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Abstract—Speaker tracking in smart environments has at-
tracted an increasing amount of attention in the past few years.
Our recent studies show that fusing audio and visual modalities
can provide improved robustness and accuracy in some challeng-
ing tracking scenarios such as occlusions (by the limited field of
view of cameras or by other speakers), as compared with the
tracking system based on individual modalities. In these previous
works, however, the number of speakers is assumed to be known
and remains fixed over the tracking process. In this paper, we
focus on a more realistic and complex scenario where the number
of speakers is unknown and variable with time. We extend the
random finite set (RFS) theory for multi-modal data and devise
a particle filter algorithm under the RFS framework for audio-
visual (AV) tracking. The experiments on the AV16.3 dataset
show the capability of our proposed algorithm for tracking both
the number of speakers and the positions of the speakers in
challenging scenarios such as occlusions.

Index Terms—Audio-visual speaker tracking, random finite set.

I. INTRODUCTION

The problem of tracking and localization of speakers in
enclosed spaces has received much interest in the fields of
computer vision and signal processing, driven by applications
such as automatic camera steering in video conferencing and
individual speaker discriminating in multi-speaker environ-
ments.

Speaker tracking may be achieved using either video or
audio modalities. Video tracking [1], [2] is generally accurate
when the targets are in the camera field of view, but it suffers
from occlusions, changes in speaker appearance, illumination,
and a limited camera view. Audio tracking [3], [4], on the
other hand, is not restricted by these limitations, but could be
affected by acoustic noise, room reverberations and the inter-
mittency between utterance and silence. Fusing both audio and
visual data has the potential to provide more robust tracking
performance in the case that either modality is unavailable or
both are corrupted, as demonstrated in our recent work [5],
[6].

A comprehensive approach for tracking speakers with audio
and video data is to use a state-space approach based on
a Bayesian framework. Particle filter (PF) [7] is one of the
widely employed algorithms which easily approaches the
Bayesian optimal estimate with a sufficiently large number
of particles [8]. In our previous works [5], [6], the PF is
applied to multi speaker AV tracking under the assumption
that the number of speakers is known and constant. In a

practical tracking environment, however, the speakers to be
captured by the audio-visual sensors may appear or disappear
in a random manner. As a result, the number of speakers that
can be observed from the audio-visual measurements may vary
with time.

In this paper, we relax the above assumption and focus on
the problem of tracking a variable number of speakers based
on the AV data, where the variable number of speakers and
their states are jointly estimated in a multi-speaker environ-
ment. A Bayesian tracking framework based on the random
finite set (RFS) formulation [9], [10], [11] is used to deal with
the unknown and variable number of speakers in audio-visual
tracking. Our work is based on the PF implementation of the
RFS in speaker tracking presented in [12] and [13]. Different
from [12] and [13], however, the RFS approach is extended
here to deal with both audio and visual measurements. We
show in our experiments that, with this new extension, the
proposed AV tracking system is able to track reliably a variable
number of speakers in challenging scenarios such as occlusion.

The following section introduces the RFS formulation for
multi-speaker tracking. The PF implementation of RFS is
given in Section III, and experimental results are presented
in Section IV, followed by the conclusion.

II. RFS STATE MODEL FORMULATION FOR
MULTI-SPEAKER TRACKING

This section describes our problem formulation based on
the RFS framework for multi-speaker tracking using visual
and audio modalities.

The state of each speaker is defined as x =[
x ẋ y ẏ s

]T
, where x and y are the horizontal

and vertical positions of the rectangle centred around the face
that we wish to track, ẋ is the horizontal velocity, ẏ is the
vertical velocity and s is the scale of the rectangle centred
around (x, y). The evolution of time dependent speaker state
is

xn,k = Fxn,k−1 + qn,k (1)

where qn,k is the zero-mean Gaussian noise with covariance
Q, qn,k ∼ N (0,Q) at time frame k = 1, ...,K and F is the
linear motion model,



