
Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

DCASE 2018 CHALLENGE SURREY CROSS-TASK CONVOLUTIONAL NEURAL
NETWORK BASELINE

Qiuqiang Kong1, Turab Iqbal1, Yong Xu2, Wenwu Wang1, Mark D. Plumbley1

Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey
1{q.kong, t.iqbal, w.wang, m.plumbley}@surrey.ac.uk

2yong.xu.ustc@gmail.com

ABSTRACT

The Detection and Classification of Acoustic Scenes and Events
(DCASE) consists of five audio classification and sound event detec-
tion tasks: 1) Acoustic scene classification, 2) General-purpose audio
tagging of Freesound, 3) Bird audio detection, 4) Weakly-labeled
semi-supervised sound event detection and 5) Multi-channel audio
classification. In this paper, we create a cross-task baseline system
for all five tasks based on a convlutional neural network (CNN): a
“CNN Baseline” system. We implemented CNNs with 4 layers and
8 layers originating from AlexNet and VGG from computer vision.
We investigated how the performance varies from task to task with
the same configuration of neural networks. Experiments show that
deeper CNN with 8 layers performs better than CNN with 4 layers
on all tasks except Task 1. Using CNN with 8 layers, we achieve
an accuracy of 0.680 on Task 1, an accuracy of 0.895 and a mean
average precision (MAP) of 0.928 on Task 2, an accuracy of 0.751
and an area under the curve (AUC) of 0.854 on Task 3, a sound event
detection F1 score of 20.8% on Task 4, and an F1 score of 87.75% on
Task 5. We released the Python source code of the baseline systems
under the MIT liscense for further research.

Index Terms— DCASE 2018 challenge, convolutional neural
networks, open source.

1. INTRODUCTION

Detection and classification of acoustic scenes and events (DCASE)
2018 challenge1 is a well known IEEE challenge consists of several
audio classification and sound event detection tasks. DCASE 2018
challenge consists of five tasks: In task 1, acoustic scene classifica-
tion (ASC) [1], the task is to recognize the scenes where the sound
is recorded, such as “street” or “park”. ASC has applications in
enhancing speech recognition systems and sound event detection [2].
Task 1 includes a matching device ASC subtask and a mismatching
device ASC subtask. In task 2, general-purpose audio tagging of
Freesound, [3] the task is to classify an audio clip to a pre-defined
class, such as “flute” or “applause”. Task 2 has applications in rec-
ognizing a wide range of sound events in real world and is useful
for information retrieval. In task 3, bird audio detection, [4], the
task is to detect the presence or the absence of birds in an audio
clip. This could be used for automatic wildlife monitoring and audio
library management. An important goal of Task 3 is to design a
classification system which can generalize to new conditions. In task
4, weakly labeled semi-supervised sound event detection (SED) [5],
the task is to detect the onset and the offset times of sound events

1http://dcase.community/

where only weak labeled audio and unlabeled audio is available for
training. Task 4 can be used for monitoring public security and
used for abnormal sound detection. In task 5, the multi-channel
audio classification [6], the task is to use multi-channel recordings
to identify the human activities at home.

The first DCASE challenge was the DCASE 2013 challenge [7],
with only an audio classification and a sound event detection tasks.
The DCASE 2016 challenge [8] consisted of four tasks including:
1) ASC, 2) SED in synthetic audio, 3) SED in real audio and 4)
domestic audio tagging. The DCASE 2017 challenge [9] updates the
domestic audio tagging task to a large-scale weakly labeled audio
tagging task. The DCASE challenge series provide public datasets
for investigating audio related tasks. One recent dataset for DCASE
challenges is the AudioSet dataset [10]. Task 4 of both DCASE 2017
and 2018 challenge were subsets of AudioSet.

Convolutional neural networks (CNNs) have achieved state-of-
the-art performance in image classification [11, 12]. In this paper,
we investigate how different CNNs, CNN with 4 layers originated
from AlexNet [11] and CNN with 8 layers originated from VGG
[12] perform on Task 1 to 5 of DCASE 2018. We apply the same
configurations of CNNs across all task 1 to 5 to fairly compare
the relative performance across different tasks. Using the same 8
layers CNN model, the performance on Task 1 to 5 varies, which
indicates the difficulty of the tasks varies. The experiments show that
Task 4 sound event detection is more difficult than Task 1 acoustic
scene classification than Task 3 bird audio detection than Task 2
general-purpose audio tagging of Freesound and Task 5 domestic
multi-channel audio tagging.

