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Abstract—Sound event detection (SED) is a task to detect sound
events in an audio recording. One challenge of the SED task is that
many datasets such as the Detection and Classification of Acoustic
Scenes and Events (DCASE) datasets are weakly labelled. That is,
there are only audio tags for each audio clip without the onset and
offset times of sound events. We compare segment-wise and clip-
wise training for SED that is lacking in previous works. We propose
a convolutional neural network transformer (CNN-Transfomer)
for audio tagging and SED, and show that CNN-Transformer
performs similarly to a convolutional recurrent neural network
(CRNN). Another challenge of SED is that thresholds are required
for detecting sound events. Previous works set thresholds empir-
ically, and are not an optimal approaches. To solve this problem,
we propose an automatic threshold optimization method. The first
stage is to optimize the system with respect to metrics that do not
depend on thresholds, such as mean average precision (mAP). The
second stage is to optimize the thresholds with respect to metrics
that depends on those thresholds. Our proposed automatic thresh-
old optimization system achieves a state-of-the-art audio tagging
F1 of 0.646, outperforming that without threshold optimization of
0.629, and a sound event detection F1 of 0.584, outperforming that
without threshold optimization of 0.564.

Index Terms—Sound event detection (SED), weakly labelled
data, automatic threshold optimization.

I. INTRODUCTION

SOUND event detection (SED) is an important research topic
which can be used in smart home, self-driving cars and

smart cities. For example, a SED system can detect an ambulance
siren even if the ambulance is far away. In this situation, it is
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difficult to detect the siren with cameras because of the distance
and obstructions. Different from audio tagging (AT) which only
requires to detect the presence or absence of sound events in an
audio recording, SED requires to predict the onsets and offsets
of sound events. SED has attracted many researches since the
introduction of the Detection and Classification of Acoustic
Scenes and Events (DCASE) challenges [1]–[5].

One challenge of the SED task is that audio recordings are
usually weakly labelled. That is, in the training data, we only
know the presence or absence of sound events, without knowing
their onset and offset times. We call this kind of data weakly
labelled data (WLD). In this paper, we focus on the large-scale
weakly supervised sound event detection task for smart cars
dataset from the DCASE 2017 challenge Task 4 [6]. The audio
recordings from this task is a subset of the AudioSet dataset [7].
This task includes both AT and SED. All audio clips for training
are weakly labelled without time information of sound events.
In previous research of AT, several CNN-based methods have
been applied [8]–[19]. Those approaches show that a robust
feature extractor is important for AT and SED. Usually CNNs are
applied to the log mel spectrogram of audio recordings followed
by a sigmoid non-linearity to predict the presence probabilities
of sound events.

General SED tasks can be divided into two categories ac-
cording to the availability of frame-level or clip-level labels:
strongly supervised SED, when frame-level labels are provided;
or weakly supervised SED, when only clip-level tags are pro-
vided. Several deep learning based methods [20]–[27] have
been proposed for the strongly supervised SED task. However,
frame-level sound event labels are time consuming to obtain.
Recently, the DCASE 2017 Task 4 provides a large-scale dataset
designed for AT and SED with only weakly labelled data pro-
vided. To train with weakly labelled data, segment-wise based
methods [10], [28] split audio clips into segments, and assign
each segment with weak labels. On the other hand, clip-wise
training methods [12] apply entire audio clips for training. There
is a lack of research comparing the segment-wise and clip-wise
based methods for SED.

Although previous CNNs based methods have been successful
in audio tagging and SED tasks, CNNs do not capture the long
time dependency in an audio clip well. For example, the receptive
field of a CNN can be limited to a short duration with a fixed
length that does not take long history information into account in
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the system. To solve this problem, convolutional recurrent neural
networks (CRNNs) including [18], [29], [30] and bidirectional
long short term memory (BLSTM) systems [22] were used to
consider the long temporal information for audio tagging and
sound event detection. One disadvantage of CRNNs is that the
hidden states of a CRNN have to be calculated one by one, and
can not be calculated in parallel. Recently, transformers [31]–
[33] have been proposed to consider the long time dependency
of sequences. A transformer consists of several attention layers.
Each state of a layer takes the information from all states
of the previous layer. Therefore, each state retains the global
information of the input sequence.

