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Abstract—Clipping is a common type of distortion in which the
amplitude of a signal is truncated if it exceeds a certain threshold.
Sparse representation has underpinned several algorithms devel-
oped recently for reconstruction of the original signal from clipped
observations. However, these declipping algorithms are often built
on a synthesis model, where the signal is represented by a dic-
tionary weighted by sparse coding coefficients. In contrast to these
works, we propose a sparse analysis-model-based declipping (SAD)
method, where the declipping model is formulated on an analysis
(i.e. transform) dictionary, and additional constraints characteriz-
ing the clipping process. The analysis dictionary is updated using
the Analysis SimCO algorithm, and the signal is recovered by
using a least-squares based method or a projected gradient descent
method, incorporating the observable signal set. Numerical exper-
iments on speech and music are used to demonstrate improved
performance in signal to distortion ratio (SDR) compared to recent
state-of-the-art methods including A-SPADE and ConsDL.

Index Terms—ASimCO, clipping signal, nonlinear
measurement, sparse analysis.

I. INTRODUCTION

S PARSE representation plays an important role in inverse
problems and signal recovery tasks, such as denoising,

inpainting, declipping and super-resolution. By exploiting the
sparsity of signals in some domain, such as a transform domain,
the original signals can be estimated from the observed signals
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using a sparse representation model. Clipping is a common type
of distortion whereby the amplitude of a signal is truncated if it
exceeds a certain threshold. Clipping may occur when a signal
is recorded by a sensor limited by the range of data that can
be physically measured, when the signal is digitized, or when
an analog or digital signal is transformed through a nonlinear
system. The clipped signal y ∈ Rm is a distorted observation of
the ground truth signal x ∈ Rm,

y = f(x) (1)

where f is a nonlinear clipping function. The observed signal y
may be divided into clipped regions and reliable (i.e. unclipped)
regions. Declipping aims to recover the original signal x from
the clipped signal y. This can be achieved with a variety of
methods, as summarized in a recent survey paper [1]. Typically,
this problem can be formulated using a cost function based on
reconstruction errors, together with constraints or regularizers
that are consistent with the clipping process [2], [3], [4], [5], [6].

A popular model used for the declipping problem is the sparse
synthesis model [7], [8]. In this model, the original signal x is
represented using an overcomplete dictionary ΩT ∈ Rm×p, i.e.
x = ΩTα, where α ∈ Rp is a sparse coefficient vector, p > m,
and the superscript T denotes matrix transpose. The original
signal x can be reconstructed from the observations y based
on the dictionary and sparse coefficients [9], [10]. Often, l0
or l1 regularizations are used to enforce the sparsity constraint
on the representation coefficients of the signal [11], [12], [13],
[14], [15]. The dictionary Ω can be fixed [2], or learned [16],
[17], [18], [19]. The declipping problem has been addressed
by imposing constraints on the samples in the clipped region.
More specifically, the magnitude of the original signal should
be greater than or equal to that of the clipped signal in the
clipped region. An alternative to the synthesis model is the sparse
analysis model, where an analysis dictionary Ω ∈ Rp×m with
p > m is used to sparsify the signal x ∈ Rm [20], [21], [22], i.e.
making Ωx sparse. Only few algorithms, such as the A-SPADE
algorithm [23], [24], [25], have considered the use of an analysis
model for signal declipping, with a fixed dictionary.

A. Related Work

In [2], the original signal is estimated using the reliable (i.e.
unclipped) samples from the observed signal, with the dictionary
formed using positions of the unclipped samples. This algorithm
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does not involve the update of dictionary atoms as they are pre-
selected from the unclipped samples of the observed signal. To
reconstruct the samples that are clipped, additional constraints
are imposed on their amplitudes. This algorithm works better for
low clipping levels than for high [2]. When the clipping region
is enlarged, the number of reliable (i.e. unclipped) samples that
can be used for constructing the dictionary decreases, and as a
result, the quality of the recovered signal deteriorates [2].

In [19], [26], the concept of clipping consistency is exploited
to improve the reconstruction of the original signal, where addi-
tional constraints are enforced for signal recovery and dictionary
learning so that they are “consistent” with the measurement
process. For example, the magnitude of the original signal in the
clipped region of the observed signal should be greater than the
clipping level. Therefore, such information can be used to design
consistency constraints to improve signal recovery. However,
the algorithm is based on extended linear least-squares, which
may be limited for the signals with rapidly changing dynamics
(e.g. highly non-stationary signals). It is worth noting that the
idea of measurement consistency could also be used to address
the problem of signal recovery from other type of nonlinear
observations such as quantized or 1-bit samples, as shown in a
recent study [27]. Another algorithm called S-SPADE [23], [24]
is also based on the synthesis model, which uses l0 pseudo-norm
to measure the sparsity, and l2 norm to bound the distance
between the signal and its sparse approximation.

