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Weakly Labelled AudioSet Tagging With Attention
Neural Networks

Qiugiang Kong
Wenwu Wang

Abstract—Audio tagging is the task of predicting the presence
or absence of sound classes within an audio clip. Previous work
in audio tagging focused on relatively small datasets limited to
recognizing a small number of sound classes. We investigate audio
tagging on AudioSet, which is a dataset consisting of over 2 million
audio clips and 527 classes. AudioSet is weakly labelled, in that
only the presence or absence of sound classes is known for each
clip, whereas the onset and offset times are unknown. To address
the weakly labelled audio tagging problem, we propose attention
neural networks as a way to attend the most salient parts of an
audio clip. We bridge the connection between attention neural net-
works and multiple instance learning (MIL) methods, and propose
decision-level and feature-level attention neural networks for au-
dio tagging. We investigate attention neural networks modeled by
different functions, depths, and widths. Experiments on AudioSet
show that the feature-level attention neural network achieves a
state-of-the-art mean average precision of 0.369, outperforming
the best MIL method of 0.317 and Google’s deep neural network
baseline of 0.314. In addition, we discover that the audio tagging
performance on AudioSet-embedding features has a weak correla-
tion with the number of training samples and the quality of labels
of each sound class.

Index Terms—Audio tagging, AudioSet, attention neural net-
work, weakly labelled data, multiple instance learning.

1. INTRODUCTION

UDIO tagging is the task of predicting the tags of an
A audio clip. Audio tagging is a multi-class tagging problem
to predict zero, one or multiple tags for an audio clip. As a
specific task of audio tagging, audio scene classification often
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involves the prediction of only one label in an audio clip, i.e.
the type of environment in which the sound is present. In this
paper, we focus on audio tagging. Audio tagging has many
applications such as music tagging [1] and information retrieval
[2]. An example of audio tagging that has attracted significant
attention in recent years is the classification of environmental
sounds, that is, predicting the scenes where they are recorded.
Forinstance, the Detection and Classification of Acoustic Scenes
and Events (DCASE) challenges [3]-[6] consist of tasks from a
variety of domains, such as DCASE 2018 Task 1 classification
of outdoor sounds, DCASE 2017 Task4 tagging of street sounds
and DCASE 2016 Task4 tagging of domestic sounds. These
challenges provide labelled datasets, so it is possible to use
supervised learning algorithms for audio tagging. However,
many audio tagging datasets are relatively small [3]-[6], ranging
from hundreds to thousands of training samples, while modern
machine learning methods such as deep learning [7], [8] often
benefit greatly from larger dataset for training.

In 2017, a large-scale dataset called AudioSet [9] was re-
leased by Google. AudioSet consists of audio clips extracted
from YouTube videos, and is the first dataset that achieves
a similar scale to the well-known ImageNet [10] dataset in
computer vision. The current version (v1) of AudioSet consists
of 2,084,320 audio clips organised into a hierarchical ontology
with 527 predefined sound classes in total. Each audio clip in
AudioSet is approximately 10 seconds in length, leading to 5800
hours of audio in total. AudioSet provides an opportunity for
researchers to investigate a large and broad variety of sounds
instead of being limited to small datasets with limited sound
classes.

One challenge of AudioSet tagging is that AudioSet is a
weakly-labelled dataset (WLD) [11], [12]. That is, for each
audio clip in the dataset, only the presence or the absence of
sound classes is indicated, while the onset and offset times are
unknown. In previous work in audio tagging, an audio clip is
usually split into segments and each segment is assigned with
the label of the audio clip [13]. However, as the onset and offset
of sound events are unknown so such label assignment can
be incorrect. For example, a transient sound event may only
appear a short time in a long audio recording. The duration
of sound events can be very different and there is no prior
knowledge of their duration. Different from ImageNet [10] for
image classification where objects are usually centered and have
similar scale, in AudioSet the duration of sound events may vary
a lot. To illustrate, Fig. 1 from top to bottom shows: the log mel
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Fig. 1. From top to bottom: Log mel spectrogram of a 10-second audio clip;

AudioSet bottleneck features extracted by a pre-trained VGGish convolutional
neural network followed by a principle component analysis (PCA) [14]; Weak
labels of the audio clip. There are no onset and offset times of the sound classes.

spectrogram of a 10-second audio clip;' AudioSet bottleneck
features [9] extracted by a pre-trained VGGish convolutional
network followed by a principal component analysis (PCA);
weak labels of the audio including “music”, “chuckle”, “snicker”
and “speech’. In contrast to WLD, strongly labelled data (SLD)
refers to the data labelled with both the presence of sound classes
as well as their onset and offset times. For example, the sound
event detection tasks in DCASE challenge 2013, 2016, 2017 [3],
[5], [6] provide SLD. However, labelling onset and offset times
of sound events is time-consuming, so these strongly labelled
datasets are usually limited to a relatively small size [3], [5], [6],
which may limit the performance of deep neural networks that
require large data to train a good model.