F =


1 T 0 0 0
0 1 0 0 0
0 0 1 T 0
0 0 0 1 0
0 0 0 0 1

 Q =


σ2
x 0 0 0 0

0 σ2
xv 0 0 0

0 0 σ2
y 0 0

0 0 0 σ2
yv 0

0 0 0 0 σ2
s


where T is the period between two adjacent frames, and σ2

x,
σ2
y , σ2

xv , σ2
yv and σ2

s are the variances for the corresponding
state component. In this work, the variances of the vertical
components and the horizontal components are assumed to be
the same, i.e., σ2

x = σ2
y = σ2 and σ2

xv = σ2
yv = σ2

v .
Since joint detection and tracking of an unknown and time-

varying number of speakers is considered, the state to be
estimated is no longer a random vector with fixed size. The
randomness arises from the number of speakers as well as the
positions of the speakers. In our work, such randomness is
characterized by using an RFS, given by

Xk = {x1,k, ...,xNk,k} (2)

where Nk=|Xk| is the number of speakers, with |·| representing
the cardinality of the set. We assume that the maximum
number of speakers at each time step is bounded by Nmax, i.e.,
Nk ≤ Nmax. The complete multi-speaker dynamics at current
step k can be addressed as

Xk = Bk(bk) ∪ Sk(Xk−1) (3)

where Sk(Xk−1) is the survived RFS of the states at time
k from the previous speaker’s finite set, Bk(bk) is the state
vector of the speakers “born” at time step k. We assume that
for the birth process at most one speaker is born at a time step
and apply following hypotheses:

Bk(bk) =

 ∅, ~̄birth
{bk}, ~birth
∅, |Xk−1| = Nmax

(4)

where ~birth and ~̄birth are, respectively, the birth and non-birth
hypotheses and bk is an initial state vector under the birth
hypothesis . We denote the probability ~birth by Pbirth. For the
surviving state set Sk(Xk−1), death hypotheses are applied as
follows:

Sk(Xk−1) =

{
Sk(Xk−1) \ xn,k−1, ~ndeath⋃|Xk−1|
n=1 {Fxn,k−1 + qn,k}, ~̄death

(5)

where ~ndeath and ~̄death are, respectively, the death assumption
for the nth speaker and the no-death hypothesis, and ‘\’
denotes the set subtraction. Here, we assume that each speaker
has the same prior probability of disappearing Pdeath. In the
case of the death process, the corresponding state is set
as empty, and the other states will evolve according to the
dynamic model (1).

In this study, we use video and audio modalities which give
visual measurement set Zvis

k and audio measurement set Zaud
k

under the assumption that they are independent. Zvis
k is the

normal distribution of color histogram measurements. Zaud
k is

also the normal distribution of the direction of arrival (DOA)
angle recorded from microphone arrays.

Since the joint information from both the visual and audio
measurements are employed, the complete measurement set at
time k can also be addressed in an RFS, given as

Zk = Zvis
k

⋃
Zaud
k (6)

The number of the measurements is the cardinality of the
measurement set: |Zk| = M vis

k +M aud
k ,Mk. The likelihood

of the visual and audio measurement sets is explained in
following sections.

A. Visual Tracking

The measurements observed from video are the color
histogram qk extracted from the video frames. In multi-
speaker tracking, we have many color models of templates
{r1(u), r2(u), ..., rt(u)} which are used as references to com-
pare their similarity with qk in terms of the Bhattacharyya
distance.

For the measurement model, each Zvis
k = {zvis

1,k, ..., z
vis
Mk,k
}

is modelled by

Zvis
k =

 ⋃
i=1,...,|Xk|

Dk(xi,k)

 ∪ Cvis
k (7)

where Cvis
k is the finite set of false measurements, and Dk(xi,k)

is the set of color measurements given by

Dk(xi,k) =

{
∅, ~miss⋃|Xk−1|
i=1 Dxi,k, ~̄miss

(8)

where ~miss and ~̄miss are, respectively, the miss and detection
hypotheses. The hypothesis ~miss happens with probability
P vis

miss. Dxi,k is the Bhattacharyya distance:

Dxi,k = min
j


√√√√1−

U∑
u=1

√
qxi,k(u)rj(u)