We open source the Python code for all of Task 1 - 5 of DCASE
2018 challenge under MIT liscence. The source code contains the im-
plementation of CNNs with 4 layers and 8 layers. In complementary
to the source code published by the organizer [1], we investigated
that CNNs with more layers perform better in all of Task 2 - 5 in
DCASE 2018 challenge except Task 1.

This paper is organized as follows, Section 2 introduces related
works. Section 3 introduces CNNs. Section 4 shows experimental
results. Section 5 concludes and forecasts our work.

2. RELATED WORKS

Manually-selected features such as mel frequency cepstrum coef-
ficients (MFCC) [13, 14], the constant Q transform (CQT) [15],
and I-vectors [16] have been used as audio features. Recently, mel
spectrograms [17] have been widely used as features when using
neural networks as classifiers. Mixture Gaussian models (GMMs)
[18] and hidden Markov models (HMMs) [19] have been used to
model audio scenes and sound events. Non-negative matrix factor-



Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

Table 1: Configurations of CNN4 and CNN8
feature map
size CNN4 CNN8

T × 64 log mel spectrogram

T/2× 32 5× 5, 64

[
3× 3,BN
3× 3,BN

]
, 64

2× 2, max pooling

T/4× 16 5× 5, 128

[
3× 3,BN
3× 3,BN

]
, 128

2× 2, max pooling

T/8× 8 5× 5, 256

[
3× 3,BN
3× 3,BN

]
, 256

2× 2, max pooling

T/16× 4 5× 5, 512

[
3× 3,BN
3× 3,BN

]
, 512

2× 2, max pooling
1× 1 Global max pooling

Classes num fc, sigmoid or softmax
Parameters 4,309,450 4,691,274

ization (NMFs) [20] is a method to learn a set of bases to represent
the audio. Recently, deep neural networks have been introduced
to audio classification and sound event detection. For example,
fully-connected neural networks have been applied to DCASE 2016
challenges [21] and DCASE 2017 challenges [22]. CNNs have
achieved the state-of-the-art performance in audio classification and
sound event detection [23, 17, 24]. Convolutional recurrent neural
networks (RNNs) [25, 26] have been used to model the temporal
information of sound events. Attention neural networks have been
proposed to focus on sound events [27] from weakly-labelled data
[28]. Generative adversarial networks (GANs) have been applied to
improve the robustness of audio classification classifiers [29].

3. CONVOLUTIONAL NEURAL NETWORKS

CNNs, such as AlexNet [11] and VGG [12], have achieved state-of-
the-art performance in image classification [11, 12]. A CNN consists
of several convolutional layers followed by fully-connected layers.
Each convolutional layer consists of filters to convolve with the out-
put from the previous convolutional layer. The filters can capture
local patterns in feature maps, such as edges in lower layers and com-
plex profiles in higher layers [12]. In this work, we adopt AlexNet
with 4 layers and VGG with 8 layers as models, which we call CNN4
and CNN8. CNN4 consists of 4 convolutional layers and the filter
size of each convolutional layer is 5× 5 [11]. CNN8 consists of 8
layers and the filter size of each convolutional layer is 3 × 3 [12].
We apply batch normalization (BN) after each convolutional layer
to stabilize training [30] followed by a rectifier (ReLU) nonlinearity.
We then apply a global max pooling (GMP) operation on the feature
maps of the last convolutional layer [17] to summarize the feature
maps to a vector. GMP can max out the time and frequency infor-
mation of sound events in a spectrogram, so it is invariant to time
or frequency shift. Finally, a fully-connected layer is applied on the
summarized vector followed by a sigmoid or softmax nonlinearity
to output the probabilities of the audio classes. The configurations
of CNN4 and CNN8 are summarized in Table 1.

Table 2: Task 1 acoustic scene classification class-wise accuracy of
subtask A and B of development dataset.