In this paper, we train an audio tagging system on the large-
scale weakly labelled AudioSet. We bridge our previously pro-
posed attention neural networks [15], [16] with multiple instance
learning (MIL) [17] and propose decision-level and feature-level
attention neural networks for audio tagging. The contributions
of this paper include the following:

e Decision-level and feature-level attention neural networks

are proposed for audio tagging;

® Attention neural networks modelled by different functions,

widths and depth are investigated;

e The impact of the number of training samples per class on

the audio tagging performance is studied,;

® The impact of the quality of labels on the audio tagging

performance is studied.

This paper is organised as follows. Section II introduces
audio tagging with weakly labelled data. Section III introduces
our previously proposed attention neural networks [15], [16].
Section IV introduces multiple instance learning. Section V
reviews attention neural networks under the MIL framework
and proposes decision-level and feature-level attention models.
Section VI shows the experimental results. Section VII
concludes and forecasts future work.

II. AUDIO TAGGING WITH WEAKLY LABELLED DATA

Audio tagging has attracted much research interests in re-
cent years. For example, the tagging of the CHIME Home
dataset [18], the UrbanSound dataset [19] and datasets from

Uhttps://www.youtube.com/embed/Wxa36SSZx80?start=70&end=80
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the Detection and Classification of Acoustic Scenes and Events
(DCASE) challenges in 2013 [20], 2016 [21], 2017 [6] and
2018 [22]. The DCASE 2018 Challenge includes acoustic scene
classification [22], general purpose audio tagging [23] and bird
audio detection [24] tasks. Mel frequency cepstral coefficients
(MFCC) [25]-[27] have been widely used as features to build
audio tagging systems. Other features used for audio tagging
include pitch features [26] and I-vectors [27]. Classifiers include
such as Gaussian mixture models (GMMs) [28] and support
vector machines [29]. Recently, neural networks have been used
for audio tagging with mel spectrograms as input features. A
variety of neural network methods including fully-connected
neural networks [13], convolutional neural networks (CNNs)
[14], [30], [31] and convolutional recurrent neural networks
(CRNNSs) [32], [33] have been explored for audio tagging. For
sound localization, an identify, locate and separate model [34]
was proposed for audio-visual object extraction in large video
collections using weak supervision.

A WLD consists of a set of bags, where each bag is a collection
of instances. For a particular sound class, a positive bag contains
at least one positive instance, while a negative bag contains no
positive instances. We denote the n-th bag in the dataset as
B, ={xn1,.--,XnT, }, Where T}, is the number of instances
in the bag. An instance x,,; € R in the bag has a dimension
of M. A WLD can be denoted as D = {B,,y,}._,, where
yn € {0,1}5 denotes the tags of bag B,,, and K and N are the
number of classes and training samples, respectively. In WLD,
each bag B,, has associated tags but we do not know the tags of
individual instances x,,; within the bag [35]. For example, in the
AudioSet dataset, a bag consists of instances that are bottleneck
features obtained by inputting a logmel to a pre-trained VGGish
convolutional neural network. In the following sections, we omit
the training example index n and the time index ¢ to simplify
notation.

Previous audio tagging systems using WLD have been based
on segment based methods. Each segment is called an instance
and are assigned the tags inherited from the audio clip. During
training, instance-level classifiers are trained on individual in-
stances. During inference, bag-level predictions are obtained by
aggregating the instance-level predictions [13]. Recently, con-
volutional neural networks have been applied to audio tagging
[32], where the log spectrogram of an audio clip is used as input
to a CNN classifier without predicting the individual instances
explicitly. Attention neural networks have been proposed for Au-
dioSet tagging in [15], [16]. Later, a clip-level and segment-level
model with attention supervision was proposed in [36].

III. AUDIO TAGGING WITH ATTENTION NEURAL NETWORKS
A. Segment Based Methods

R3: In segment based methods, an audio clip is split into
segments and each segment is assigned the tags inherited from
the audio clip. In MIL, each segment is called an instance. An
instance-level classifier f is trained on the individual instances:
f x> f(x),where f(x) € [0, 1] predicts the presence prob-
abilities of sound classes. The function f depends on a set
of learnable parameters that can be optimised using gradient
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descent methods with the loss function

l(f(X),y) - d(f(X),y), (1

where y € {0, 1} are the tags of the instance x and d(-, -) is a
loss function. For instance, it could be binary cross-entropy for
multi-class tagging, given by

K

d(f(x),y) = —

k=1

[yrlog f(x)x + (1 — yr)log(1l — f(x)x]-
(2)

In inference, the prediction of a bag is obtained by aggregating
the predictions of individual instances in the bag such as by ma-
jority voting [13]. The segment based model has been applied to
many tasks such as information retrieval [37] due to its simplicity
and efficiency. However, the assumption that all instances inherit
the tags of a bag is incorrect. For example, some sound events
may only occur for a short time in an audio clip.