With a similar heuristic as in the S-SPADE algorithm, the A-
SPADE algorithm [23], [24], [25] uses a fixed analysis dictionary
such as a discrete Fourier transform (DFT) or a discrete cosine
transform (DCT) for iterative signal reconstruction, where the
previous estimates are used to obtain the new estimate. There
are two main steps in the A-SPADE algorithm. The first step
is to obtain the representation matrix using the fixed analysis
dictionary and enforce sparsity of the representation matrix. The
second step is to apply a constraint on the recovered signal to
meet the clipping conditions. The empirical results in [25] show
that the A-SPADE algorithm performs better than the S-SPADE
algorithm.

Recent research, e.g., [27], has shown that learned dictionaries
have the potential to outperform pre-defined dictionaries in
representing a signal and providing recovery of the original
signal from the clipped signal. Nevertheless, this research has
considered only the synthesis model. To the best of our knowl-
edge, dictionary learning with a sparse analysis model has not
been applied in the context of signal declipping. In this paper,
we will bridge this gap and examine the use of a dictionary
learned with a sparse analysis model for signal declipping. This
idea is partially inspired by the work [20], where an analysis
dictionary was shown to outperform a synthesis dictionary for
signal recovery from corrupted observations.

B. Contributions

Our contributions can be summarized as follows. (1) We
build a new model (cost function) for signal declipping with
the consistency constraint defined on an analysis dictionary. (2)
We then develop a two-stage method for optimizing the cost

function. This involves dictionary learning using the Analysis
SimCO (ASimCO) algorithm [20] in the first stage, and signal
recovery in the second stage. To recover the original signal
from the clipped signal, we developed two methods based on
least squares and projected gradient descent, respectively. (3)
We evaluate the performance of the proposed algorithms with
different parameters, in terms of signal to distortion ratio (SDR).
We also compare our algorithms with two baseline methods, i.e.
A-SPADE [23] and ConsDL [27], and show that our algorithms
perform significantly better than the ConsDL algorithm and
slightly better than the A-SPADE algorithm.

C. Notations

In this paper, uppercase letters denote matrices, e.g. Y ∈
Rm×n, and lowercase letters denote vectors, e.g. y ∈ Rm. The
ith row of X is denoted as Xi,:, and the jth column of X is de-
noted asX:,j . For a matrixX , ‖X‖0 denotes the l0 pseudo-norm,
measuring the sparsity, i.e. counting the number of nonzero
elements of X . ‖X‖F denotes Frobenius-norm of the matrix
X . ‖y‖1 denotes the l1-norm of the vector y. The symbols �
and � denote the element-wise smaller (or equal) and larger
(or equal), respectively. I represents an identity matrix, 1 is an
all-one vector, and1 an all-one matrix. The symbol (x)+ denotes
max(0, x), (X)+ denotes max(0, X), (x)− denotes −(−x)+,
and (X)− denotes −(−X)+. The operators max(X,Y ) and
min(X,Y ) denote taking the element-wise maximum and min-
imum of X and Y , respectively. We use C to denote a set. For
convenience, we use Ω and ΩT to represent the analysis and
synthesis dictionary, respectively.

D. Organization of the Paper

In Section II, we provide some background materials about
the Analysis SimCO algorithm. In Section III, we formulate
the declipping problem. In Section IV, we present our method
for the declipping problem, including the cost function and the
optimization algorithms. In Section V, we present simulation
studies of the proposed algorithm, with a focus on the choices
of the parameters and comparisons between the least-squares
based method and projected gradient descent based method for
the recovery of the original signal. In Section VI, we compare our
algorithm with the two baseline algorithms. Finally, Section VII
draws conclusions and discusses future works.

II. ANALYSIS SIMCO ALGORITHM

In this section, we provide an overview of the ASimCO
algorithm that has been already published in [20]. Such materials
are not novel, but included to make the algorithms presented
later self-contained. In an analysis model, the analysis dictionary
Ω ∈ Rp×m is sought to sparsify x [28], [29], [30] as follows

a = Ωx s.t. ‖a‖0 = p− l (2)

where x ∈ Rm, a ∈ Rp, 0 ≤ l ≤ p, and l is the co-sparsity [31]
indicating the number of zero elements in a, and a is the analysis
representation vector of the signal x with respect to Ω. In this
model, if x is a clean signal, we can obtain the representation
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vector a directly via multiplying x by the analysis dictionary
Ω. Note that the sparsity constraint is an upper bound. In other
words, if the value of Ωx is more than l co-sparse, no extra
nonzero values will be added to increase its l0 pseudo-norm. In
practice, Ω can be either a pre-defined fixed analysis dictionary,
or an analysis dictionary learned from observed signals. To
learn the analysis dictionary, we can use an iterative algorithm
alternating between two steps: analysis pursuit and analysis
dictionary update. This problem is often called as analysis
dictionary learning (ADL) [22], [31], [28], [32], [33]. Given
X which contains the training signals, the ADL problem can be
described as follows [34]{

Â, Ω̂
}
= argmin

A,Ω
‖A− ΩX‖2F s.t. ‖A:,i‖0 = p− l, ∀i (3)

where X ∈ Rm×n is a matrix containing n training examples
each of dimension m, and A ∈ Rp×n is the analysis represen-
tation matrix. In order to mitigate the scale ambiguities, the
ASimCO algorithm optimizes the following cost [20], [35], by
imposing a constraint on the rows of Ω,{

Â, Ω̂
}
= argmin

A,Ω
‖A− ΩX‖2F

s.t. ‖A:,i‖0 = p− l, ∀i
‖Ωj,:‖2 = 1, ∀j.