Another challenging problem of AT and SED is the selection
of thresholds for post-processing [27], [34]. For example, in
the AT subtask, if the predicted probability of a sound class
is over a threshold in an audio clip, then the audio clip is
regarded as containing this sound class. The thresholds selection
is an important part of AT and SED. Usually, the thresholds
are selected empirically. For example, in the winning system of
the AT subtask in the DCASE 2017 [12], thresholds of 0.3 are
used for all the sound classes. However, those thresholds are
selected by experience and may not be optimal. In this work, we
propose an automatic threshold optimization method to solve
this problem.

This work contributes in the following aspects. First, we
investigate segment-wise training and clip-wise training for AT
and SED. We found that different systems perform differently
for the AT and SED subtask. Second, we propose a CNN-
Transformer system, and achieves competitive results to the
CNN-GRU system. Third, we propose an automatic threshold
optimization method for the AT and SED subtask. Our proposed
systems outperform the best systems in the DCASE 2017 Task
4 challenge. This paper is organized as follows: Section II intro-
duces CNN and CRNN for AT and SED. Section III introduces a
CNN-Transformer system. Section IV introduces segment-wise
and clip-wise training. Section V proposes an automatic thresh-
old optimization method for AT and SED. Section VI shows
experimental results. Section VII concludes this work.

II. CONVOLUTIONAL NEURAL NETWORKS (CNNS)

A. Conventional CNNs

CNNs were originally designed for image classification [35],
and have been recently used for audio related tasks such as
speech recognition [36] and AT [37], [38]. A conventional
CNN consists of convolution layers, pooling layers and fully
connected layers. The input to each convolutional layer is a
tensor with a shape (N,C,W,H) representing the number of
input samples, channels, width and height. For AT, the input
width and height represent the number of time frames and
frequency bins. Each convolutional layer consists of a set of
learnable kernels. The output of a convolutional layer is a tensor
called feature maps. The kernels in a convolutional layer can
learn local time-frequency patterns in the spectrogram of an
audio clip. In audio processing, low level features [39] can be
waveforms or time-frequency representations such as spectro-
gram. High level features are those extracted from low level
features by convolutional layers. Recent CNN architectures

apply batch normalization [40] after convolutional layers to
speed up and stabilise training. Nonlinear activation functions
such as ReLU [41] are applied after each batch normalization.
For AT and SED, pooling layers are applied along both time
and frequency axes. A time distributed fully connected layer is
applied on the output of the last convolutional layer to predict
the presence probability of sound events along the time axis.
Then the predicted probabilities are aggregated over the time
axis to obtain the clip-wise sound event presence probability.
The aggregation can be, for example, maximum or average
operations over the time axis.

B. Convolutional Recurrent Neural Network (CRNNs)

The receptive field of CNNs have limited sizes. That is, CNNs
can not capture long time dependency in an audio clip. However,
some sound events have long time dependencies. For example,
an ambulance siren may last for tens of seconds, and the temporal
information is useful for AT and SED. Designing a system that is
able to capture the temporal dependency is beneficial for AT and
SED. Recurrent neural networks (RNNs) [42] are kinds of neural
networks that can store history information in their hidden states,
and thus capture long term dependency of sequential data. RNNs
have been applied to language processing tasks such as [42]. The
potential problem of a conventional RNN is that the gradient
of weights may vanish or explode in training. Long short term
memory (LSTM) [43] is a variation of RNN that introduces
constant error carousel units, input gate, output gate and forget
gate to avoid the gradient exploding and vanishing problem.
An improved architecture of LSTM called gated recurrent units
(GRU) [44] is proposed to reduce the parameters of LSTMs and
simplify the gates to a reset gate and a forget gate. A GRU can
be in both directions which we call bidirectional GRU (biGRU),
which is applied in our AT and SED systems.

III. CNN-TRANSFORMER

CRNN can capture long time-dependency of sound events.
On the other hand, the sequential nature of CRNNs also makes
it more difficult to take advantage of modern fast computing
devices such as GPUs. Recently, transformer [31] is proposed
to learn correlations of time steps in a sequence such as natural
language processing tasks [32]. Compared with RNNs which
require to compute the hidden states in a sequence, a trans-
former can parallelize the computation which only requires
matrix multiplication in the forward pass. Transformer applies
a self-attention mechanism which directly models relationships
between all time steps in a sequence. In an audio clip, a sound
class may contain several sound events over time. For example,
the speech of a human may appear in any time in an audio clip.
A transformer can capture the correlation of speeches appearing
in different part of an audio clip.