B. Attention Neural Networks

Attention neural networks were first proposed for natural
language processing [38], [39], where the words in a sentence
are attended differently for machine translation. Attention neural
networks are designed to attend to important words and ignore
irrelevant words. Attention models have also been applied to
computer vision, such as image captioning [40] and information
retrieval [41]. We proposed attention neural networks for audio
tagging and sound event detection with WLD in [15], [33]: these
were ranked first in the DCASE 2017 Task 4 challenge [33].
In a similar way to the segment based model, attention neural
networks build an instance-level classifier f(x) for individual
instances x. In contrast to the segment based model, attention
neural networks do not assume that instances in a bag have the
same tags as the bag. As aresult, there is no instance-level ground
truth for supervised learning using (1). To solve this problem,
we aggregate the instance-level predictions f(x) to a bag-level
prediction F'(B) given by

F(B)e =Y p(x)if (X, 3)
xeB
where p(x), is a weight of f(x)y, that we refer to as an attention
function. The attention function p(x), should satisfy

> px)k =1, @

xeB
so that the bag-level prediction can be seen as a weighted sum of
the instance-level predictions. Both the attention function p(x)
and the instance-level classifier f(x) depend on a set of learnable
parameters. The attention function p(x); controls how much
a prediction f(x); should be attended. Large p(x), indicates
that f(x) should be attended, while small p(x); indicates that
f(x)1 should be ignored. To satisfy (4), the attention function
p(x)) can be modelled as

Pk = v(x)k/ Y v(X), (5)
xeB
where v(+) can be any non-negative function to ensure that p(-)
is a probability.
An extension of the attention neural network in (3) is the
multi-level attention model [16], where multiple attention mod-
ules are applied to utilise the hierarchical information of neural
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networks:
F(B):g(Fl(B)7~-~>FL(B))> (6)

where Fj(B) is the output of the I-th attention module and L is
the number of attention modules. Each F;(B) can be modeled
by (3). Then a mapping g is used to map from the predictions
of L attention modules to the final prediction of a bag. The
multi-level attention neural network has achieved state-of-the-
art performance in AudioSet tagging.

In the next section, we show that the attention neural networks
explored above can be categorised into an MIL framework.

IV. MULTIPLE INSTANCE LEARNING

Multiple instance learning (MIL) [17], [42] is a type of
supervised learning method. Instead of receiving a set of la-
belled instances, the learner receives a set of labelled bags. MIL
methods have many applications. For example, in [42], MIL is
used to predict whether new molecules are qualified to make
some new drug, where molecules may have many alternative
low-energy states, but only one, or some of them, are qualified
to make a drug. Inspired by the MIL methods, a sound event
detection system trained on WLD [11] was proposed. General
MIL methods include the expectation-maximization diversity
density (EM-DD) method [43], support vector machine (SVM)
methods [44] and neural network MIL methods [45], [46]. In
[47], several MIL pooling methods were investigated in audio
tagging. Attention-based deep multiple instance learning is pro-
posed in [48].

In [35], MIL methods are grouped into three categories:
the instance space (IS) methods, where the discriminative in-
formation is considered to lie at the instance-level; the bag
space (BS) methods, where the discriminative information is
considered to lie at the bag-level; and the embedded space (ES)
methods, where each bag is mapped to a single feature vector that
summarises the relevant information about a bag. We introduce
the IS, BS and ES methods in more detail below.

A. Instance Space Methods

In IS methods, an instance-level classifier [ : x — f(x) is
used to predict the tags of an instance x, where f(x) € [0, 1]%
predicts the presence probabilities of sound classes. The IS meth-
ods introduce aggregation functions [35] to convert an instance-
level classifier f to a bag-level classifier F' : B+ [0, 1]%, given
by

F(B) = agg ({f (%) }xeB) ; ™
where agg(+) is an aggregation function. The classifier f depends
on a set of learnable parameters. When the IS method is trained
with (1) in which each instance inherits the tags of the bag, the IS
method is equivalent to the segment based model. On the other

hand, the IS method can also be trained using the bag-level loss
function:

l(F(B)7y) = d(F(B)’Y)v (3)
where y € {0, 1} is the tag of the bag and d(-,-) is a loss
function such as the binary cross-entropy in (2).

To model the aggregation function, the standard multiple
instance (SMI) assumption and collective assumption (CA)
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are proposed in [35]. Under the SMI assumption, a bag-level
classifier can be obtained by

F(B)), = maxf(x)i, ©
xeB

where the subscript k£ denotes the k-th sound class of the

instance-level prediction f(x) and the bag-level prediction

F(B). Under the SMI assumption, for the k-th sound class,

only one instance with the maximum prediction probability is

chosen as a positive instance.

One problem of the SMI assumption is that a positive bag
may contain more than one positive instance. In SED, some
sound classes such as “ambulance siren” may last for several
seconds and may occur in many instances. In contrast to the SMI
assumption, with the CA assumption, all the instances in a bag
contribute equally to the tags of the bag. The bag-level prediction
can be obtained by averaging the instance-level predictions:

F(B) = 5 3 ().

xeB

(10)

The symbol |B| denotes the number of instances in bag B.
Equation (10) shows that CA is based on the assumption that
all the instances in a positive bag are positive.