(4)

Different from other ADL algorithms, such as Analysis K-
SVD [28], multiple atoms in the analysis dictionaryΩ can be up-
dated simultaneously in the ASimCO algorithm. The ASimCO
algorithm alternates between two stages, i.e. analysis pursuit and
analysis dictionary updating, as discussed next.

A. Analysis Pursuit

In this stage, we need to compute the analysis representation
matrix A, given the analysis dictionary Ω and the signal X .
Similar to (2), we can obtain A as follows

A = ΩX. (5)

Since the analysis dictionary is generated arbitrarily, it does not
necessarily satisfy the co-sparsity constraints in (2), therefore a
hard thresholding operation is applied to ensure the co-sparsity
constraint

Â = HTl(A). (6)

This is a nonlinear operation to set the smallest l elements
(in magnitude) in each column of A to zeros. Among all the
matrices satisfying the co-sparsity constraints, Â is the best
approximation of A in terms of the Frobenius norm error.

B. Dictionary Update

Given X and A, the analysis dictionary Ω can be found by
optimizing the following cost function [35], [20]

argmin
Ω

g (Ω) = argmin
Ω

‖A− ΩX‖2F s.t. ‖Ωj,:‖2 = 1, ∀j.
(7)

The unit-norm constraint on Ω suggests that columns of ΩT sit
on the unit sphere S = {u ∈ Rm : uTu = 1}, i.e. (Ωj,:)

T ∈ S.

To optimise this cost function, we can use the gradient descent
based method, as detailed in [36] and [20]. The negative gradient
of the objective function in (7) with respect to Ω can be obtained
as

H = −� g (Ω)

= −∂ ‖A− ΩX‖2F
∂Ω

= 2AXT − 2ΩXXT .

(8)

To update Ω, a line search method accounting for the unit-norm
constraint ‖Ωj,:‖2 = 1 was proposed in [20], where the search
direction of the jth row of Ω is projected onto the tangent space
of S as follows

h̄j = Hj,:

(
I − ΩT

j,:Ωj,:

)
(9)

The jth row of Ω can then be updated as follows [20]

Ω̂j,: (ξ) =

⎧⎪⎪⎨
⎪⎪⎩

Ωj,: if
∥∥h̄j

∥∥
2
= 0,

Ωj,: cos
(
ξ
∥∥h̄j

∥∥
2

)
+

(
h̄j

‖h̄j‖2

)
sin

(
ξ
∥∥h̄j

∥∥
2

)
otherwise

(10)
where ξ is the step size, which can be either fixed, or varied by
searching for the optimal value at each iteration in terms of the
golden section rule, as detailed in [36], [37]. Readers may refer
to [20] for more details about the derivation of (9) and (10) by
incorporating ‖Ωj,:‖2 = 1. For the convenience of later use, we
abbreviate (10) as follows

Ω̂ = w (Ω) . (11)

III. MODELLING OF CLIPPED OBSERVATIONS

The clipped signal y in (1) is a distorted version of the original
signal x, and can be written as follows

yi = f(xi) =

⎧⎨
⎩
θ+ if xi ≥ θ+

θ− if xi ≤ θ−

xi others
(12)

where θ+ > 0 and θ− < 0 are positive and negative clipping
levels, respectively, as illustrated in Fig. 1. This representation
can also be written in vector form

y = f(x) = Mrx+ θ+M c+1 + θ−M c−1 (13)

where 1 is an all-one vector, Mr, M c+ and M c− are diagonal
binary sensing matrices defining the reliable, positive and nega-
tive clipped samples, respectively. In practice, we can select the
maximum and minimum value of the observed signal as θ+ and
θ−, i.e. θ+ = max(y), and θ− = min(y).

Declipping can be regarded as an inverse problem with
discarded samples. Given the observed signal y with clipped
samples missing, the aim is to reconstruct the original signal x
from y, by solving the inverse problem [4], [16], [38], [39].

In declipping problems, the amplitudes of the original signal
in the clipping region are greater than or equal to the amplitudes
of the observed signal. Therefore, we can define a so-called
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Fig. 1. Hard clipping: y is the observed signal, which contains the nonlinear
observations of the original signal x. θ+ and θ− are the maximum and the
minimum of the observed signal.

consistency set, as in [19], in closed form as follows

C(y) =
{
x|Mry = Mrx,M c+y �M c+x,M c−y �M c−x

}
.

(14)
This set contains all the possible x that could have generated
the observation y that is consistent with the observation (i.e.
measurement) process, which, in this case, is described by the
clipping function.