A. Transformer

Transformer was originally proposed in [31]. The motivation
for the design of the transformer is to allow modeling of depen-
dencies without regard to their distance in the input sequence. In
addition, a transformer allows for more parallel computing than
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RNNs by removing the recurrent connections. A transformer
consists of several encoder and decoder layers. The encoder
transforms an input to a high level embedding, and the decoder
transforms an embedding to output. In a classification task such
as AT or SED, we only need the encoder. Each encoder consists
of several encoder layers. For each encoder layer, we denote the
input to the encoder layer as a tensor x with a shape of T × C,
where T andC represent the number of time steps and channels.
We follow the symbols used in [31]. An encoder layer consists
of a query transform matrix WQ, a key transform matrix WK

and a value transform matrix WV . The matrices WQ and WK

have a shape of C × dk, and WV has a shape of C × dv where
dk and dv are integers. Then the query Q, key K and value V
can be obtained by:

Q = xWQ

K = xWK

V = xWV .

(1)

The query Q and key K have a shape of T × dk, and the value
V has a shape of T × dv . The output of an encoder layer can be
written as:

h = softmax

(
QKT

√
dk

)
V, (2)

where the outputh has a shape ofT ×H . Equation (2) computes
the dot product of the query with all keys, divide each by

√
dk,

and apply a softmax function to obtain the weights on the values
V [31]. The division of square root of dk is a normalization
term [31]. In (2), the inner product of Q and KT has a shape
of T × T , representing the feature correlation of different time
steps. The softmax operation converts the correlation value to
probabilities along the time steps indicating how much the value
V in a time step should be attended.

B. CNN-Transformer

For audio tagging and SED, the input is usually a time-
frequency representation such as a log mel spectrogram. Log mel
spectrogram is a low level feature and CNNs have been proposed
to apply on the log mel spectrogram to extract high level fea-
tures [37]. To build the CNN-Transformer system, we first apply
a CNN described in Section II on the log mel spectrogram of an
audio clip. Convolutional layers in the CNN are used to extract
high level features of the input log mel spectrogram. We use the
feature maps of the last convolutional layer to obtain embedding
vectors along time axis. The embedding can be viewed as x with
a shape of the number of time frames by the number of channels.
The output of the transformer has a shape of T × dv . A fully
connected layer followed by a sigmoid non-linearity is applied
on this output to predict the presence probabilities of sound
classes over time steps. An aggregation function such as average
aggregation can be applied to average out those probabilities
along time domain to obtain the audio tagging result.

IV. SEGMENT-WISE V.S. CLIP-WISE SED

Sections II and III introduce CNN, CNN-biGRU and CNN-
Transformer architectures. In this section, we introduce how

we apply the aforementioned architectures for AT and SED
training with weakly labelled data. Conventional SED methods
utilise strongly labelled data for supervised learning. However,
collecting strongly labelled data is time consuming. The amount
of strongly labelled data is therefore limited. To solve this
problem, we propose to use weakly labelled dataset for SED. The
SED systems with weakly labelled data can be categorized into
segment-wise training [10], [16], and our previously proposed
clip-wise training [12] methods. This section aims to investigate
the comparison of the segment-wise and clip-wise training for
AT and SED.

A. Segment-Wise Training

We denote the waveform of an audio clip as X . For an X
lasting for several seconds, we split it into several segments
{xm}Mm=1 where M is the number of segments. Each segment
inherits the tags of the audio clip. We denote the tags of each
segment as y ∈ {0, 1}K whereK is the number of sound classes.
The SED problem is converted to an audio tagging problem
on those segments. In training, a classifier f is trained on the
segments. The loss function can be written as:

E = −
M∑

m=1

K∑
k=1

[yklogf(xm)k + (1− yk)log(1− f(xm)k)].

(3)
In inference, an audio clip is split into segments {xm}Mm=1, and
the SED result on each segment can be calculated by f(xm).
The AT result can be obtained by aggregating f(xm) over all
segments:

F (X) = agg({f(xm)}Mm=1). (4)

The aggregation can be, for example, maximum or average
operation over all the segments. The segment-wise classifier f
can be CNN, CNN-biGRU or CNN-Transformer followed by
a sigmoid non-linearity to predict the presence probability of
sound events of each segment. We investigate the performance
of choosing different duration of segments on SED and AT in
Section VI.