B. Bag Space Methods

Instead of building an instance-level classifier, the BS meth-
ods regard a bag B as an entirety. Building a tagging model on
the bags rely on a distance function D(+,-) : B X B + R. The
distance function can be, for example, the Hausdorff distance
[49]:

D(Bl, Bg) = xleBI?.,lxnzeBz ||X1 X2|| . (11)
In (11), the distance between two bags is the minimum distance
between the instances in bag B; and Bs. Then this distance
function can be plugged into a standard distance-based classi-
fier such as a k-nearest neighbour (KNN) or a support vector
machine (SVM) algorithm. The computational complexity of
(11) is | By || Ba|, which is larger than the IS and the ES methods

described below.

C. Embedded Space Methods

Different from the IS methods, ES methods do not classify in-
dividual instances. Instead, the ES methods define an embedding
mapping from a bag to an embedding vector:

Jemb : B = h. (12)

Then the tags of a bag is obtained by applying a function g on
the embedding vector:

F(B) = g(h). 13)

The embedding mapping fen, can be modelled in many ways.
For example, by averaging the instances in a bag, as in the simple
MI method in [50]:

(14)

1
h:®ZX.
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Alternatively, the mapping can be obtained in terms of the max-
min operations on the instances [51]:

h:<a17...,a]\/[,b1,...,b]\/[),

5)

(= MaXxeB(Tm ),

by = minng(Im),

where x,, is the m-th dimension of x. Equation (15) shows
that only one instance with the maximum or the minimum
value is chosen for each dimension, while other instances have
no contribution to the embedding vector h. The ES methods
summarise a bag containing an arbitrary number of instances
with a vector of fixed size. Similar methods have been proposed
in natural language processing to summarise sentences with a
variable number of words [52].

V. ATTENTION NEURAL NETWORKS UNDER MIL

In this section, we show that the previously proposed attention
neural networks [15], [16] belong to MIL frameworks, especially
the IS methods. We refer to these attention neural networks as
decision-level attention neural networks, because the prediction
of a bag is obtained by aggregating the predictions of instances
(see (7)). We then propose feature-level attention neural net-
works inspired by the ES methods with attention in the hidden
layers.

A. Decision-Level Attention Neural Networks

The IS methods predict the tags of a bag by aggregating the
predictions of individual instances in the bag described in (7).
Section IV-A shows that conventional IS methods are based
on either the SMI assumption (see (9)) or the CA (see (10)).
The problem of the SMI assumption is that only one instance
in a bag is considered to be positive for a sound class while
other instances are not considered. The SMI assumption is not
appropriate for bags with more than one positive instance for a
sound class. On the other hand, CA assumes that all instances
in a positive bag are positive. CA is not appropriate for sound
events that only last for a short time. To address the problems
of the SMI and CA methods, a decision-level attention neural
network based on the IS methods in (7) is proposed to learn an
attention function to weight the predictions of instances in a bag,
so that

F(B)r = agg({f(X)r }xen)
= > p()kf (X

xeB

(16)

where p(x) is an attention function modelled by (5). We refer
to (16) as a decision-level attention neural network because
the attention function p(x) is multiplied with the predictions
of the instances f(x) to obtain the bag-level prediction. The
attention function p(x) controls how much the prediction of an
instance f(x) should be attended or ignored. Equation (16) can
be seen as a general case of the SMI and CA assumptions. When
one instance x in a bag has a value of p(x) = 1 and the other
instances have values of p(x) = 0, then (16) is equivalent to the
SMI assumption in (9). When p(x) = ﬁ for all instances in a
bag, (16) is equivalent to CA.
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Fig. 2. (a) Joint detection and classification (JDC) model; (b) Self attention
neural network in [53]; (c) Proposed attention neural network [15]. The blue
outlined block in (¢) is called a forward (FWD) block.

Fig. 2 shows different ways to model the attention neural
network in (16). For example, Fig. 2(a) shows the joint detection
and classification (JDC) model [12] with attention function p
and the classifier f modelled by separate branches. Fig. 2(b)
shows the self attention neural network [53] proposed in natural
language processing. Fig. 2(c) shows the JDC improved by using
shared layers for the attention function p and the classifier f
before they separate in the penultimate layer [15].

In the attention neural networks, both p and f depend on a set
of learnable parameters which can be optimised with gradient
descent methods using the loss function in (8). For the proposed
model in Fig. 2(c), the attention function p and the classifier
f share the low-level layers. We denote the output of the layer
before they separate as x’. The mapping from x to x’ can be
modelled by fully-connected layers, for example.

x' = fre(x). (17)
The classifier f can be modelled by
f(x) = o(Wix' +by), (18)

where o(z) = 1/(1 + e~*) is the sigmoid function. The atten-
tion function p can be modelled by

{U(X/)k = ¢1(U1x' + c1),
P(X)k = v(X)k/ D xep V(X )k,

where ¢; can be any non-negative function to ensure p(x)y, is a
probability.