IV. PROPOSED METHOD

A. Cost Function

Our method is built on the following cost function

{
Ω̂, X̂, Â

}
= argmin

Ω,X,A
‖A− ΩX‖2F

s.t. ‖A:,i‖0 = p− l, ∀i
‖Ωj,:‖2 = 1, ∀j
X ∈ C(Y )

(15)

where X ∈ Rm×n represents the signal to be estimated, Y ∈
Rm×n represents the clipped signal, and C(Y ) is a consistency
set defined on matrices, i.e. replacing y by Y and x by X in
(14). The cost function (15) consists of two parts. The first
part, ‖A− ΩX‖2F , aims to learn the analysis dictionary Ω that
can sparsify the signal X . The constraint on ‖A:,i‖0 is used to
enforce the sparsity of the representation coefficients A, and the
constraint on‖Ωj,:‖2 is applied to mitigate the scale ambiguity of
the analysis dictionary Ω. The second part takes into account the
nonlinear observations from the clipped signal Y , and enforces
the recovered signal X to be on the set C(Y ). In practice, Y
could be formed by splitting the clipped signal into n segments
each of dimension m. Our aim is to learn the analysis dictionary
Ω and estimate the signal X , given the observed signal Y .

Algorithm 1: Proposed SAD.

1. Initialization: Ω[0], X [0] = Y , t = 0, μ
2. While not converged do
3. Update Ω and A by solving (16) using ASimCO.
4. Update X by solving (17).
5. t = t+ 1
6. End while

B. Optimization Process

To optimize the cost function (15), we develop a two-stage
method where the unknown variables are estimated in an alter-
nating manner, as commonly adopted in sparse representations
and analysis dictionary learning.

In the first stage, given X [t] obtained in iteration t, Ω[t+1]

and A[t+1] are updated in the (t+ 1)-th iteration, based on the
following cost function{

Ω[t+1], A[t+1]
}
= argmin

Ω,A

∥∥∥A− ΩX [t]
∥∥∥2
F

s.t. ‖A:,i‖0 = p− l, ∀i
‖Ωj,:‖2 = 1, ∀j.

(16)

Note that X [0] is initialized as Y . This stage can be achieved by
the ASimCO algorithm [20] as reviewed in Section II.

The second stage is to find X , given Ω and A, under the
constraint on X to enforce consistency, i.e. X ∈ C(Y ), as
follows

X̂ = argmin
X

‖A− ΩX‖2F

s.t. X ∈ C(Y ).

(17)

The proposed sparse analysis model based declipping (SAD)
algorithm can be outlined in Algorithm 1.

To optimise the cost function (17), we present two methods,
i.e. the least squares based method and projected gradient based
method, respectively.

The least squares based method can be achieved by approxi-
mating the constrained optimization problem (17) as an uncon-
strained one. We note that the term ‖Mr(Y −X)‖2F promotes
the recovered signal to be close to the original signal for the un-
clipped part of the signal, and the terms ‖M c+(θ+1−X)+‖2F
and ‖M c−(θ−1−X)−‖2F promote the amplitudes of the re-
covered samples in the clipped regions to be consistent with the
clipping function, where 1 ∈ Rm×n is an all-one matrix. As a
result, instead of optimizing (17), we can optimise the following
cost function

X̂ = argmin
X

{
‖A− ΩX‖2F + μ

[
‖Mr(Y −X)‖2F

+
∥∥M c+(θ+1−X)+

∥∥2
F
+
∥∥M c−(θ−1−X)−

∥∥2
F

]}

(18)
where a regularization term controlled by a parameter μ is used
to approximate the constraint X ∈ C(Y ). A relaxed problem
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similar to the one proposed in (18) has been used in [4], [27],
[40], [41] in the context of the synthesis model with a synthesis
dictionary [42], [43], [44].

We then introduce an auxiliary function Z(X) ∈ Rm×n de-
fined as follows

Z(X) = MrY +M c+ max
(
θ+1, X

)
+M c−min

(
θ−1, X

)
(19)

With Z(X), we can simplify (18) to

X̂ = argmin
X

‖A− ΩX‖2F + μ ‖Z(X)−X‖2F (20)

With a least squares based method [45], [46], [47], the solution
of X can be obtained analytically from (20) as

X [t+1] =
(
ΩTΩ+ μI

)−1 (
ΩTA+ μZ(X [t])

)
(21)

where I ∈ Rm×m is an identity matrix, A and Ω are obtained
by following the dictionary update step in (16). In our work, Ω
is real-valued, and ΩTΩ is a positive definite matrix. As a result
(ΩTΩ+ μI) is a full-rank invertible positive definite matrix.
Empirically, we observed that the matrix inversion was stable
in our experiments. Note that the use of the auxiliary function
Z(X) is to facilitate the solution of (20). Although the three
types of samples are regularized with a single μ in (18), there
may be a potential scope to treat them differently with different
regularization parameters.

The second method for optimising (17) is based on the
projected gradient algorithms [47], [48]. The gradient of the
objective function (17) with respect to X is

�‖A− ΩX‖2F =
∂ ‖A− ΩX‖2F

∂X

= −2ΩTA+ 2ΩTΩX.

(22)

Thus, X [t+1] can be obtained as

X [t+1] = X [t] − λ(−2ΩTA+ 2ΩTΩX [t]) (23)

where λ is a step size. A projection step is then used to enforce
X [t+1] ∈ C(Y ) as follows

X [t+1] ←MrY +M c+ max
(
θ+1, X [t+1]

)

+ M c−min
(
θ−1, X [t+1]

) (24)

where the measurement matrices are the same as those in Equa-
tion (14), and←means updating X [t+1] with the formula on the
right hand side.