B. Clip-Wise Training

In the segment-wise training, all segments xm inherit the tags
of an audio clip X . The problem of segment-wise training is
that many sound events may only last for a short time in the
audio clip. Therefore, the tags of xm may be incorrect because
the segment may not contain the sound event. To solve this
problem, our previous work proposed attention neural network
based clip-wise training [12]. The clip-wise training method
does not explicitly assign tags for each segment xm. Instead,
the systems are designed to learn the tags of xm implicitly, that
is, from the hidden layer of a neural network. We denote the
segment-wise prediction of a segment xm to be f(xm). Then
the prediction on the clip X can be obtained by aggregating the
segment-wise predictions. For example, the aggregation can be
a max, average or attention function over the prediction of all
segments of each sound class. The max function can be defined
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Algorithm 1: Audio Tagging.
1: Inputs: predicted presence probability of sound events

in an audio clip F (X). AT thresholds {μ1, . . ., μK}.
2: Outputs: Predicted audio tags.
3: for k = 1, . . .,K do
4: if F (X)k < μk then
5: return 0 for the k-th sound event.
6: else
7: return 1 for the k-th sound event.

as:

F (X)k = max
k

f(xm)k. (5)

For example, the average function can be defined as:

F (X)k =

M∑
m=1

f(xm)k. (6)

The decision-level function can be defined as [45]:

F (X)k =
M∑

m=1

f(xm)kp(xm)k, (7)

where p(xm) = exp(w(xm)k)∑M
j=1 exp(w(xj)k)

, and w(·) is a linear transfor-

mation. In training, we calculate the categorical binary crossen-
tropy loss between the clip-level prediction F (X) and the
ground truth label of X:

E = −
K∑

k=1

[yklogF (X)k + (1− yk)log(1− F (X)k)] . (8)

The difference between the clip-wise training (8) and the
segment-wise training (3) is that the clip-wise training directly
outputs F (X), and can be trained in an end-to-end way with
weakly labelled data. The f(xm)k are latent representations
learnt by the neural network.

V. AUTOMATIC THRESHOLD OPTIMIZATION

To obtain the presence or absence of sound events in an
audio clip, AT systems need to apply thresholds to the system
outputs. A sound class is predicted as presence if the AT output
is larger than its corresponding threshold. The thresholds for
AT are denoted as ΘAT = {μ1, . . ., μK}. Algorithm 1 shows the
algorithm to obtain AT result from the AT system outputs.

SED requires to predict not only the presence or absence but
also the onset and offset times of sound events. Similar to AT, we
first apply thresholds {μ1, . . ., μK} onF (X) to predict the pres-
ence or absence of K classes of sound events in an audio clip X .
If the k-th sound class is predicted to be present, then we apply a
threshold τ high

k to the segment-wise predictions f(xm) to detect
sound events. In addition, to reduce the number of missed detec-
tion, a second threshold τ low

k is used. To begin with, we denote
the neighbouring segments of an active segment as x′. Then, a
lower threshold τ low

k is applied on f(xm) to obtain the calibrated
sound event detection result. All thresholds for SED are denoted

Algorithm 2: Sound Event Detection.

1: Inputs: clip-wise prediction F (X), segment-wise
prediction f(xm), AT thresholds {μ1, . . ., μK}, SED
high thresholds {τ high

1 , . . ., τ high
K }, SED low thresholds

{τ low
1 , . . ., τ low

K }.
2: Outputs: Detected sound events.
3: for k = 1, . . .,K do
4: if F (X)k < μk then
5: return 0 for the k-th sound event.
6: else
7: for m = 1, . . .,M do
8: if f(xm)k > τ high

k then
9: Return 1 for the neighbouring

segments x′ of xm if f(x′)k < τ low
k .

as ΘSED = {μ1, . . ., μK , τ high
1 , . . ., τ high

K , τ low
1 , . . ., τ low

K }. Algo-
rithm 2 summarizes obtaining the SED results from the clip-wise
and segment-wise predictions.

The winning system of the AT subtask in DCASE 2017 Task
4 [12] applies constant thresholds for both the AT and SED
subtask. Setting those thresholds requires a lot of experience, and
the manually selected thresholds are often not optimal. In addi-
tion, each sound class may have different thresholds. Therefore,
sweeping over all combinations of thresholds is intractable. We
propose an automatic threshold optimization method to solve
this problem. In the first stage, we optimize the systems and
evaluate the systems based on the metrics that do not depend
on the thresholds such as mean average precision (mAP). In the
second stage, for a trained system, we optimize the thresholds
over a specific metric such as F1 score or error rate (ER) to
optimize the thresholds.