19)

B. Feature-Level Attention Neural Network

The limitation of the decision-level attention neural networks
is that the attention function p(x) is only applied to the prediction
of the instances f(x), as shown in (16). In this section, we
propose to apply attention to the hidden layers of a neural
network. This is inspired by the ES methods in (12), where a
bag B is mapped to a fixed-size vector h before being classified.
We model (12) with attention aggregation:

hj = q(x);u(x);,

xeB

(20)

where both ¢(x) € [0, 1]” and u(x) € R” have a dimension of
J. The embedded vector h € R” summarises the information
of abag. Then the tags of a bag B can be obtained by classifying
the embedding vector:

21
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Decision-level
single attention K e K o

Decision-level
single attention

X, Xp X, Xr
(a) (b) (c)
Fig. 3. (a) Decision-level single attention neural network [15]; (b) Decision-

level multiple attention neural network [16]; (c) Feature-level attention neural
network (proposed).

The probability ¢(x); in (20) is the attention function of u(x);

and should satisfy
> ax); =1

xeB

(22)

We model u(x) with
u(x) = (Wax' + by), (23)
where 1) can be any linear or non-linear function to increase the

representation ability of the model. The attention function ¢ can
be modelled by

{w(xl)j = ¢2(Uzx’ + c3),
q(x); = w(x');/ > sepw(x);,

where w(x), can be any non-negative function to ensure ¢(x),
is a probability.

Fig. 3 shows the decision-level single attention [15], decision-
level multiple attention [16] and the proposed feature-level
attention neural network. The forward (Fwd) block in Fig. 3
is the same as the block in Fig. 2(c). The difference between
the feature-level attention function ¢(x) and the decision-level
attention function p(x) is that the dimension of ¢(x) can be any
value, while the dimension of p(x) is fixed to be the number of
sound classes K. Therefore, the capacity of the decision-level
attention neural networks is limited. With an increase in the
dimension of ¢(x), the capacity of feature-level attention neural
networks is increased. The decision-level attention function
attends to the predictions of instances, while the feature-level
attention function attends to the features, so it is equivalent to
feature selection. The multi-level attention model [16] in (6)
can be seen as a special case of the feature-level attention model,
with embedding vectorh = (F(B), ..., F(B)). The superior
performance of the multi-level attention model shows that the
feature-level attention neural networks have the potential to
perform better than the decision-level attention neural networks.

(24)

C. Modeling the Attention Function With Different
Non-Linearity

We adopt Fig. 2(c) as the backbone of our attention neural
networks. The attention function p and ¢ for the decision-level
and feature-level attention neural networks are obtained via
non-negative functions ¢; and ¢, respectively. The ¢ and ¢o
appearing in the summation term of the denominator of (19) and
(24) may affect the optimisation of the attention neural networks.
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We investigate modelling ¢- in the feature-level attention neural
networks with different non-negative functions, including ReLU
[54], exponential, sigmoid, softmax and network-in-network
(NIN) [55]. We omit the evaluation of ¢1, as the feature-level at-

tention neural networks outperform the decision-level attention
neural networks. The ReLLU function is defined as [54]

¢(z) = max(z, 0).

The exponential function is defined as

(25)

o(z) = e*. (26)
The sigmoid function is defined as
1
= — 27
02) = @7
For a vector z, the softmax function is defined as
e®i
P(25) = (28)

et
The network-in-network function [55] is defined as
#(z) = o(Hatp(Hiz + dy) + d2), (29)

where H;, H5 are transformation matrices, d; and d5 are biases
1) is ReLU nonlinearity and o is the sigmoid function.

VI. EXPERIMENTS
A. Dataset

We evaluate the proposed attention neural networks on Au-
dioSet [9], which consists of 2,084,320 10-second audio clips
extracted from YouTube video with a hierarchical ontology of
527 classes in the released version (v1). We released both Keras
and PyTorch implementations of our code online.> AudioSet
consists of a variety of sounds. AudioSet is multi-labelled, such
that each audio clip may contain more than one sound class.
Fig. 4 shows the statistics of the number of sound classes in
the audio clips. All audio clips contain at least one label. Out
of over 2,084,320 audio clips, there are 896,045 audio clips
containing one sound class, followed by around 684,166 audio
clips containing two sound classes. Only 4,661 audio clips have
more than 7 labels.

Instead of providing raw audio waveforms, AudioSet provides
bottleneck features of audio clips. The bottleneck features are ex-
tracted from the bottleneck layer of a VGGish CNN, pre-trained
on 70 million audio clips from the YouTubel100 M dataset [14].
The VGGish CNN consists of 6 convolutional layers with kernel

Zhttps://github.com/qiugiangkong/audioset_classification
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Fig.5. A VGGish CNN is trained on the YouTube 100 M dataset. Audio clips
from AudioSet are given as input to the trained VGGish CNN to extract the
bottleneck features, which are released by AudioSet.

size of 3 x 3 and 2 fully layers. To begin with, the 70 million
training audio clips are segmented to non-overlapping 960 ms
segments. Each segment inherits all tags of its parent video.
Then short-time Fourier transform (STFT) is applied on each
960 ms segment with a window size of 25 ms and a hop size
of 10 ms to obtain a spectrogram. Then a mel filter bank with
64 frequency bins is applied on the spectrograms followed by
a logarithmic operation to obtain log mel spectrograms. Each
log mel spectrogram of a segment has a shape of 96 x 64,
representing the time steps and the number of mel frequency
bins. A VGGish CNN is trained on these log mel spectrograms
with the 3087 most frequent labels. After training, the VGGish
CNN is used as a feature extractor. By inputting an audio clip
to the VGGish CNN, the outputs of the bottleneck layer are
used as bottleneck features of the audio clip. The framework of
AudioSet feature extraction is shown in Fig. 5.

