating
L frames. The pseudo-code of the proposed T-F attention is
summarized in Algorithm 1.

Algorithm 1: Time-frequency Attention Algorithm.

input : Extracted feature map as T' x F' X djayer,
Attention map from the last sub-layer M,
learning rate 7, epoch E,x

output: Attention map My, as T X F' X djayer

Initialize learning vectors;

for £ =1,2,..., Ei ax do
for t € [1,7] do
Calculate r?jt, rXt and r¥t,

we, WtQ’ Wik, th%r?it’ ri
Update the time attention map My;

end

for f € [1, F] do
Calculate rf_f f, rf_ff and r;/i P

o Q K v, Qr Ky Vi |

Wi, W, Wi, Wy g2y 1o g ToZ s
Update the frequency attention map My;

end

M = My x M, ;

Wi < Tij //mini-batch mean;

O & Tij, s //mini-batch variance;

Zi;5 < @45, i, 04, € [/mormalize with error €;
Moy = M + M, ;
end

C. Frequency-band Aware Attention

To fully exploit the desired speech information, T-F atten-
tion is further divided into three multi-head attentions, time
attention (TA), high frequency-band attention (HFA), and low
frequency-band attention (LFA), as shown in Fig. 2.

The proposed attention block has three frequency-band
aware multi-head attention mechanisms. The input of the block
is aT X F' X diyer attention map which is divided into two
sub attention maps by a 1-D convolution to shuffie the features
in time- and frequency-axis. The frequency attention map is
further divided into two g X dlayer SUb-maps based on the

critical frequency f.. According to [22], [41], the critical
frequency f. = 4000 Hz is found to be the best choice
due to significant difference of the power spectral density
(PSD) between the lower frequency band and higher frequency
band of the mixture spectra. When the sampling rate and
the maximum frequency of the speech signal are set to 16
kHz and 8 kHz, respectively, the frequency band [4000 -
8000 Hz] is assumed as the high frequency-band and paid
with smaller computation costs during the training because
it only includes unvoiced speech and limited voiced speech
energy. The other frequency-band in the mixture, i.e., the lower
band [0 - 4000 Hz], which is composed of mostly the voiced
speech and is the major focus of the frequency-band aware
attention. Because the target speech signal is composed of both
voiced and unvoiced speech components, the unvoiced speech
in the high frequency-band may affect the speech enhancement
performance. However, the vocal folds are the primary sound
source and the average pitch frequency is about 125 Hz for
an adult male, 210 Hz in adult females, and over 300 Hz in
children [42]. Therefore, the proposed method uses different
multi-head attentions for the sub-bands.

|
‘ Multi-head Attention || Multi-head Attention ‘ ‘ Multi-head Attention ‘

C [ 1 L 71 L1

JiowAxial Map Jrign Axial Map
Time Axial Map F F
T X dyyy, 7% iyer 2% Aiayer

TXF X djyye,

Fig. 2. The frequency-band aware attention. The input and output maps
have the same size as T' X F' X duyer at each sub-layer in the proposed
U-Transformer. In four sub-layers, diayer = 512,256, 128, 64, respectively.

In the proposed T-F attentions method, we use eight-head
attentions for both time- and frequency-axis. However, in
the frequency-band aware attention method, the numbers of
the heads in TA, HFA, and LFA are set to 8, 2, and 16,
respectively. In the conventional multi-head attention [14],
[26], the number is set to 8 for the full frequency-band of
the spectrogram. As the energy of the desired speech signal is
distributed at the lower frequency-band [0-4000 Hz], the LFA
is trained with 16-head attention and independent learnable
vectors for time attention, which incurs more computation
loads than the HFA. However, in the HFA, we only exploit an

overall vector r];i ¢ and the output of the multi-head attention



is represented as:

VVJ9 = Z (Qfo+Kg)erf (11)
9€N1><n(f)
Wik = > Qry, (12)
gelen(f)
Wip= Y (@QiEr+ @+ Kyl v, (3)

QElen(f)

The three multi-head attention blocks are trained with different
sub attention maps of the extracted features and provide a
combined and masked attention map which share the same size
as the feature map. The integrated attention map is added to the
layer normalization with a residual connection. The pseudo-
code of the high frequency-band attention is summarized in
Algorithm 2.