For an audio clip X , the AT result rAT can be obtained
by algAT(F (X),ΘAT) where algAT is the AT algorithm shown
in Algorithm 1. The SED result rSED can be obtained by
algSED(F (X), {f(xm)}Mm=1,Θ

SED) where algSED is the SED
algorithm shown in Algorithm 2. The goal of AT or SED
is to minimize some loss J(Θ), for example, ER JER(Θ) or
negative F1 score JF1(Θ). The reason of using negative F1 is
that minimizing JF1(Θ) is equivalent to maximizing F1 score.
The optimization of thresholds becomes solving the following
problem:

Θ̂ = argmin
Θ

J(Θ). (9)

The difficulty of solving (9) is that Θ consists of several pa-
rameters to be optimized. So applying grid search over all
thresholds is inefficient. Another way is to use gradient based
methods to iteratively optimize those thresholds. However, equa-
tion (9) is a non-differentiable function, so we can not calculate
the gradient over the thresholds in an analytical way. This
is because both the AT and SED algorithms in Algorithm 1
and Algorithm 2 contain non-differentiable operations such as
thresholding. In addition, the evaluation metrics ER and F1 score
are also non-differentiable. To solve this problem, we propose
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Algorithm 3: Adam Optimization. Symbol g2t Indicates the
Elementwise Square gt � gt. Learning Rate is Denoted as
α. Hyper-Parameters are Set to β1 = 0.9, β2 = 0.999 and
ε = 10−8 Following [46].

1: Inputs: parameters Θ.
2: Init Θ0,m0 = 0, v0 = 0, t = 0
3: while Θ not converged do
4: t← t+ 1
5: gt = �ΘJ
6: mt ← β1mt−1 + (1− β1)gt
7: vt ← β2vt−1 + (1− β2)g

2
t

8: m̂t ← mt/(1− βt
1)

9: v̂t ← vt/(1− βt
2)

10: Θt ← Θt−1 − α · m̂t/(
√
v̂t + ε)

Algorithm 4: Automatic Thresholds Optimization.

1: Inputs: Validation dataset D = {X(n), y(n)}Nn=1,
trained AT system F (·), trained SED system f(·).

2: Outputs: Optimized thresholds Θ.
3: Initialize Θ.
4: for i = 1, . . ., ITER do
5: for n = 1, . . ., N do
6: ŷ(n) = alg(F (X(n)), f(x

(n)
m ),Θ).

7: J = metric({ŷ(n)}n=N
n=1 , {y(n)}n=N

n=1 )
8: for θ in Θ do
9: �θJ = J(Θ+�Θ)−J(θ)

�θ

10: �ΘJ = {�θJ}θ∈Θ
11: Θ← opt(Θ,�ΘJ)

to calculate the gradients over the thresholds in a numerical
way. That is, for each parameter θ, we calculate the gradient
as:

�θJ(Θ) =
J(Θ +�Θ)− J(Θ)

�θ
, (10)

where �θ is a small constant number, and �Θ is a vector
with all zero values the position of θ which has a value of
�θ. After calculating the numerical gradient for all parameters
�ΘJ = {�θJ}θ∈Θ, the optimized thresholds can be obtained
by applying gradient based optimization methods iteratively:
Θ← opt(Θ,�ΘJ), where opt denotes an optimization algo-
rithm such as gradient descent (GD). GD optimization can be
written by Θ← Θ− α�Θ J where α is a learning rate. We
use Adam optimizer [46] to optimize J(Θ) due to its fast con-
vergence. We describe Adam optimizer in Algorithm 3 to show
how it is used in our method. Overall, the automatic threshold
optimization algorithm is described in Algorithm 4. We have
released our proposed automatic threshold optimization toolbox
called autoth.1

1[Online]. Available: https://github.com/qiuqiangkong/autoth

TABLE I
SOUND EVENTS IN THE DCASE 2017 TASK 4 “LARGE-SCALE WEAKLY

SUPERVISED SOUND EVENT DETECTION FOR SMART CARS”

VI. EXPERIMENTS

A. Experimental Setup

There are several SED datasets including the DCASE 2017
Task 4 [6], the DCASE 2018 Task 4 [47] and the DCASE 2019
Task 4 [48]. We evaluate our SED system on the DCASE 2017
Task 4 “large-scale weakly supervised sound event detection
for smart cars”. The reason we choose this dataset is because
it is a large-scale dataset containing over 140 hours of weakly
labelled audio clips for training. The audio recordings of the
DCASE 2017 Task 4 are from a subset of AudioSet [7] where
each audio clip is extracted from YouTube video. DCASE 2017
Task 4 consists of 17 sound events divided into two categories:
“warning” and “vehicle”. Most of those audio clips have duration
of 10 seconds. The audio clips shorter than 10 seconds are
padded with silence to 10 seconds. Table I lists the sound events
and their statistics. The DCASE 2017 Task 4 dataset consists of
a training subset with 51172 audio clips, a validation subset with
488 audio clips, and an evaluation set with 1103 audio clips. The
training subset is weakly labelled. The validation and evaluation
subsets are both weakly and strongly labelled for evaluation. The
source code of this work is released.2