B. Evaluation Criterion

We first introduce basic statistics [56]: true positive (TP),
where both the reference and the system prediction indicate
an event to be active; false negative (FN), where the reference
indicates an event is active but the system prediction indicates an
event is inactive; false positive (FP), where the system prediction
indicates an event is active but the reference indicates it is
inactive; true negative (TN), where both the reference and the
system prediction indicate an event is inactive. Precision (P) and
recall (R) are defined as in [56]:

p_ TP R — TP (30)
~ TP+ FP’ - TP+ FN’
In addition, the false positive rate is defined as [56]
FP
FPR = ——. 31
FP + TN G

Following [9], we adopt mean average precision (mAP), area
under the curve (AUC) and d-prime as evaluation metrics.
Average precision (AP) [9] is defined as the area under the
recall-precision curve of a specific class. The mean average
precision (mAP) is the average value of AP over all classes. As
AP isregardless of TN, AUC is used as a complementary metric.
AUC is the area under the receiver operating characteristic
(ROC) created by plotting the recall against the false positive
rate (FPR) at various threshold settings for a specific class. We
use mAUC to denote the average value of AUC over all classes.
D-prime is a statistic used in signal detection theory that provides
separation between signal and noise distributions. D-prime is
obtained via a transformation of AUC and has a better dynamic
range than AUC when AUC is larger than 0.9. A higher mAP,
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TABLE I
BASELINE RESULTS OF SEGMENT BASED METHOD, IS AND ES METHODS

mAP  AUC  d-prime
Random guess 0.005  0.500 0.000
Google baseline [9] 0.314  0.959 2.452
Segment based [13] 0.293  0.960 2.483
(IS) SMI assumption [11] 0.292  0.960 2471
(IS) Collective assumption 0.300  0.964 2.536
(ES) Average instances [50]  0.317  0.963 2.529
(ES) Max instance 0.284  0.958 2.443
(ES) Min instance 0.281  0.956 2413
(ES) Max-min instance [51] 0.306  0.962 2.505

AUC and d-prime indicates a better performance. D-prime can
be calculated by [9]:

d-prime = V2F, ' (AUC), (32)

where F; ! is an inverse of the cumulative distribution function
defined by

—(=—)?

Fz(x):/ \/%e T du.

C. Baseline System

(33)

We build baseline systems with segment based method, IS
and ES models without the attention mechanism described in
Section III-A, IV-A and I'V-C, respectively. In the segment based
model, a classifier is trained on individual instances, where each
instance inherits the tags of a bag. A three-layer fully-connected
neural network with 1024 hidden units and ReLU [54] non-
linearity is applied. Dropout [57] with arate of 0.5 is used to pre-
vent overfitting. The loss function for training is given in (1). In
inference, the prediction is obtained by averaging the prediction
of individual instances. The IS models have the same structure
as the segment based model. Different from the segment based
model, the instance-level predictions by the IS models are aggre-
gated to a bag-level prediction by either the SMI assumption in
(9)or CAin (10). The loss function is calculated from (8). The ES
method aggregates the instances of a bag to an embedded vector
before tagging. The embedding function can be the averaging
mapping in (14) or max-min vector mapping in (15). Then the
embedded vector is input to a neural network in the same way as
the segment based model. The loss function is calculated from
(8). We adopt the Adam optimiser [58] with a learning rate of
0.001 in training. The mini-batch size is set to 500. The networks
are trained for a total number of 50,000 iterations. We average
the predictions of 9 models from 10,000 to 50,000 iterations as
the final prediction to ensemble and stabilise the result, which
can reduce the prediction randomness caused by the model.

Table I shows the tagging result of segment based method, IS
and ES baseline methods. The first row shows that the random
guess achieves an mAP of 0.005, an AUC of 0.500 and a
d-prime of 0. The segment based model achieves an mAP of
0.293, slightly better than the IS methods with the CA and SMI
assumption, with mAP of 0.300 and 0.292, respectively. The
sixth to the ninth rows show that both the ES methods with
averaging and the max-min instances perform better than the
segment based model and IS methods. Averaging the instances
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TABLE II
RESULTS OF ES AVERAGE INSTANCES METHOD WITH DIFFERENT
BALANCING STRATEGY

mAP  AUC  d-prime
Balanced data 0.274  0.949 2.316
Full data (no bal. training)  0.268  0.950 2.331
Full data (bal. training) 0.317 0.963 2.529

performs the best in the ES methods with an mAP of 0.317, an
AUC of 0.963 and a d-prime of 2.529.