With the SAD algorithm, we can finally obtain the analysis
dictionary Ω, the analysis representation matrix A and the es-
timated signal X . Algorithm 2 summarizes the implementation
details of the SAD algorithm.

C. Algorithm Convergence and Initialization

The SAD algorithm alternates among the steps of analysis
sparse coding, analysis dictionary update and signal estimation.
The algorithms for estimating X , i.e. the operation 4.a in Al-
gorithm 2 have been shown to be convergent in [20] and [49].
However, convergence of Step 3 cannot be ensured. We observed

Algorithm 2: Implementation Details of SAD.

1. Initialization: Ω[0], X [0] = Y , t = 0, l, μ, λ

2. While not converged do
3. Input: X [t],Ω[t],Ω[1] = Ω[t], k = 0, g(Ω[0]) = 0

a. do
b. Ω[k+1] = w(Ω[k])

using equation (11) for function w(Ω)
c. A[k+1] = HTl(Ω[k+1]X

[t])
using equation (6) for function HTl(ΩX)

d. k = k + 1
e. until a pre-defined number of iterations is reached.
f. output: Ω[t+1] = Ω[k+1], A

[t+1] = A[k+1], Z
[t+1]

4. Ω = Ω[t+1], A = A[t+1], Z [t+1]

a. using equation (21) or (23) (with (24)) to get
X [t+1]

b. output: X [t+1]

5. t = t+ 1
6. End while
7. Output: X

that g(Ω[k]) may increase occasionally, which could be caused
by the update of X with (20) and (19) in which the comparison
betweenX and θ+1 or θ−1 is performed. However, the decreas-
ing trend of g(Ω[k]) is often restored automatically with further
iterations. In practice, we did not observe any other issues about
the convergence of the algorithm. We have used a pre-defined
number of iterations (e.g. 10) as the stopping criterion for the
inner loop for updating the analysis dictionary. In Algorithm 2,
we use the superscript t to denote the iteration index for the outer
loop, while the subscript k for the inner loop.

In the SAD algorithm, the initial dictionaries Ω can be set
as random matrices with normalized rows, or as pre-defined
dictionaries such as the DCT dictionary. The initial dictionaries
can affect the results, as observed in our experiments. We will
examine the impact of the initial analysis dictionary on the
declipping performance in Section V.

V. SIMULATIONS

In this section, we focus on demonstrating the performance
of the proposed SAD algorithm using different parameters, on
sound datasets. Our algorithms can be easily applied to other
data, such as images. We use SDR as the performance metric,
which is defined as follows

SDR (x̂, x) = 20 log
‖x‖2
‖x− x̂‖ 2

(25)

where x̂ is the estimated signal, and x is the original signal.
In the following subsections, we will show the setup of our

experiments, the performance of the SAD algorithm, including
the influence of the parameters m and l, and the initialization
of Ω on the performance of the algorithm. The code of our
proposed SAD algorithm can be downloaded from Github.1 We

1[Online]. Avaiable: http://github.com/BinLi504/SAD_matlabopen
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Fig. 2. The waveform of the original speech signal and the clipped signal used
for performance tests. The original signal was normalized to [-1,1], before being
clipped at the level θ = 0.15.

will present the comparisons of our algorithms with the baseline
algorithms, i.e. ConsDL [19] and A-SPADE [23], in Section VI.

A. Experimental Setup

To form Y , we take the clipped signal and divide it into n
segments, each of length m, with overlaps between the adjacent
segments, using a sliding window. For example, if the clipped
signal has 16 384 samples, we can form Y as a matrix 64×
16 321, using a sliding window of m = 64 samples with a hop
size equal to one sample. In the experiments in this section, we
tested several different values for m, i.e. m = 16, 32, 64, and
128. The specific values used are discussed in the corresponding
subsections.

In our experiments, the clipping level θ was set using a routine
from [27], which takes an input SDR and outputs the clipping
level. The clean signal was normalized before it was clipped at
the specified level. More details about the generation of clipped
signals are given in Section VI-A.

Our experiments were performed using Matlab on the Intel
Core i5-7500 CPU, with memory 8 G-Bytes, on Windows 10
operating system.

B. Empirical Tests of Parameters

We first test the performance of the proposed algorithm (with
the least-squares based update for X) using a speech signal
“dev_male2_150ms_1_ch12.wav” from the SISEC dataset [50].
These signals contain stereo recordings, with 8 bits per channel,
sampled at 16 kHz. One of the channels is used as test data. The
original signal is relatively long, therefore we cut it into 16 384
samples, as shown in Fig. 2(a). We study empirically the set
up of important parameters such as co-sparsity and dimension
of dictionary atoms. Here we use a relatively short signal for
parameter tuning for the proposed SAD method, however, we
have also used longer and more test signals in Section VI for
performance comparisons on speech and music datasets. The
clipping level θ is set as 0.15. The waveform of the clipped
signal is shown in Fig. 2(b). We set m = 64, l = 120, and the
number of iterations as 20 000.