 (9)

where U is the number of histogram bins, and rj(u) is the
Hue histogram of the reference image from the templates, and
qxi,k(u) is the Hue histogram extracted from the rectangle
centred on the position of the speaker.
Cvis
k is the finite set of false color measurements. For the

false measurements, we assume that each cvis
k ∈ Cvis

k follows
a Beta distribution. As for the false color measurement pdf, it
is shown that [12]

cvis({zvis
1,k, ..., z

vis
m,k}) = P|Zvis

k |
(m)

(
m!

m∏
i=1

κvis(zvis
i,k)

)
(10)

where P|Zvis
k |

(m)=P [|Zvis
k | = m] is the probability of false

measurements and κvis(zvis) is a Beta distribution. The number
false measurements |Cvis

k | is assumed to follow a Poisson dis-
tribution with an average rate of λvis

c , P|Zvis
k |

(m)= e−λ
vis
c

(λvis
c )m

m! .
Therefore, equation (10) can be expressed as

c(Zvis
k ) = e−λ

vis
c

∏
zvis
k ∈Z

vis
k

λvis
c κ

vis(zvis
k ) (11)



Assuming that noise on the visual likelihood function is
Gaussian, then the likelihood function of the measured color
histogram can be written as [14]:

g(zvis
k |xk) ∝ N (zvis

k : 0, σ2
vis)

=
1

σvis
√

2π
exp

{
−Dk(xi,k)2

2σ2
vis

}
(12)

where σ2
vis is the variance of noise.

B. Audio Detection and Tracking

The previous section described the visual measurement set
and calculation of the likelihood function. Here, we discuss the
estimation of the DOAs and the enhancement of the estimates
using a smoothing process based on the Auto-Regressive (AR)
model.

As in our previous work [5], [6], the two-step method
proposed in [15] is used to estimate DOAs. The first step
is the sector based combined detection and localization where
the space around a circular microphone array is divided into a
number of sectors. Using the SAM-SPARSE-MEAN approach
[16], an “activeness” measure for each sector is taken at each
time frame. This measure of activeness is then compared to
a threshold to decide whether there is an active source in
that sector. In the second step a point based search is applied
in each of the sectors labelled as having at least one active
source. A parametric approach [15] is used for localization and
the location parameters are optimized with respect to a cost
function such as SRP-PHAT [17]. To improve the estimate of
the azimuth we apply a pth order AR model,

θn,k =

p∑
i=1

ϕiθn,k−i + εk (13)

where θn,k is the DOA (azimuth) angle (in degrees) of the
nth speaker, ϕi are the parameters of the model and εk is
white noise. In this work, the AR order p = 3 is found to be
adequate.

Then, DOA measurement model for each Zaud
k =

{zauds
1,k , ..., z

aud
Mk,k
} takes the form

Zaud
k =

 ⋃
i=1,...,|Xk|

Ek(xi,k)

 ∪ Caud
k (14)

where Caud
k is the finite set of false measurements and Ek(xi,k)

is the difference between DOA angle, θn,k, and ψ(xi,k) which
is the speaker position in terms of angle with respect to the
microphone

Ek(xi,k) =

{
∅, ~miss⋃|Xk−1|
i=1

{
min
n

(
ψ(xi,k) − θn,k

)}
, ~̄miss

(15)
where ~miss and ~̄miss are the miss and detection hypotheses,
respectively. The hypothesis ~miss happens with probability
P aud

miss.
Caud
k is the finite set of false DOA measurements and we

assume that each caud
k ∈ Caud

k follows a uniform distribution

for the false measurements. The false DOA measurement pdf
can be shown as

caud({zaud
1,k, ..., z

aud
m,k}) = P|Zaud

k |
(m)

(
m!

m∏
i=1

κaud(zaud
i,k )

)
(16)

where P|Zaud
k |

(m)=P [|Zaud
k | = m] is the probability of the

false measurements and κaud(zaud) is a uniform density with
an interval [−θmax, θmax]. The number false measurements
|Caud
k | is assumed to follow a Poisson distribution with an

average rate of λaud
c , P|Zaud

k |
(m)= e−λ

aud
c

(λaud
c )m

m! and (16) can
be expressed as

c(Zaud
k ) = e−λ

aud
c

∏
zaud
k ∈Z

aud
k

λaud
c κaud(zaud

k ) (17)

Noise on the audio likelihood function is also assumed
Gaussian, then the likelihood function of the DOA measure-
ments can be written as :

g(zaud
k |xk) ∝ N (zaud

k : 0, σ2
aud)

=
1

σaud
√

2π
exp

{
−Ek(xi,k)2

2σ2
aud

}
(18)

where σ2
aud is the variance of noise.