Algorithm 2: High Frequency-band Attention.

input : High frequency-band attention map as
£ X djayer, learning rate 7, epoch Epax,
Estimated LFA M;y, time attention map M,
from Algorithm 1

output: Attention map as 1" X I X djayer

Initialize learning vectors;
for £ =1,2,..., Epa.x do
for each column f € [1,£] do
Calculate Tf’ft;
W, Wik, WE, WY bt
Update the frequency attention map My, r;
end
M:th+le+Mt
attention maps ;
end

//integrate three sub

IV. EXPERIMENTAL RESULTS

A. Datasets

We extensively perform experiments on several public
datasets, including DEMAND [43], IEEE [44], TIMIT [45],
VOICE BANK (VCTK) [46], and Deep Noise Suppression
(DNS) challenge [47].

1) DEMAND: Diverse Environments Multichannel
Acoustic Noise Database (DEMAND) [43] provides a set
of recordings from real-world noise. We randomly collect
and use 6 of 15 recordings for the speech enhancement
experiments with noise interferences, and the noises are
psquare, dliving, dkitchen, nriver, tcar and pstation.
Each noise interference has a unique case and lasts four
minutes long, and it is divided into two clips with an equal
length. One is used to match the lengths of the speech signals
to generate training data and the other is used to generate
development and inference data.

2) IEEE & TIMIT: The IEEE dataset [44] contains
speech data of American English speakers. The TIMIT dataset
[45] contains broadband recordings from 630 speakers of eight
major dialects of American English, each reading ten phonet-
ically rich sentences. In the training and development stages,
600 recordings from 60 speakers and 60 recordings from 6
speakers are randomly selected in each dataset, respectively.

3) VCTK: The VOICE BANK dataset [46] already con-
stitutes the largest datasets of British English. According to
[6], [7], 11572 noisy mixtures are generated with 6 background
noises at one of 4 SNR levels (15, 10, 5, and 0 dB) in the
training stage.

4)  DNS: The clean speech set includes over 500 hours of
clips from 2150 speakers and the noise set includes over 180
hours of clips from 150 classes in the DNS challenge [47]. In
the training stage, 75% of the clean speeches are mixed with
the background noise but without reverberation. In the testing
stage, 150 noisy clips are randomly selected from the blind
test dataset without reverberations.

B. Baselines and Model Configuration

In this work, three baseline models, including U-net [6],
ResU-net [7], and SETransformer [8] with attention [48] are
implemented for the comparison and ablation experiments.

Both U-net and ResU-net baselines use 1D convolution and
zero-padded blocks. The number of layers are set to 10 as
the best configuration reported in [6]. Different from the U-
net, the downsampling and upsampling blocks are constructed
as residual units in ResU-net. The ResU-net consists of an
identity mapping and two 1-D convolution blocks. Each con-
volution block includes a dilated convolution layer, a batch
normalization (BN), and a Leaky ReL.U activation function.
Dilation is applied to both the time direction and the frequency
direction in the convolution operation, which can aggregate
contextual information over both time and frequency dimen-
sions. The identity mapping with 1x1 convolution connects the
input and output of the unit, which is only used to ensure the
same dimensions of two tensors that are passed to an addition
operation [7].

In addition, six state-of-the-art speech enhancement meth-
ods [9]-[11], [33], [39], [49] are reproduced as the original
implementations and compared with the proposed method.
The first one, TSTNN [9], is a two-stage Transformer network
for speech enhancement in the time domain which uses four
stacked two-stage transformer blocks to extract local and
global information from the speech latent representation stage
by stage. The second method is a cross-domain framework
named TFT-Net [10], which exploits time-frequency spectra
as input to six dual-path attention blocks and produces time
domain waveform as output. The third method is a dual-path
Transformer network (DPTNet) for end-to-end speech separa-
tion [11], and we use the background noise as the interference
for fair comparison. The fourth method, named DPT-FSNet
[49], combines the full-band and sub-band fusion (FullSubNet)
method in [23] and DPTNet in [11]. The inter and intra
parts of the dual-path Transformer model the full-band and
sub-band information, respectively. The T-GSA method [33]



TABLE I
SPEECH ENHANCEMENT PERFORMANCE COMPARISONS WITH BASELINES ON THE IEEE AND TIMIT DATASETS. EACH RESULT IS THE AVERAGE OF 2160
EXPERIMENTS (120 SIGNALS X 3 SNR LEVELS X 6 BACKGROUND NOISES). BOLD INDICATES THE BEST RESULTS. Itfalic SHOWS THE PROPOSED