D. Data Balancing

AudioSet is highly imbalanced, as some sound classes such
as speech and music are more frequent than others. The upper
bars in Fig. 6 show the number of audio clips per class sorted
in descending order (in log scale). The data has a long tail
distribution. Music and speech appear in almost 1 million audio
clips while some sounds such as gargling and toothbrush only
appear in hundreds of audio clips. AudioSet provides a balanced
subset consisting of 22,160 audio clips. The lower bars in Fig. 6
show the number of audio clips per class of the balanced subset.
When training a neural network, data is loaded in mini batches.
We found that without a balancing strategy, the classes with
fewer samples are less likely to be selected in training. Several
balancing strategies have been investigated in image classifica-
tion such as balancing the frequent and infrequent classes [59].
In this paper, we follow the mini-batch balancing strategy [15]
for AudioSet tagging, where each mini-batch is balanced to have
approximately the same number of samples in training the neural
network.

We first investigate the performance of training on the bal-
anced subset only and training on the full data. We adopt the
best baseline model; that is, the ES average instances model
in Section IV-C. Table II shows that the model trained with
only the balanced subset achieves an mAP of 0.274. The model
trained with the full dataset without balancing achieves an mAP
of 0.268. The model trained with the balancing strategy achieves
anmAP of 0.317. Fig. 7 shows the class-wise AP. The dashed and
solid curves show the training and testing AP, respectively. In
addition, Fig. 7 shows that the AP is not always positive related
to the number of training samples. For example, when using full
data for training, “bagpipes” has 1,715 audio clips but achieves
an mAP of 0.884, while “outside” has 34,117 audio clips but
only achieves an AP of 0.093. We discover that for a majority
of sound classes, the improvement of AP is small compared
when using the full dataset rather than the balanced subset. For
example, there are 60 and 1,715 “bagpipes” audio clips in the
balanced subset and the full dataset, respectively. Their APs are
0.873 and 0.884, respectively, indicating that collecting more
data for “bagpipes” does not substantially improve its tagging
result.

To investigate how AP is related to the number of training
samples, we calculate their Pearson correlation efficient (PCC).3

cov(X,Y)
oxXoy ’
where cov(, -) is the covariance of two variables and o is the standard deviation
of the random variables.

3Givena pair of random variables X and Y, the PCC is calculated as
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TABLE III
CORRELATION OF MAP WITH TRAINING SAMPLES AND LABELS QUALITY OF
SOUND CLASSES

pPCC p-value
Training examples ~ 0.169  9.35 x10~°
Labels quality 0.230 7 x10~7

PCC is a number between —1 and +1. The PCC of —1, 0, +1
indicate negative correlation, no correlation and positive corre-
lation, respectively. The null hypothesis is that the correlation
of the pair of random variables is 0. The p-value indicates the
confidence when the null hypothesis is satisfied. If the p-value is
lower than the conventional 0.05 the PCC is called statistically
significant. Table III shows that AP and the number of training
examples have a correlation with a PCC of 0.169 and the p-value
is 9.35 x 107°, indicating that AP is only weakly positively
related with the number of training samples.

E. Noisy Labels

AudioSet contains noisy tags [9]. That is, some tags for
training may be incorrect. There are three major reasons leading
to the noisy tags in AudioSet showed in [9]: 1) confusing labels,
where some sound classes are easily confused with others; 2)

human error, where the labeling procedure may be flawed; 3)
faint/non-salient sounds, where some sound are faint to recog-
nise in an audio clip. Sound classes with a high label confidence
include ““christmas music” and “accordion”. Sound classes with
a low label confidence include “boiling” and “bicycle”. To
investigate how accurate are the ground truth tags, The authors of
AudioSet conducted an internal quality assessment task where
experts checked 10 random segments for most of the classes. The
quality is a value between 0 and 1 measured by the percentage
of correctly labelled audio clips verified by human. The quality
of labels is shown in Fig. 7 with red plus symbols. Hyphen
symbols are plotted for the classes that have not been evaluated.
We discover that AP is not always correlated positively with
the quality of labels. For example, our model achieves an AP
of 0.754 in recognizing “harpsichord”, while the human label
quality is 0.4. On the other hand, humans achieve a label quality
of 1.0 in “hiccup”, but the AP of our model is 0.076. Table III
shows that AP and the quality of labels have a weak PCC of
0.230, indicating AP is only weakly correlated with the quality
of labels.

F. Attention Neural Networks

We evaluate the decision-level and the feature-level attention
neural networks in this subsection. We adopt the architecture in
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RESULTS OF DECISION-LEVEL ATTENTION MODEL AND FEATURE-LEVEL
ATTENTION MODEL

mAP  AUC  d-prime
Average instances [50] 0.317  0.963 2.529
JDC [12] 0.337  0.963 2.526
Self attention [48] 0.324  0.962 2.506
Decision-level single-attention [15]  0.337  0.968 2.612
Decision-level multi-attention [16] 0.357  0.968 2.621
Feature-level avg. pooling 0.298  0.960 2475
Feature-level max pooling 0.343  0.966 2.589
Feature-level attention 0.361  0.969 2.641

Fig. 2(c) as our model. The output x’ of the layer before the
attention function is obtained by (17). Then the decision-level
and feature-level attention neural networks are modelled by (16)
and (20), respectively. The first row of Table IV shows that the
ES method with averaged instances achieves an mAP of 0.317.
The second and third rows show that the JDC model in Fig. 2(a)
and the self-attention model in Fig. 2(b) achieve an mAP of
0.337 and 0.324, respectively. The fourth and fifth row show
that the decision-level attention neural network achieves an mAP
of 0.337. The decision-level multiple attention neural network
further improves this result to an mAP of 0.357.