III. PARTICLE FILTER IMPLEMENTATION OF RFS

The RFS model formulation is described in previous section
for multi-speaker tracking. This can be used in a Bayesian
framework to estimate the multi-speaker locations and the
number of active speakers.

We can define pdfs for Xk and Zk using the RFS model
given in the previous section. RFS state transition density is
denoted by

f(Xk|Xk−1) (19)

and RFS likelihood function is denoted by

g(Zk|Xk) (20)

To derive these pdfs, some mathematical concepts are
required which are beyond the scope of this paper. Detailed
descriptions of the RFS pdf concepts can be found in [11] and
[18]. Based on RFS pdf concepts, the derivation of (19) and
(20) are given in [12].

The Bayesian recursive estimation of the posterior distribu-
tion of the RFS state p(Xk|Zk) can be written as

p(Xk|Z1:k−1) =∫
F
f(Xk|Xk−1)p(Xk−1|Z1:k−1)µ(dXk−1); (21)

p(Xk|Z1:k) ∝ p(Z1:k|Xk)p(Xk|Z1:k−1), (22)

where p(Xk|Xk−1) characterizes the birth, death and survival
processes of the state dynamics. The subscript F is the
collection of all finite subsets of the state space, and µ(dXk−1)
is a measure on F . Considering that the visual measurement



set Zvis
k and the audio measurement set Zaud

k are independent,
the likelihood for the joint measurements can be written as

p(Zk|Xk) =p(Zvis
k ,Zaud

k |Xk) = p(Zvis
k |Xk)p(Zaud

k |Xk) (23)

where p(Zvis
k |Xk) and p(Zaud

k |Xk) are the likelihood for the
visual measurements and the audio measurements respectively.
Since states have nonlinear relationship with the measure-
ments, closed-form solution for the PDF of the source state
is not available. In this paper, a particle filtering approach
is employed to approximate the PDFs. Assume that we have
particles X (`)

k−1 for ` = 1, . . . , L at the previous time step k−1,
and the corresponding importance weight w(`)

k−1. The particles
at the current time step k are generated according to

X (`)
k ∼ f(X (`)

k |X
(`)
k−1). (24)

The particles are weighted by

w
(`)
k = w

(`)
k−1g(Zk|X (`)

k ). (25)

After resampling, the posterior distribution is thus approxi-
mated by

p(X (`)
k |Zk) ≈

L∑
`=1

w̃
(`)
k δX (`)

k

(Xk) , (26)

where w̃(`)
k is the normalized weight. δX (Y) is a set-valued

Dirac delta function. For brevity, δX (Y) is defined such that
δX (Y) = 1 if X ⊆ Y and 0 otherwise.

The proposed tracking algorithm, called RFS-PF algorithm,
is presented in Algorithm 1. This algorithm describes how
to use RFS-PF for visual or audio-visual tracking. In vi-
sual tracking, the color likelihood function is calculated for
Nmax = 2 using equations (27), (28) and (29), respectively
for no speaker, one speaker and two speakers. The audio
likelihood function is calculated when it exists, again using
equations (27) - (29) and is fused with the color likelihood
function according to (23).

The number of speakers N̄k at time k is approximated by

N̄k ≈
L∑
`=1

w
(`)
k |X

(`)
k | (30)

N̄k is the floating number and since the number of speaker
should be an integer, rounding operation is applied N̂k =
dN̄kc. After the K-means algorithm is performed to cluster all
the RFS particles, the centroids of these clusters {x̂N,k}Ñk

N=1

are taken as the final state estimates. Lastly, the final states of
the speakers are used to detect their identities by comparing
an image patch centred on the estimated position with the
reference image from the templates using the Bhattacharyya
distance defined in (9).