1) Selection of Co-Sparsity l and m: In the SAD algorithm,
the observed signal y is divided into segments each of length
m (i.e. equal to the dimension of dictionary atoms in terms of

Fig. 3. The SDR achieved using different co-sparsity l. The setting of l is
related to the dimension of dictionary atoms m. For a given m, the choice l can
be found empirically.

our formulations discussed in Section IV), and the estimated
signal is finally obtained by concatenating the segments with an
overlap-and-add technique. The dimension of dictionary atoms
m and the selection of co-sparsity l affect the quality of the
recovered signal. We study the impact of the co-sparsity l on the
performance of the proposed algorithm. The value of l is varied,
with a step increase of 8. The clipping level is fixed as θ = 0.15.
Fig. 3 shows the results with different l’s, when m = 128, 64,
32, and 16, respectively. It can be seen that the setting of l is
related to m. For example, when m = 128, the best choice for
l is 232, while for m = 64, the best choice for l is 120. When
m = 32, the best choice for l is 56, while for m = 16, the best
choice for l is 24. When we use different m’s, l should be set
accordingly. For each m value, we choose l empirically in terms
of the reconstruction quality. The SDR results with differentm’s
are presented in Fig. 4. It can be observed that the SDR increases
with the increase of m, but such improvement is flattened when
m is relatively large. Although only a single signal was used in
this test, we observed empirically that the performance trend is
similar when other signals were used. Thus, the parameters tuned
in this way seem to be appropriate for subsequent experiments.

2) Signal Recovery: To illustrate the performance of the
proposed algorithm, we show the plots of three segments of the
recovered signal and the original signal in Fig. 5. Here m = 64
and l = 120. It can be seen that the recovered signal is similar
to the original signal.

C. Dictionary Initialization: Random Versus DCT

With the speech signal used in the previous section, we com-
pare the performance difference for the dictionaries initialized
as a random Gaussian matrix and a uniform distribution matrix.
We run the experiments ten times and observe the effect of these
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Fig. 4. The SDR of the recovered signal, achieved with different dimension
of dictionary atoms m. The signal reconstruction performance by the proposed
algorithm increases with the increase of m, however, the performance increase
tends to be saturating with larger m.

initial dictionaries on the signal recovery results. The estimate
of X is based on the least-squares update. The average results of
these tests are presented in Fig. 6. It can be seen that the results
are similar. The standard deviation of the SDR results in the 10
tests with Gaussian matrix is 0.083 dB and the uniform matrix
is 0.052 dB. It appears that the randomly initialised dictionaries
with these two distributions give similar SDR results.

We also compare the randomly initialised analysis dictionary
with the dictionary initialised as DCT. As the two random
dictionaries tested above give similar results, we initialise the
random matrix by generating the elements following a Gaussian
distribution with zero mean and unit variance. The atoms in
the initial dictionaries were normalized. In this experiment, we
have increased the number of test signals to obtain more reliable
results. We used 10 speech signals,2 and the length of each signal
is about 5 to 6 seconds, including about 80 000 to 96 000 samples
(as the sampling rate is 16 kHz). The parameters of the SAD
algorithm are set as m = 72 and l = 136, and X is solved with
the least-squares update.

Fig. 7 shows the SDR of the recovered signal with the dictio-
nary learning algorithm in which the dictionary is initialised as
either a random Gaussian matrix or as a DCT dictionary. Overall,
using the DCT dictionary performs similarly to using a Gaussian
dictionary in the initialization. When the clipping level is at 0.1,
the SDR obtained by using DCT is 0.3 dB higher than that using
the Gaussian dictionary.

D. Least Squares Versus the Projected Gradient

In the SAD algorithm, two methods can be used to obtain X ,
i.e. the least squares based method and the projected gradient
based method. In this section, we compare the performance of
these two methods. We use the same experimental set up as in
Section V-C, with the analysis dictionary initialised with the

2[Online]. Avaiable: http://www.repository.voxforge1.org/downloads/
SpeechCorpus/Trunk/ Audio/Main/

Fig. 5. Signal recovery examples: (a) (c) and (e) show three segments of an
original clean speech signal and the clipping level. (b), (d) and (f) show the
corresponding segments of the estimated (i.e. declipped) signal.

Fig. 6. The SDR of the declipped signal, achieved with the analysis dictionary
initialized as a random matrix whose elements follow Gaussian or uniform
distributions with zero mean and unit variance.

DCT dictionary. Fig. 8 shows that the SDRs obtained by the two
methods are very similar.

We have tuned the parameters such as the step size λ, by
running a set of experiments. In particular, we tested different
combinations of the parameters θ = 0.2, and 0.8, λ = 0.1, 0.25,
and 0.4, and the number of iterations equal to 1, 10 and 20,
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Fig. 7. The SDR of the declipped signal, achieved either with the dictionary
initialized as a random matrix whose elements follow Gaussian distribution or
with a DCT dictionary.