SUBTASK A SUBTASK B

Scene label CNN
[1]

CNN4 CNN8 CNN
[1]

CNN4 CNN8

Airport 0.729 0.743 0.709 0.725 0.612 0.667
Bus 0.629 0.607 0.649 0.783 0.695 0.723
Metro 0.512 0.690 0.686 0.206 0.500 0.417
Metro station 0.554 0.687 0.741 0.328 0.472 0.584
Park 0.791 0.855 0.839 0.592 0.834 0.861
public square 0.404 0.486 0.472 0.247 0.361 0.389
Shopping mall 0.496 0.642 0.631 0.611 0.778 0.778
Street, pedestrian 0.500 0.583 0.567 0.208 0.333 0.361
Street, traffic 0.805 0.874 0.886 0.664 0.750 0.778
Tram 0.551 0.590 0.621 0.197 0.417 0.389

Average 0.597 0.676 0.680 0.456 0.575 0.572

leaderboard - 0.693 0.707 - 0.578 0.568

4. EXPERIMENTS

We open source the Python code of the CNN baseline systems of
DCASE 2018 challenge Task 1 - 5 source here23456. We convert
all stereo audio to mono for Task 1 - 5 for building the baseline
system. We extract the spectrograms and apply log mel filter banks
on the spectrograms followed by logarithm operation. We choose
the number of the mel filter banks as 64 because it is a power of two
which can be divieded by two in max pooling layers. The mel filter
bank has a cut off frequency of 50 Hz. The log mel spectrograms
are standarized by subtracting the mean and dividing the standard
deviation along mel frequency bins. The same configuration of
CNN4 and CNN8 are applied on Task 1 - 5 (1). We use Adam
optimizer [31] with a learning rate of 0.001 and the learning rate
is reduced by multiplying 0.9 after every 200 iterations training. A
batch size of 128 is used for Task 1, 2, 3 and 5 and a batch size of 32
is used for Task 4 to sufficiently use the GPU with 12 GB memory
in training. We trained the model for 5000 iterations for all of the
five tasks. The training takes 60 ms and 200 ms per iteration on a
Titan X GPU for CNN4 and CNN8, respectively. The results of Task
1 - 5 are shown in the following subsections.

4.1. Task 1: Acoustic scene classification

Task 1 acoustic scene classification [1] is a task to classify an audio
recording to a predefined class that characterize the environment
in which it was recorded. The 10 predefined classes are listed in
Table 2. There are 10080 10-second audio clips in the development
dataset, including 8640, 720 and 720 audio clips recorded with
device A, B and C. Task 1 has three subtasks. Subtask A is matching
device classification. Subtask B is mismatching device classification.
Subtask C is matching device classification with external data and
has the same evaluation data as subtask A.

2https://github.com/qiuqiangkong/dcase2018_task1
3https://github.com/qiuqiangkong/dcase2018_task2
4https://github.com/qiuqiangkong/dcase2018_task3
5https://github.com/qiuqiangkong/dcase2018_task4
6https://github.com/qiuqiangkong/dcase2018_task5
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Table 3: Task 2 audio tagging accuracy and MAP@3.

Accuracy MAP@3

CNN4 CNN8 CNN4 CNN8

Fold 1 0.858 0.897 0.900 0.930
Fold 2 0.824 0.875 0.870 0.912
Fold 3 0.862 0.903 0.901 0.934
Fold 4 0.861 0.904 0.904 0.935

Average 0.851 0.895 0.894 0.928

Leaderboard - - 0.885 0.920

Figure 1: Task 2 audio tagging class-wise accuracy.

Table 2 shows the accuracy of subtask A and subtask B. In [1] a
two layer CNN with a dense connected layer is used as a baseline
model. In subtask A, CNN4 and CNN8 achieve similar accuracy of
0.676 and 0.680 respectively, outperforming the two layers CNN of
0.597 [1]. In subtask B, CNN4 and CNN8 achieve similar accuracy
of 0.575 and 0.572, respectively, outperforming the two layers CNN
of 0.456 [1]. The subtask B mismatching device classification is
around 10% worse than the subtask A matching device classification
in absolute value. We do not explore the subtask C for with external
data.