IV. EXPERIMENTAL EVALUATIONS

In this section, evaluations of the RFS-PF algorithm on the
AV 16.3 dataset for visual and AV tracking are presented with
performance comparison. First, the experimental setup and the
performance metric for tracking error analysis are described,

Algorithm 1: RFS-PF algorithm for multi-speaker track-
ing

Initialization: for ` = 1, ..., L, draw particles
x

(`)
0 ∼ N (.|x0,Q)

Set initial weights w̃(`)
0 = 1

L
while k ← 1 to K do

Set X (`)
k = ∅; Source death, survival and birth:

- draw a random number ud ∼ U [0, 1); ub ∼ U [0, 1)
if ud > Pdeath then

- compute xk = Fxk−1 + qk
- set X (`)

k = X (`)
k ∪ {xk}

end
if ub > Pbirth and |X (`)

k−1| < Nmax then
- draw an initial state bk
- set X (`)

k = X (`)
k ∪ {bk}

end
for `← 1 to L do

- compute the color likelihood g(Zvis
k |X

(`)
k ) using

related equations (27) - (29)
if θk exists then

- compute the audio likelihood g(Zvis
k |X

(`)
k )

using related equations (27) - (29)
- compute the likelihood for the joint
measurements:
g(Zk|X (`)

k ) = g(Zvis
k |X

(`)
k )g(Zaud

k |X
(`)
k )

else
g(Zk|X (`)

k ) = g(Zvis
k |X

(`)
k )

end
- compute the importance weight:

w
(`)
k = w̃

(`)
k−1g(Zk|X (`)

k )
end

- normalize the weight w̃(`)
k =

w
(`)
k∑L

`=1 w
(`)
k

- resample the particles
- output the estimates using the K-means approach
- detect speaker id

end

and then comparative results between visual RFS-PF and AV
RFS-PF are discussed.

A. Setup and Performance Metric

The RFS-PF was tested using the AV 16.3 corpus developed
by the IDIAP Research Institute [19]. The corpus consists of
subjects moving and speaking at the same time whilst being
recorded by three calibrated video cameras and two circular
eight-element microphone arrays. The audio was recorded
at 16 kHz and video was recorded at 25 Hz. They were
synchronized before being used in our system. Each video
frame is a colour image of 288x360 pixels.

In the sequences, the speakers wear a ball for annotation
but in our application this ball is never used. In this paper, we
used two multi-speaker sequences. The first one is Sequence
30 (camera #2) where two moving speakers are walking back



g(Zk|∅) = e−λc (λcκ(zk))
|Zk| (27)

g(Zk|{xk}) = g(Zk|∅)

(
Pmiss + (1− Pmiss)

∑
zk∈Zk

(
1

λcκ(zk)

)
g(zk|xk)

)
(28)

g(Zk|{x1,k,x2,k}) = g(Zk|∅)
{ ∏
i=1,2

(
Pmiss + (1− Pmiss)

∑
zk∈Zk

(
1

λcκ(zk)

)
g(zk|xi,k)

)

−(1− Pmiss)
2
∑
zk∈Zk

(
1

λcκ(zk)

)2

g(zk|x1,k)g(zk|x2,k)

}
(29)

and forth once, one behind the other at a constant distance and
both are speaking continuously. Sequence 25 (camera #3) is
the second sequence where two moving speakers are walking
back and forth twice, each speaker is starting from the opposite
side and occluding the other once and the two speakers are
talking most of the time.

In Sequence 30 and 25, the number of speakers is changing
between 0 to 2. Two speakers occlude each other in Sequence
25 which makes it more challenging than Sequence 30. There-
fore, with these two sequences, we are able to evaluate the
proposed algorithm on the following two challenging tracking
scenarios: a variable number of speakers and speaker occlu-
sion. The parameters for the RFS-PF are set as: Pbirth = 0.2,
Pdeath = 0.01, P vis

miss = 0.02, P aud
death = 0.25, λvis

c and λaud
c are

set to 3, θmax = π/2 and L = 500.
An optimal subpattern assignment (OSPA) metric [20] is

used to evaluate the performance of our multi-speaker tracking
algorithm. OSPA employs a penalty value to transfer the
cardinality error into the state error and is able to present the
performance on source number estimation as well as speaker
position estimation. Assume that X̂k = {x̂1,k, ..., x̂N̂k,k