METHODS.
Computation IEEE TIMIT
Method Para. (M) FLOPs (B) | STOI (%) PESQ fwSNRseg (dB) | STOI (%) PESQ fwSNRseg (dB)
Unprocessed - - 423 1.52 3.11 41.5 1.44 3.04
U-net [6] 30.00 4.44 68.2 1.93 8.81 71.3 1.96 10.66
Unet+Attention [6] [48] 35.52 4.46 68.5 1.92 8.96 67.8 1.97 8.42
ResU-net [7] 13.34 1.80 72.6 2.14 10.77 72.1 2.09 9.50
ResU-net+Attention [7] [48] 18.95 1.82 74.0 2.20 12.51 73.0 2.08 9.38
Transformer [8] 6.44 2.31 78.4 2.32 13.08 77.9 2.25 12.70
Transformer+Attention [8] [48] 11.92 2.33 78.8 2.41 13.24 78.3 2.33 12.84
TSTNN [9] 0.92 0.94 78.5 2.30 13.22 78.1 2.30 12.80
TFT-Net [10] 8.96 1.22 78.7 2.35 12.70 77.8 2.27 12.93
DPTNet [11] 2.69 1.39 823 2.38 14.34 81.1 2.28 13.06
FullSubNet [23] 5.75 2.98 82.5 2.42 15.07 81.9 2.30 13.54
DPT-FSNet [49] 0.88 0.60 83.2 2.49 15.88 82.2 2.40 13.75
Unet+TF 36.81 3.89 72.0 1.99 11.46 70.4 1.99 9.84
ResU-net+TF 20.12 1.01 80.5 2.38 13.21 78.6 2.31 13.22
U-Transformer+TF 4.21 0.33 81.6 2.41 15.47 80.7 2.39 14.05
Unet+FAT 37.11 391 78.1 221 12.55 75.2 2.16 10.62
ResU-net+FAT 20.93 1.05 82.6 2.49 14.92 80.7 2.40 13.16
U-Transformer+FAT 431 0.34 85.0 2.74 17.39 82.6 2.59 14.81

uses Gaussian-weighted self-attention (GSA) in Transformer
in the encoder and a complex fully-connected layer in the
decoder. The self-adaptation based multi-head self-attention
(SA-MS) method [39] uses the multi-head self-attention to
capture long-term dependencies in the speech and noise with
a DNN backbone.

Three state-of-the-art benchmarks in the DNS challenge are
reproduced and compared with the proposed method. The first
one is the full-band and sub-band fusion model (FullSubNet)
which captures the full-band spectral information and the long-
distance cross-band dependencies, meanwhile retaining the
ability to modeling signal stationarity and attending the local
spectral pattern [23]. The full-band network contains three
long short-term memory (LSTM) layers with 512 hidden units
for each layer and the sub-band model includes two LSTM
layers (384 / 256 units) and one dense layer [50]. The second
one is the dual-path recurrent neural network (DPRNN) [51].
Similar to [51], we apply 6 DPRNN blocks with 128 hidden
units in each direction bidirectional LSTM (BLSTM) on the
time-domain audio separation network (TasNet) that contains
a linear 1-D convolutional encoder, a separator, and a linear
1-D transposed convolutional decoder [52]. The third one is
the deep complex convolutional recurrent network (DCCRN)
[53]. In the implementation, both the CNN and RNN structures
can handle the complex-valued operation. The network is
an essentially causal convolutional encoder-decoder (CED)
architecture with two LSTM layers between the encoder and
the decoder [53].

Moreover, all the speech utterances are resampled to 16
kHz. They are converted to spectrogram using fast Fourier
transform (FFT), with a window of 512 samples (32ms) with
an overlap of 256 samples (16ms) between the neighboring
windows. Since the input and the output of the proposed
method and baselines are both magnitude spectrogram and
the dimension of single axis is set to 257. A linear processing
layer is stacked when splitting the feature map to convert the
speech spectrogram to feature vectors of dimensions djgyer =

512. All the experiments are run on a work station with four
Nvidia GTX 1080 GPUs and 16 GB of RAM. The proposed
method is trained by using the Adam optimizer with a learning
rate set empirically to 0.0008. The batch size is set to 16. We
train the networks for 100 epochs, due to the use of a large
amount of training data, i.e., 11572 speech signals mixed with
6 background noises. The training and validation loss curves
are plotted in Fig. 3. According to these loss values, we set the
number of training epochs as 100 to avoid potential overfitting.
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Fig. 3. Training and validation loss curves.