B. Feature

We use log mel spectrogram as input feature following pre-
vious work on audio tagging [10], [37], [49]. To begin with,
all audio clips are converted to monophonic and resampled
to 32 kHz. The short time Fourier transform with a Hanning
window of 1024 samples and a hop size of 320 samples is used
to extract spectrogram which leads to 100 frames in a second.
We apply 64 mel filter banks on the spectrogram followed by
logarithmic operation to calculate log mel spectrogram. The
number 64 is chosen so that it can be evenly divided by a power
of 2 in the down-sampling layers of CNNs. The mel filter banks

2[Online]. Available: https://github.com/qiuqiangkong/sound_event_
detection_dcase2017_task4
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TABLE II
CNN ARCHITECTURE

have a lower cut-off frequency of 50 Hz and a higher cut-off
frequency of 14 kHz to avoid aliasing caused by resampling.

C. Model

The segment-wise training systems are described in equation
(4), and are modeled by a 9-layer CNN which has shown to per-
form well on a variety of audio tagging tasks [49]. Table II shows
that the 9-layer CNN consists of 4 convolutional blocks, where
each convolutional block consists of 2 convolutional layers
with kernel sizes of 3× 3. Batch normalization [40] and ReLU
non-linearity [50] is applied after each convolutional layer. The
convolutional block consists of 64, 128, 256 and 512 feature
maps, respectively. A 2× 2 average pooling is applied after each
convolutional block to extract high level features. We did not
apply residual connections in our CNNs as gradient vanishing
is not a problem with 8 convolutional layers. In Table II, the
number following @ represents the number of feature maps.
The second column shows the number of batch size (bs), feature
maps, frames and frequency bins. We average out the frequency
axis of the output from the last convolutional layer. Then time
distributed fully connected layer with sigmoid non-linearity is
applied to predict the presence probability of sound events of
each time frame. To obtain the AT result for supervised learn-
ing, aggregation functions including max, average and attention
along time frames are applied. Adam [46] optimizer with a
learning rate of 0.001 is applied, and is reduced to 0.0001 after
the performance is plateaued on validation data. Mixup [51]
with alpha of 1.0 is used in all experiments to prevent training
from overfitting. The training is stopped at 60,000 iterations by
observing the performance on the validation set.

D. Evaluation Metrics

To evaluate the systems performance, we use the precision,
recall and F1 score which are described in [52]:

P =
TP

TP + FP
(11)

R =
TP

TP + FN
(12)

F1 =
2P · R
P + R

, (13)

where TP, FP, FN are the number of true positive, false positive
and false negative samples, respectively. The higher precision,
recall and F1 score indicate better performance. Usually thresh-
olds need to be manually selected and applied on the system
outputs to calculate TP, FP and FN. We use average precision
(AP) metric [7] to compare the performance of different sys-
tems because the AP does not depend on thresholds. AP is
defined as the area under the precision-recall curve calculated
at multiple thresholds. Mean average precision (mAP) is the
averaged AP over all sound classes. The higher mAP indicates
better performance. Random guess has an mAP of 0.06 for the
DCASE 2017 Task 4 containing 17 sound classes. The mAP is a
macro-averaging statistic because it is calculated independently
within a sound class. Then, the statistics are averaged across
all sound classes. On the other hand, micro-averaging statistic
is calculated from outputs and ground truths flattened from all
classes.

For the AT subtask, systems are ranked based on macro-
averaging F1 score. For the SED subtask, systems are ranked
based on micro-averaging F1 score and Error rate (ER) evaluated
on 1-second segments [4]. Error rate measures the amount of
errors in terms of insertions (I), deletions (D) and substitutions
(S), and is defined as follows [52]:

ER =

∑
m S(m) +

∑
m D(m) +

∑
m I(m)∑

m N(m)
, (14)

where I(m), D(m), S(m), N(m) are the number of inserted,
deleted, substituted, and ground truth sound events in the m-th
segment. Lower ER indicates better performance. The segment
based evaluation is calculated in a fixed time grid, using seg-
ments of one second length to compare the ground truth and
the system output [6]. Similarly, segment based F1-score are
calculated in the same way.