Fig. 8. The SDR of the declipped signal, obtained with the proposed SAD
algorithm, where the least squares method and the projected gradient method
are used for updating X , respectively.

respectively. The test results are given in Table I. The results
show that the step size and the number of iterations can affect
the SDR results of the recovered signals. Based on these tests,
we chose the step size at 0.25 and the number of iterations at
10 in the subsequent experiments.

We also analyzed the impact of μ on the results by changing
μ from 0.4 to 1.8, while keeping other parameters unchanged.
The test results for the clipping level at 0.15 (i.e. input SDR at
5 dB) are given in Table II. From the table, we can see that the
selection of μ has a very small influence on the results.

These two methods seem to offer very similar performance,
and both need to tune a parameter (i.e.μ in the least squares based
method, and λ in the projected gradient method). However, we
found empirically that their computational complexities can be
different. The projected gradient based method contains an ad-
ditional loop (i.e. the inner loop for updating X), and if multiple
iterations in the inner loop are performed, its complexity will

TABLE I
TESTS FOR DIFFERENT COMBINATIONS OF PARAMETERS (CLIPPING LEVEL,
STEP SIZES AND ITERATION NUMBERS) IN THE PROPOSED METHOD WITH

PROJECTED GRADIENT

TABLE II
THE INFLUENCE OF DIFFERENT μ VALUES ON SIGNAL RECOVERY

PERFORMANCE IN TERMS OF SDR OF THE RECOVERED SIGNAL

become higher than the least squares based method. For this
reason, we will only use the least-squares based method for the
comparisons in the next section.

VI. COMPARISON WITH BASELINE ALGORITHMS

In this section, we compare the performance of our proposed
SAD algorithm with two recent baseline algorithms, i.e. the
ConsDL algorithm [19] and the A-SPADE algorithm [23].

A. Datasets and Test Preparation

Both speech and music data were used in our evaluations.
The speech signals were taken from the Trunk dataset. We
used four folders from this dataset, which are respectively, AT-
20 130 718-lws, Adminvox-05 232 006, 1snoke-20 120 412-hge,
and 1337ad-20 170 321-ajg. In total, there are 50 speech signals
from these four folders, sampled at 16 kHz. The length of each
signal is about 4 to 7 seconds. The music signals were taken from
the DSD100 dataset.3 The music files used are the vocals of 055
− Angels In Amplifiers - I’m Alright, vocals of 081 - Patrick
Talbot - Set Me Free and vocals of 049 - Young Griffo - Facade,
downloaded from DSD100 dataset. Each of these files contains
sound recordings of approximately 45 to 49 seconds, sampled
at 44.1 kHz. We then pre-processed the data, and generated 50
signals each of 1.9 seconds, i.e. 81 920 samples.

The clipped signals were generated in the same way for speech
and music signals, by following [27]. More specifically, we set

3[Online]. Avaiable: https://www.loria.fr/ aliutkus/DSD100subset.zip
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TABLE III
MAPPING BETWEEN AVERAGE CLIPPING LEVEL θ AND INPUT SDR OF THE

SPEECH SIGNALS (S/S), AND MUSIC SIGNALS (S/M) USED IN

THE EXPERIMENTS

the same input SDR for each of the 50 signals, and tune the level
of clipping to match the input SDR. We also tune the input SDR
so that the level of clippping is achieved approximately at the
level specified. We then calculate the average level of clipping
over these 50 signals. For example, when the input SDR is 4.2 dB
for 50 speech signals, the average θ is approximately 0.1. We
varied the clipping level θ from 0.1 to 0.9, which corresponds
to the input SDR from 4.2 dB to 45 dB, as shown in the second
row of Table III. Note that for the same input SDR, different
signals may lead to slightly different θ values. Therefore, the θ
is an average θ for all the clipped signals used in our tests, tuned
to be approximately at the corresponding clipping level.

The implementation of the ConsDL algorithm [19] comes
from the author’s personal homepage.4 For the A-SPADE al-
gorithm [23] we used its version 1.0, downloaded from the
author’s homepage.5 In our experiments, the default settings of
the ConsDL (i.e. the size of overlapping time frames N = 256
with rectangular windows and 75% overlap) and A-SPADE al-
gorithms were used. The parameters used in the SAD algorithm
are set as p = 144, m = 72 and l = 120, with initial analysis
dictionary Ω set as a DCT dictionary matrix. The condition for
stopping algorithm iterations is that the difference between the
values of the cost function at two consecutive iterations is less
than 0.001. The same experimental setup has been used for the
experiments on speech and music data. We take the average of
the SDRs calculated from the recovered signals from the 50 tests
as the performance metric.

B. Results on Speech Signals

Fig. 9 shows the average SDR of all the recovered speech
signals for each clipping level. From this figure, we can see
that the proposed SAD algorithm performs better than other
algorithms, except when θ = 0.1, and 0.2, in which case, A-
SPADE performs better. Fig. 10 shows the variance of the SDR
results for all the tests on the 50 speech signals obtained by
the SAD for each clipping level, as compared with the baseline
algorithms. It can be observed that the ConsDL algorithm gives
the smallest variance, while the variance of A-SPADE is higher
than those of other compared methods including the proposed
SAD algorithms, except when θ < 0.2. It is interesting to note
that the variance of all the algorithms increases with the increase
in θ, which is probably not surprising considering the fact that
the average SDR improvements also increase with the increase
in θ.