C. Evaluations on the IEEE and TIMIT datasets

To evaluate and compare the quality of the enhanced speech
with various methods, we use the short-time objective in-
telligibility (STOI), perceptual evaluation of speech quality
(PESQ), and frequency-weighted segmental signal-to-noise
ratio (fwSNRseg) as performance measures on the IEEE and
TIMIT datasets. The STOI and the PESQ are bounded in
the range of [0, 1] and [-0.5, 4.5], respectively [54]. The
fwSNRseg is estimated by computing the segmental signal-
to-noise ratios (SNRs) in each spectral band and summing
the weighed SNRs from all bands [55] in the range of [-10,



35] dB. The proposed T-F attention and frequency-band aware
attention are abbreviated as TF and FAT, respectively. We also
compare the parameters and floating-point operations (FLOPs)
of the models.

Table I shows the averaged speech enhancement perfor-
mance of the proposed method as compared with those of
the baselines using the IEEE and the TIMIT datasets, with
three SNR levels (-5, 0, 5 dB) and six noise interferences
i.e., psquare, dliving, dkitchen, nriver, tcar and pstation.
From Table I, it can be observed that: (1) The conventional
attention block has limited improvement in speech enhance-
ment performance. However, the proposed T-F attention and
frequency-band aware attention significantly improve the in-
ference performance in all standard models. In terms of PESQ,
the proposed T-F attention and frequency-band aware attention
obtain 7.3% and 22.8% improvements compared with the
standard Transformer model [8], respectively. The proposed
T-F attention mechanism adopts both global connection and
efficient computation on time and frequency directions. In
addition, the learnable vectors rz/it, rfjt, and r?jt forV, K,
and (@ utilize the positional information between the frames
(t, ) to update the weights WV, WX, and W<, respectively.
The 2-D attention map is split into two 1-D sub-maps in
time- and frequency-axis, which allows the parallel calculation
to facilitate training [14]. (2) In all the evaluated models,
the proposed frequency-band aware attention U-Transformer
offers the best effectiveness. The reason is that the proposed
U-Transformer inherits advantages from both ResU-net and
Transformer. Moreover, the desired information at the lower
frequency-band is fully used by a 16-head attention and
independent learnable vectors. However, in the HFA, only an
overall learnable vector 7‘;{ 7 is applied to further improve the
performance.

Furthermore, the visualizations are given in Fig. 4 which
are related to the estimated spectra of the desired speech
signals from different methods. The target speech signal is
randomly selected from the testing set. After comparing the
estimated spectra with the spectrogram of target speech signal,
it can be observed that the spectrogram obtained via the
proposed U-Transformer with frequency-band aware attention
is closer to the clean speech signal, which again confirms that
the frequency-band aware attention U-Transformer method
outperforms the baselines.

In this work, the proposed T-F attention method produces
two 1-D attention maps to guide the models to focus on the
time frame or frequency channel, respectively. Consequently,
the feature maps along time- and frequency-axis are combined
to generate a 2-D attention map enabling the models to capture
the speech distribution in the T-F domain. Furthermore, by
using the 16-head attention on the lower band spectra with
more desired feature information, the speech enhancement
performance is further improved.

D. Evaluations on the VCTK and DNS challenge datasets

In these experiments, the VCTK and DNS challenge
datasets are used to further evaluate the proposed methods
as compared with the state-of-the-art methods.
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Fig. 4. The spectra of different signals: TF refers to T-F attention and
FAT denotes the proposed frequency-band aware attention method. The x-
and y-axis are time (s) and frequency (Hz), respectively. The experiment
is implemented with dliving and -5 dB SNR level. The proposed UT-FAT
method offers 0.37 and 0.09 improvements over the best-performing baseline,
i.e. the original Transformer [8], in terms of PESQ and STOI, respectively.