The results of the feature-level attention neural networks are
shown in the bottom block of Table IV. The ES methods with
average and maximum aggregation achieve an mAP of 0.298 and
0.343, respectively. The feature-level attention neural network
achieves an mAP of 0.361, an mAUC of 0.969 and a d-prime
of 2.641, outperforming the other models. One explanation is
that the feature-level attention neural network can attend to or
ignore the features in the feature space which further improves
the capacity of the decision-level attention neural network. Fig. 8
shows the class-wise performance of the attention neural net-
works. The feature-level attention neural network outperforms
the decision-level attention neural network and the ES method
with averaged instances in a majority of sound classes. The
results of all 527 sound classes are shown in Fig. 9.
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Class-wise AP of sound events predicted using different models.

TABLE V
RESULTS OF MODELING THE NON-NEGATIVE ¢po WITH DIFFERENT
NON-NEGATIVE FUNCTIONS

mAP  AUC  d-prime
ReLU att 0.308  0.963 2.520
Exp. att 0.358  0.969 2.631
Sigmoid att  0.361  0.969 2.641
Softmax att  0.360  0.969 2.636
NIN 0.359  0.969 2.637
TABLE VI

RESULTS OF MODELING THE ATTENTION NEURAL NETWORK
‘WITH DIFFERENT LAYER DEPTHS

Depth  mAP  AUC  d-prime
0 0.328  0.963 2.522
1 0.356  0.967 2.605
2 0.358  0.968 2.620
3 0.361  0.969 2.641
4 0.356  0.969 2.637
6 0.348  0.968 2.619
8 0.339  0.967 2.595
10 0.331  0.966 2.579

G. Modeling Attention Function With Different Functions

As described in Section V-C, we model the attention function
q of the feature-level attention neural network via a non-negative
function ¢5. The choice of the non-negative function may affect
the optimisation and result of the attention neural network.
Table V shows that the exponential, sigmoid, softmax and NIN
functions achieve a similar mAP of approximately 0.360. Mod-
eling ¢(-) with ReLU is worse than the with other non-linear
functions.

H. Attention Neural Networks With Different Embedding
Depth and Width

As shown in (17), our attention neural networks map the
instances x to x’ through several non-linear embedding lay-
ers to increase the representation ability of the instances. We
model frc using the feature-level attention neural network with
fully-connected layers with different depths. Table VI shows that
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Fig. 9.

Based on the network frc modelled with three layers in the
feature-level attention neural network, we investigate the width
of frc. Table VII shows that feature-level attention model with

the mAP increases from 0 layers and reaches a peak of 0.361

at 3 layers. More hidden layers do not increase the mAP. The

Set bottleneck features obtained
d on YouTubelOOM have good sepa-

10

reason might be that the Aud

2048 hidden units in each hidden layer achieves an mAP of

0.369, an mAUC of 0.969 and a d

1me

by a VGGish CNN tra

.641 is achieved,

prime of 2

rability. Therefore, there is no need to apply very deep neural
networks on the AudioSet bottleneck features. On the other hand,

outperforming the models with 256, 512, 1024 and 4096 hidden
units in each layer. On the other hand, with 4096 hidden units,

the model tends to overfit, and does not outperform the model

with 2048 hidden units.

the YouTubelOOM data may have a different distribution from

AudioSet. As a result, the embedding mapping frc can be used

as domain adaption.
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TABLE VII
RESULTS OF MODELING THE ATTENTION NEURAL NETWORK WITH DIFFERENT
NUMBER OF HIDDEN UNITS

Hidden units mAP  AUC  d-prime
256 0.305  0.962 2.512
512 0.339  0.967 2.599
1024 0.361  0.969 2.641
2048 0.369  0.969 2.640
4096 0.369  0.968 2.619

VII. CONCLUSION

We have presented a decision-level and a feature-level atten-
tion neural network for AudioSet tagging. We developed the con-
nection between multiple instance learning and attention neural
networks. We investigated the class-wise performance of all the
527 sound classes in AudioSet and discovered that the AudioSet
tagging performance on AudioSet embedding features is only
weakly correlated with the number of training examples and
quality of labels, with Pearson correlation coefficients of 0.169
and 0.230, respectively. In addition, we investigated modelling
the attention neural networks with different attention functions,
depths and widths. Our proposed feature-level attention neu-
ral network achieves a state-of-the-art mean average precision
(mAP) of 0.369 compared to the best MIL method of 0.317
and the decision-level attention neural network of 0.337. In the
future, we will explore weakly labelled sound event detection
on AudioSet with attention neural networks.
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