4.2. Task 2: General-purpose audio tagging of Freesound con-
tent with AudioSet labels

Task 2 audio tagging [3] is a task to classify an audio clip to one of
41 predefined classes such as “oboe” and “applause”. The duration
of the audio samples range from 300 ms to 30 s due to the diversity
of the sound categories. The development dataset contains 9473
audio clips. We pad or divide the log mel spectrograms of audio
clips to 2 s log mel spectrograms as the input to a CNN. We split
the development dataset to four validation folds and only use 3710
manually verified audio clips for validation. Table 3 shows the
accuracy and the mean average precision (MAP) [3] on the four folds
and their average statistics. CNN8 achieves an average accuracy
of 0.895 and a MAP@3 of 0.928, outperforming CNN4 network
of 0.851 and 0.894, respectively. Figure 1 shows the class-wise
accuracy of Task 2. Sound classes such as “applause” and “bark”
have 100% classification accuracy but some classes such as “squeak”
and “telephone” have accuracies of only 50% - 60%.

Table 4: Task 3 bird audio detection accuracy and AUC.

Accuracy AUC

validation dataset CNN4 CNN8 CNN4 CNN8

freefield1010 0.551 0.630 0.645 0.799
warblrb10k 0.692 0.867 0.799 0.882
BirdVox-DCASE-20K 0.678 0.801 0.808 0.882

Average 0.640 0.766 0.751 0.854

Leaderboard - - 0.850 0.847

Table 5: Task 4 audio tagging AUC and sound event detection F1
score.

AT (AUC) SED1 (F1) SED2 (F1)

Class CNN4 CNN8 CNN4 CNN8 CNN4 CNN8

Speech 0.889 0.936 0.0% 0.0% 16.9% 22.5%
Dog 1.000 1.000 2.6% 2.5% 8.3% 14.3%
Cat 0.980 0.991 3.4% 3.5% 10.3% 7.2%
Alarm/bell 0.964 0.975 4.2% 4.0% 12.5% 20.7%
Dishes 0.835 0.898 0.0% 0.0% 0.0% 3.6%
Frying 0.945 0.939 45.5% 54.5% 2.1% 0.0%
Blender 0.839 0.883 18.9% 27.1% 8.3% 7.3%
Running water 0.930 0.943 11.8% 11.9% 7.9% 3.1%
Vacuum cleaner 0.972 0.956 57.6% 61.3% 9.4% 2.6%
Electronic shaver 0.944 0.957 45.0% 43.5% 18.9% 16.3%

Average 0.930 0.948 18.9% 20.8% 9.5% 9.8%

4.3. Task 3: Bird audio detection

Task 3 bird audio detection [4] is a task to predict the presence or the
absence of birds in a 10-second audio clip. One challenge of this task
is to design a system that is able to generalize to new conditions. That
is, a system trained on one dataset should generalize well to another
dataset. The development dataset consists of freefield1010 with
7690 audio clips, warblrb10k with 8000 audio clips and BirdVox-
DCASE-20K with 20000 audio clips. We train on two datasets and
evaluate on the other hold out dataset. Table 4 shows the accuracy
and the area under the curve (AUC) [4] of CNNs. CNN8 achieves
an accuracy and an AUC of 0.766 and 0.854, outperforming CNN8
network of 0.640 and 0.751, respectively. The result in Table 4
shows the classification of freefield1010 dataset is more difficult
than warblrb10k and BirdVox-DCASE-20K dataset.

4.4. Task 4: Large-scale weakly labeled semi-supervised sound
event detection in domestic environments

Task 4 is a weakly labeled semi-supervised sound event detection
task [5] to predict both the onset and the offset of sound events.
There are 10 audio classes in Task 4, for example “speech” and
“dog”. An audio clip can be assigned one or more labels. The
development dataset consists of 1578 weakly labeled audio clips,
14412 unlabeled in domain audio clips and 39999 unlabeled out
domain audio clips. Each audio clip has a duration for 10 seconds.
We only use the 1578 weakly labeled audio clips for training our
systems. Different from Task 1, 2, 3 and 5, to remain the time
resolution of feature maps in time axis, the max pooling operation
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Table 6: Task 5 multi-channel audio tagging F1 score.