The testing set with 2 speakers, unseen during training,
consists of a total of 20 different noise conditions: 5 types of
noise sourced from the DEMAND dataset at one of 4 SNRs
each (17.5, 12.5, 7.5, and 2.5 dB). This yields 824 test items,
with approximately 20 different sentences in each condition
per test speaker. To evaluate and compare the quality of the
enhanced speech with various methods, we use mean opinion
score (MOS) predictor of signal distortion (CSIG), MOS
predictor of background intrusiveness (CBAK), MOS predictor
of overall speech quality (COVL) to map the enhancement
between [1, 5] [56]. Furthermore, similar to [6], [7], PESQ
and segmental signal-to-noise ratio (SSNR) are used as well.
Table II shows the averaged speech enhancement results on
the VCTK dataset [46]. From this table, we can see that the
proposed method outperforms the state-of-the-art methods in
terms of all performance measures.

The proposed method is further evaluated on the DNS chal-
lenge benchmark and compared with the state-of-the-art meth-
ods. In these experiments, the averaged STOI (%), wide-band
PESQ (WP), narrow-band PESQ (NP), and scale-invariant
source-to-distortion ratio (SI-SDR) (dB) performances are
presented in Table III. In the training stage, the noisy mixtures



TABLE 11
SPEECH ENHANCEMENT PERFORMANCE COMPARISON ON THE VCTK
DATASET. BOLD INDICATES THE BEST RESULTS AND ifalic INDICATES THE
PROPOSED METHOD.

Method PESQ CSIG CBAK COVL SSNR
Unprocessed 197 335 244 263 1.68
U-net [6] 239 348 3115 294 943
Unet+Attention [6] [48] 240 350 330 3.03 10.01
ResU-net [7] 279 399 338 332 10.03
ResU-net+Attention [7] [48] 2.83 4.04 3.49 3.45 10.08
TSTNN [9] 291 420 347 359 9.14
TFT-Net [10] 271 386 339 325 10.00
DPTNet [11] 278 392 340 336 10.83
FullSubNet [23] 296 421 357 362 11.03
T-GSA [33] 292 401 347 3,55 10.02
SA-MS [39] 291 407 336 350 931
DPT-FSNet [49] 3.02 437 358 381 11.14
Unet+TF 267 370 341 326 1045
ResU-net+TF 288 412 353 358 10.38
U-Transformer+TF 289 420 3.69 3.64 10.61
Unet+FAT 275 382 350 334 11.58
ResU-net+FAT 296 420 359 3,61 11.27
U-Transformer+FAT 3.08 423 3.63 3.68 11.69

are generated with a random SNR in between -5 and 20 dB
as [23].

TABLE III
SPEECH ENHANCEMENT PERFORMANCE COMPARISON ON THE DNS
CHALLENGE DATASET WITHOUT REVERBERATIONS. BESIDES, italic
INDICATES THE PROPOSED METHOD AND BOLD INDICATES THE BEST

RESULTS.

Method FLOPs (B) WP NP STOI  SI-SDR
Unprocessed - 1.56 245 91.2 9.03
TSTNN [9] 0.94 255 261 919 10.92
DPRNN [51] 1.37 257 268 925 11.05
TFT-Net [10] 1.22 260 274 927 11.64
DCCRN [53] 2.75 264 317 929 12.21
FullSubNet [23] 2.98 272 328 953 16.17
DPT-FSNet [49] 0.72 272 328 953 16.17
U-Transformer+TF 0.33 265 318 929 12.60
U-Transformer+FAT 0.34 267 325 94.1 13.36

It can be observed from Table III that the DPT-FSNet
method offers the best speech enhancement performance on
the DNS challenge dataset. This is probably because the DPT-
FSNet method is designed to not only capture the global
(full-band) spectral information and the long-distance cross-
band dependencies, but also retain the ability to model and
attend the local spectral pattern, which matches well with
the DNS challenge in [23]. However, for the results on the
IEEE, TIMIT, and VCTK datasets, as shown in Tables I
and II, the proposed method outperforms DPT-FSNet. It is
noteworthy that DPT-FSNet, FullSubNet and DCCRN are
causal speech enhancement methods whose output depends on
the present and the previous inputs, while the proposed method
is non-causal where the output depends only on the future
inputs. Some recent evidence shows that causal inference may
perform slightly better than the non-causal inference [57]. If
an interference is given, it is possible to measure the causal
effect, and enhancing speech performance can be achieved
by changing the causal effect. However, the proposed method
has been demonstrated to have an advantage in computational

efficiency due to its non-causal structure.