} is an
estimation of the ground truth state set Xk = {x1,k, ...,xNk,k}
and ΠN̂k,Nk

is the set of maps π : 1, ..., N̂k → 1, ..., Nk. Here
the state cardinality estimation N̂k may not be same as the
ground truth Nk. Then, the OSPA error metric for N̂k ≤ Nk
is given as [20]

eOSPA(X̂k,Xk) =

min
π∈ΠN̂k,Nk

p

√√√√√ 1

Nk

 N̂k∑
i=1

d(c)(x̂i,k,xπi,k)p + cp(Nk − N̂k)


(31)

If Nk < N̂k, then eOSPA(X̂k,Xk) = eOSPA(Xk, X̂k). The
function d(c)(·) is defined as min(c, d(·)). In our case, the
cut-off parameter c = 25, the OSPA metric order parameter
p = 1.

B. Results and Discussion

Figure 1 shows some frames with Visual RFS-PF and AV
RFS-PF results. To distinguish the trackers and speakers, the
visual tracker results are drawn with rectangles, while the AV

Frame 124 Frame 155 Frame 241

Speaker 1 Visual RFS-PF, Speaker 2 Visual RFS-PF
Speaker 1 AV RFS-PF, Speaker 2 AV RFS-PF

Fig. 1. Tracking in Sequence 30 (camera #2).

tracker results are drawn with ellipses. In addition, green and
red color are used to distinguish Speaker 1 from Speaker 2.

At the beginning, both the visual and AV tracker track the
speakers well, but when the speakers go to the corner of
the room, the visual tracker starts to drift away because of
the illumination effects. Figure 2 shows the estimation of the
number of active speakers.

Fig. 2. Estimation of the number of active speakers for Sequence 30.

Here, the number of active speakers is changing from 2 to
0 and the AV tracker shows better performance than the visual
tracker. For clearer presentation, downsampling is performed
to the plots. Position estimates of the trackers are given
in Figure 3 where GT is the abbreviation for ground truth
positions. It can be observed that the visual tracker starts to
deviate from the ground truth trajectory in the last few frames.

The tracking results of the proposed algorithm for Sequence
25 are demonstrated in Figure 4. Here, the two speakers
occlude each other and the AV tracker is able to follow the
second speaker after occlusion earlier the visual tracker. The
number of active speakers estimated for Sequence 25 is given



(a)

(b)

Fig. 3. Position estimates of the Visual and AV trackers for Sequence 30.

in Figure 5. It can be observed that the performance of the
visual tracker is not good as the AV tracker.

Frame 151 Frame 201 Frame 238

Speaker 1 Visual RFS-PF, Speaker 2 Visual RFS-PF
Speaker 1 AV RFS-PF, Speaker 2 AV RFS-PF

Fig. 4. Tracking in Sequence 25 (camera #3).

The position estimates for x- and y- trajectories are given
in Figure 4-(a) and 4-(b), respectively. The AV tracker tra-
jectories follow the ground truth trajectories closer than the
visual tracker. To see the performance difference between the

Fig. 5. Estimation of the number of active speakers for Sequence 25.

trackers, the OSPA errors are plotted for Sequence 30 and
Sequence 25 in Figure 6-(a) and (b), respectively. To get
more reliable results, the experiments are repeated 10 times
and the average error is plotted. It is clearly seen that adding
audio information to the visual tracker leads to an increase in
performance.

(a)

(b)

Fig. 6. Position estimates of the Visual and AV trackers for Sequence 25.



(a)

(b)

Fig. 7. Performance comparison in terms of the OSPA error.

V. CONCLUSION

In this study, we have proposed a random finite set ap-
proach for tracking a variable number of speakers in a smart
room environment using audio-visual measurements. The pro-
posed RFS-PF algorithm has been evaluated on two different
sequences from the AV 16.3 dataset. Experimental results
demonstrated that the proposed technique can reliably estimate
both the number of speakers in the tracking environment and
the positions of the speakers for up to three speakers within a
challenging tracking scenario such as occlusions.
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