E. Segment-Wise AT and SED

There is a lack of research comparing segment-wise [10] and
clip-wise [12] training for AT and SED. We first investigate
the segment-wise training method. To begin with, an audio clip
is split into segments. Then SED predictions are calculated by
running audio tagging system on segments. Because the audio
clips are weakly labelled, there is no information when a sound
event occurs and how long they last. This can affect the label
accuracy of segment-wise training because all segments inherit
the tags from the audio clip. In inference, the SED result is
obtained by predicting audio tags on segments. Table III shows
the average percentage of time frames in an audio clip containing
different sound events from the validation set of DCASE 2017
Task 4. Sound events such as civil defense siren has a presence
percentage of 0.930 which indicates segment-wise labels are
more likely to be correct. Sound events such as train horn has
a presence percentage of 0.400 which indicates segment-wise
label is less likely to be correct.

The 10-second audio clips are split into segments with differ-
ent lengths from 1 to 10 seconds. Each segment inherit the tags
from the audio clip. The minimum 1-second setting follows [10].
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TABLE III
THE PERCENTAGE OF TIME CONTAINING SOUND EVENTS IN AN AUDIO CLIP LABELLED AS CONTAINING THE SOUND EVENT

Fig. 1. Segment-wise training result trained with different durations of audio segments. From left to right: Audio tagging macro mAP; SED macro mAP; SED
micro error rate.

Fig. 2. Clip-wise training result with different systems. Audio tagging macro mAP; SED macro mAP; SED micro error rate.

A 9-layer CNN is applied to build the segment-wise training sys-
tems. Fig. 1 shows the mAP and ER of AT and SED with different
segment durations. Training with 2-second segments achieves
an mAP of 0.64 in audio tagging, slightly outperforming other
segment duration in AT. This indicates that the prediction of
long segments does not perform well when no attention or
temporal dependency is used. The second column of Fig. 1 shows
that training with 1-second segments achieves an SED mAP of
0.44, outperforming other segment duration. This indicates that
shorter segments achieve better SED result than longer segments
when using segment-wise training systems. One explanation
is that SED is obtained by AT on segments, so AT on shorter
segments can provide higher SED resolution. To calculate the
ER, we use constant AT thresholds of μk = 0.5, k = 1, . . .,K,

and SED thresholds of τ high
k = 0.3, τ low

k = 0.1, k = 1, . . .,K for
all sound class following [12]. The third column of Fig. 1 shows
that the 1-second and 2-second segment duration achieve an ER
of 0.74, outperforming other segment durations.

F. Clip-Wise AT and SED

We investigate the clip-wise training systems in this section.
The difference of the clip-wise training and the segment-wise
training is that with clip-wise training, the SED result can be
obtained from the intermediate layer of a neural network. Then,
the AT predictions can be calculated by the aggregation functions
such as (5, 6, 7). Fig. 2 shows the AT and SED performance of the
clip-wise CNN systems. For the AT subtask, the decision-level
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Fig. 3. From left to right: Class-wise AT average precision; Class-wise SED average precision; Class-wise SED error rate with the CNN-biGRU-Att system.

Fig. 4. Precision-recall curves of sound classes at different thresholds with the CNN-biGRU-Att system.

maximum (CNN-Max) or decision-level average (CNN-Avg)
systems achieve an mAP of 0.60. The decision-level attention
(CNN-Att) improves the mAP to 0.64, indicating the atten-
tion plays an important role in AT. The CNN-biGRU systems
and the CNN-Transformer system further improve the mAP
performance to 0.65, indicating that the temporal dependency
information is helpful for AT. For the SED subtask, the CNN-
Transformer system achieves an SED mAP of 0.45, slightly
outperforming the CNN-biGRU systems of 0.44 and other CNN
systems of 0.36 to 0.39, respectively. On the other hand, CNN-
biGRU achieves an ER of 0.66, outperforming other systems
ranging from 0.69 to 0.86. To calculate ER we applies thresholds
that are the same as the segment-wise training systems. Fig. 1 and
Fig. 2 show that the segment-wise training achieves better mAP
on the SED task, while the clip-wise training achieves better ER
on the SED task. One explanation is that mAP is evaluated in
frame-wise, while ER is evaluated in 1-second segments.