E. Ablation study and model parameters

In this experiment, we first show speech enhancement
performance of the proposed frequency-band aware attention
U-Transformer with different numbers of heads. The models
are trained and tested on the IEEE dataset with three SNR
levels (-5, 0, 5 dB) and six noise interferences, i.e., psquare,
dliving, dkitchen, nriver, tcar and pstation. Comparisons
of speech enhancement performance are showed in Table IV.

TABLE IV
ABLATION STUDY ON DIFFERENT NUMBERS OF HEADS FOR HFA + LFA.

No. of Heads  Para. (M) STOI = PESQ fwSNRseg (dB)
242 2.96 78.4 2.27 12.55
2+8 3.58 82.3 2.46 15.78
2+ 16 4.31 85.0 2.74 17.39
8+2 3.61 78.5 2.30 12.93
8+8 421 82.8 2.51 16.06
8+ 16 4.99 85.0 2.76 17.51
16 +2 4.34 78.9 2.33 13.04
16 + 8 5.06 82.9 2.55 16.37

16 + 16 5.80 85.2 2.77 17.49

We set the number of heads in the proposed HFA and LFA
as 2 and 16, respectively. According to Table IV, this offers
the best trade-off between performance and model size. On the
one hand, compared to the models with more heads in HFA,
the proposed method significantly reduces the model size but
with only a slight performance degradation. On the other hand,
compared to the models with fewer heads in LFA, the proposed
method has an enormous improvement on three performance
measures due to the focus on the low frequency-band. There-
fore, we choose ‘2+16’ setting in the experiments. In addition,
the proposed method saves O(N (diayer — 1)/diayer ) factor of
resources over standard self-attention. We also calculated the
FLOPs in the IEEE dataset experiment. The FLOPs of the
original Transformer are 2.3B, while those of the proposed
method are only 0.3B.

The above detailed experimental results confirm that the
proposed U-Transformer with the frequency-band aware at-
tention can further improve speech enhancement performance
both with noise and speech interferences compared to the
baselines. With the comparison and ablation experiments,
it can be observed that: (1) The proposed U-Transformer
based method provides very good improvements. (2) Both T-
F and frequency-band aware attentions significantly outper-
form the conventional attention mechanism. (3) According
to the ablation experiments in Tables I-III, the frequency-
band aware attention could further improve the speech en-
hancement performance, as compared with T-F attention. (4)
The proposed U-Transformer with the frequency-band aware
attention achieves better enhancement performance as com-
pared with other state-of-the-art baselines. The reason is that
the proposed attention method splits the feature map in time
and frequency directions, and utilizes multi-head attention to
mask the attention map over each direction. Different from
axial attention, each multi-head attention has a set of learning
vectors for its own query, keys, and values to fully use the



positional information. Furthermore, the proposed frequency-
band aware method trains three sub-attention with different
computational cost and provides an efficient computation.
The lower frequency-band where the desired information is
intensively distributed is trained with the learning vectors,
therefore, speech enhancement performance is further im-
proved. Moreover, the computation cost is reduced because
the 2D attention map is factorized into two 1D attentions
along time- and frequency-axis. The proposed time-frequency
attention saves a O(N (diayer — 1)/diayer ) factor of resources
over standard self-attention on each tensor with shape N =
Nl/d]ayer X oo X Nl/dlayer .

V. CONCLUSION

In this paper, we have presented a novel U-Transformer with
the frequency-band aware attention for speech enhancement
problems. The T-F attention split the feature map obtained
from the previous sub-layer to the time and frequency di-
rections and exploited the multi-head attention to mask sub
attention maps. Consequently, the 2-D attention map was
factorized into two 1-D attentions and allowed parallel com-
putations. Moreover, in order to fully use the information of
the desired speech signal, the frequency-band aware attention
was proposed to split the full band into two sub-bands and
different learning vectors were allocated to TA, HFA, and
LFA, respectively. The experimental results confirmed that
the proposed U-Transformer outperformed the state-of-the-art
models and the frequency-band aware attention could help
to achieve further performance improvement. In the future,
we will investigate the potential of incorporating the phase
information from the complex spectrogram to further improve
the performance.
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