4[Online]. Available: https://www.cvssp.org/Personal/LucasRencker/
software.html#DL_for _declipping

5[Online]. Available: http://spade.inria.fr

Fig. 9. Average SDR over all the recovered speech signals obtained by the
SAD algorithm as compared with A-SPADE and ConsDL, for different clipping
levels.

Fig. 10. Variance of the SDRs for all the recovered speech signals obtained
by the SAD as compared with the A-SPADE and ConsDL algorithms, for each
clipping level.

C. Results on Music Signals

Fig. 11 shows the average SDR results of all the tests for
the music signals. The proposed method performs better than
ConsDL for all the clipping levels, and slightly better than
A-SPADE, except for low clipping levels. Fig. 12 shows the
variance of the SDR results of the recovered music signals, for
each clipping level. From this figure, we can see that the variance
of the SAD algorithm is smaller than that of the A-SPADE
algorithm but larger than that of the ConsDL algorithm.

In the A-SPADE algorithm, we used the default parameter
set up in its original codes, which was for signals sampled at
16 kHz, and may not be optimal for the experiments on the
music signals sampled at 44.1 kHz. In practice, it may not be
a trivial task to tune the parameters of A-SPADE to obtain the
optimal performance for a different sampling rate. To address
this issue, we run another set of experiments, where we first
re-sample music signals from 44.1 kHz to 16 kHz. We then
run the tests of all the compared algorithms on the re-sampled
music signals. Fig. 13 shows the average SDR of the recovered
50 music signals obtained by the proposed SAD algorithm, as
compared with A-SPADE and ConsDL. From this figure, we
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Fig. 11. Average SDR of all the recovered music signals obtained by the pro-
posed SAD algorithm, as compared with the A-SPADE and ConsDL algorithms
for different clipping levels. For comparison, the average input SDR is also
shown for each clipping level.

Fig. 12. Variance of the SDR results for all the recovered music signals
obtained by the SAD, as compared with the A-SPADE and ConsDL algorithms
for each clipping level.

Fig. 13. Average of the SDR results for all the tests on the recovery of the
down-sampled music signals, obtained by the SAD, as compared with the A-
SPADE and ConsDL algorithms for different clipping levels. For comparison,
the average input SDR is also shown for each clipping level.

Fig. 14. Variance of the SDR results for all the tests on the recovery of the
down-sampled music signals, obtained by the SAD, as compared with the A-
SPADE and ConsDL algorithms for different clipping levels.

can see that the SDR results obtained are quite similar to those
in Fig. 11. This shows that the influence of sampling rate on the
performance of the algorithms compared is very small. Fig. 14
shows the variance of the SDR results for all the tests on the
re-sampled music signals obtained by the SAD for each clipping
level, as compared with the baseline algorithms. From the figure,
we can see that the general trend of performance is similar to
those shown in Fig. 12, although it appears to be more stable with
respect to different clipping levels. The ConsDL algorithm still
gives the smallest variance. The variance of A-SPADE is higher
than those of other compared methods including the proposed
SAD algorithm.

D. A Note on Running Speed

We found empirically that the proposed SAD algorithm is
computationally less efficient as compared with A-SPADE and
ConsDL. To process a signal of 81 920 samples with a dictionary
of dimension 144× 64, the proposed SAD algorithm using
least-squares based update for X took about 18 minutes to run
for 500 (outer) iterations, with the simulation environment we
mentioned earlier. Using the projected gradient based method,
the proposed SAD algorithm needs to run an additional loop
(i.e. the inner loop for updating X). With the same number
of iterations for the outer loop, i.e. 500, the SAD algorithm
took about 17.5 and 26.5 minutes, respectively, when the inner
loop was run for one iteration and 10 iterations, respectively.
However, the A-SPADE and ConsDL algorithms took about 6
and 6.5 minutes, respectively.

VII. CONCLUSION

We have presented a sparse analysis-model based signal de-
clipping algorithm. In our proposed SAD algorithm, the cost
function is established on a sparse analysis model, and the
clipped signal is restored by using the analysis dictionary learned
directly from the observed signal, via the Analysis SimCO
algorithm. The evaluation results showed that our proposed
algorithm offers better performance in terms of SDR and more
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stable results in terms of variance, than two recent baselines,
namely, the ConsDL and A-SPADE algorithms.

In our work, we considered only real-valued analysis dictio-
nary Ω. The method could potentially be extended to complex-
valued dictionaries, such as the dictionaries learned with com-
plex non-negative matrix factorization [51], which uses another
matrix to encode the phase term of the complex numbers. Includ-
ing phase term could help maintain phase coherence between
different frequency components within the signal [51].

In addition, we used a fixed step size in the projected gradient
method, which could be replaced by a variable step size, and opti-
mized using e.g. the golden section rule, as used in [36] and [37].
Other possible directions of future work include extension of
the SAD algorithm for noisy signal declipping, the employment
of the dictionary pair learning (DPL) [52] for declipping, and
comparisons with other analysis dictionary learning algorithms
such as [53].
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