Fig. 3 shows the class-wise performance of the CNN-biGRU-
Att system over training iterations. The performance on different
sound classes varies. The prediction of screaming achieves the

highest AT mAP of 0.94. On the other hand, the prediction of car
passing by achieves the lowest mAP of 0.20. One explanation
of the underperformance of sound classes such as car passing
by is that they are difficult to perceive even by human in audio
recordings. For SED, some sound classes achieve better mAP
than others, for example, civil defense siren achieves the highest
mAP of 0.80, indicating the system is performing well on
these sound classes. The ER curve of different sound classes
is different. Civil defense siren has an ER of 0.26 while other
sound classes such as bicycle has ER over 1. The class-wise
results show that both the AT and SED performance vary from
sound class to sound class.

G. Automatic Thresholds Optimization

Previous subsection shows that the performance of different
sound classes can be different. It can be useful to observe
their precision-recall curves under various thresholds. Fig. 4
shows the AT precision-recall curve of sound classes with
the CNN-biGRU-Att system under different thresholds ranging
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TABLE IV
PERFORMANCE OF THE PROPOSED SYSTEMS ON THE VALIDATION (VAL.) AND EVALUATION (EVAL.) SUBSET

TABLE V
AT OF DIFFERENT SYSTEMS

from 0 and 1. The blue and red curve show the validation and
evaluation precision-recall curve, respectively. Fig. 4 shows that
the validation and the evaluation curve have similar trend but are
not overlapped, indicating that the data distribution of validation
and evaluation data can be slightly different. Some sound classes
such as screaming have high precision at a variety of thresholds.
On the other hand, the precision drops rapidly with the increase
of recall for some sound classes such as car passing by. Fig. 4
shows that different sound classes have different thresholds to
achieve optimal metrics such as F1 score.

Table IV shows the AT and SED performance with the clip-
wise training systems. We first apply constant thresholds for both
AT and SED systems. The constant thresholds are the same as the
thresholds applied in previous sections. In addition to applying
the constant thresholds, we apply thresholds ΘAT and ΘSED for
AT and SED obtained by using the automatic thresholds opti-
mization algorithm described in Algorithm 4. Table IV shows
that the proposed automatic thresholds optimization improved
both the AT and SED performance. For example, the CNN-
Transformer AT F1 score improves from 0.557 to 0.599, and
0.629 to 0.646 in the validation and evaluation set, respectively.
The CNN-biGRU SED ER is reduced from 0.80 to 0.65, and
0.78 to 0.68 in the validation and evaluation set, respectively.
Those results show the effectiveness of the proposed automatic
threshold optimization method.

Table V shows the precision, recall and F1-score of differ-
ent methods for the AT on the validation and evaluation sets,
respectively. The official DCASE2017 baseline is give in [4]

TABLE VI
SED RESULTS OF DIFFERENT SYSTEMS

by using a multilayer perceptron (MLP) classifier, denoted as
“DCASE2017 Baseline”. The MIL-NN is a multiple instance
learning based neural network system proposed in [53]. The
CNN-ensemble system is proposed by [16] and ranked the 1st
in the SED subtask in Task 4 of the DCASE 2017 challenge.
Our proposed systems achieve an F1 score of 0.646 on the
evaluation set, outperforming the other methods in AT. The
CNN-biGRU and the CNN-Transformer systems achieve similar
performance. Table VI shows the SED result with different
methods. On the evaluation set, our proposed CNN-biGRU-Att
with automatic thresholds optimization achieves an F1 score of
0.584, outperforming other systems. The system achieves an
ER of 0.68 which is comparable with the ensemble based CNN
system [16].

VII. CONCLUSION

This paper investigates sound event detection (SED) with
weakly labelled data. The variants of convolutional neural net-
works (CNNs) and CNN-Transformer systems were proposed
for the audio tagging and sound event detection. The segment-
wise training and clip-wise training systems were investigated.
The clip-wise training achieves an mAP of 0.650 in audio
tagging and an ER of 0.68 in SED. A novel automatic thresh-
olds optimization method is proposed to approach the thresh-
olds selection problem. The automatic thresholds optimization
method improves the AT F1 score from 0.629 to 0.646, and
reduces the ER from 0.78 to 0.68. We show that the CNN-
Transformer performs similarly to the CRNN system, while
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the CNN-Transformer has the advantage of being computed in
parallel. In addition, the improvements of audio tagging and
SED are mainly from the automatic threshold optimization. In
future, we will focus on extending the sound event detection
systems to large-scale training data such as AudioSet.
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