CNN4 (F1 score) CNN8 (F1 score)

Scene label Baseline Fold 1 Fold 2 Fold 3 Fold 4 Average Fold 1 Fold 2 Fold 3 Fold 4 Average

Absence 85.41% 86.39% 90.51% 78.47% 89.91% 86.32% 90.54% 92.22% 80.53% 89.88% 88.29%
Cooking 95.14% 96.16% 94.72% 93.01% 96.63% 95.13% 97.96% 96.30% 93.83% 96.32% 96.10%
Dishwashing 76.73% 77.78% 68.55% 75.77% 80.18% 75.57% 83.31% 71.18% 76.00% 85.80% 79.07%
Eating 83.64% 79.68% 75.66% 85.41% 91.15% 82.30% 85.16% 85.14% 88.52% 94.54% 88.34%
Other 44.76% 43.30% 55.15% 56.93% 60.23% 53.90% 54.33% 54.45% 51.42% 62.23% 55.61%
Social activity 93.92% 95.59% 88.09% 90.15% 98.54% 93.10% 98.40% 90.05% 93.67% 99.34% 95.36%
Vacuum cleaner 99.31% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 99.43% 100.00% 100.00% 99.89%
Watching TV 99.59% 99.55% 99.74% 97.51% 99.96% 99.19% 99.83% 99.91% 99.03% 99.89% 99.66%
Working 82.03% 85.30% 86.26% 79.40% 90.50% 85.37% 88.74% 89.32% 81.44% 90.18% 87.42%

Average 84.50% 84.86% 84.30% 84.07% 89.68% 85.73% 88.70% 86.45% 84.94% 90.91% 87.75%

is only applied along the frequency axis. In training, we average
out the time axis and apply a fully connected layer to predict the
clip-wise labels. In inference, we do not apply the average of time
axis to remain frame-wise labels. Table 5 shows CNN8 achieves an
AUC of 0.948 in audio tagging, outperforming CNN4 of 0.930. In
sound event detection, system SED1 uses the audio tagging result
as the sound event detection result. The onset and the offset times
are filled with 0 s and 10 s. System SED2 applies thresholds to the
frame-wise predictions to detect sound events. The high threshold
and the low threshold are set as 0.8 and 0.2, respectively. Sound
events such as “Frying”, “Blender”, “Running”, “Vacuum cleaner”
and “Electronic shaver/toothbrush” have higher F1 score with SED1.
Sound event such as “Speech”, “Dog”, “Cat”, “Alarm/bell/ringing”
and “dishes” have higher F1 score with SED2. SED1 and SED2
achieve average F1 scores of 20.8% and 9.8%, respectively.

4.5. Task 5: Monitoring of domestic activities based on multi-
channel acoustics

Task 5 multi-channel audio tagging [6] is a task to classify the
domestic activites with multi-channel acoustic recordings. The target
of Task 5 is to research how the multi-channel information will
help the audio tagging task. The development dataset of Task 5
consists of 72984 10-second audio clips. The audio classes including
’Cooking’ and ’Eating’, for example. The multi-channel audio clips
are converted to single channel audio clips to build the baseline
system. Table 6 shows that the CNN8 achieves a F1 score of 87.75%,
outperforming CNN4 network of 85.73%.

5. CONCLUSION

In this paper, we investigated the performance of convolutional
neural networks (CNNs) with 4 layers and 8 layers on Task 1 to
5 of DCASE 2018. We show the difficulties of the tasks varies.
Task 4 sound event detection is more difficult than Task 1 acoustic
scene classification than Task 3 bird audio detection than Task 2
general-purpose audio tagging of Freesound and Task 5 domestic
multi-channel audio tagging. We show CNN with 8 layers performs
better than CNN with 4 layers in Task 2 to 5. In Task 1, CNN with
8 layers and 4 layers perform similar. With CNN8, we achieves an
accuracy of 0.680 on Task 1, a mean average precision (MAP) of
0.928 on Task 2, an area under the curve (AUC) of 0.854 on Task
3, a sound event detection F1 score of 20.8% on Task 4 and a F1

score of 87.75% on Task 5. In future, we will explore more CNN
structures on Task 1 - 5 of DCASE 2018 challenge. We released the
Python source code of the baseline systems under the MIT liscense
for further research.
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