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Abstract—The problem of tracking multiple moving speakers
in indoor environments has received much attention. Earlier
techniques were based purely on a single modality, e.g., vision.
Recently, the fusion of multi-modal information has been shown
to be instrumental in improving tracking performance, as well
as robustness in the case of challenging situations like occlusions
(by the limited field of view of cameras or by other speakers).
However, data fusion algorithms often suffer from noise cor-
rupting the sensor measurements which cause non-negligible
detection errors. Here, a novel approach to combining audio
and visual data is proposed. We employ the direction of arrival
angles of the audio sources to reshape the typical Gaussian noise
distribution of particles in the propagation step and to weight
the observation model in the measurement step. This approach is
further improved by solving a typical problem associated with the
PF, whose efficiency and accuracy usually depend on the number
of particles and noise variance used in state estimation and par-
ticle propagation. Both parameters are specified beforehand and
kept fixed in the regular PF implementation which makes the
tracker unstable in practice. To address these problems, we design
an algorithm which adapts both the number of particles and
noise variance based on tracking error and the area occupied by
the particles in the image. Experiments on the dataset
show the advantage of our proposed methods over the baseline PF
method and an existing adaptive PF algorithm for tracking oc-
cluded speakers with a significantly reduced number of particles.

Index Terms—Adaptive particle filter, audio-visual speaker
tracking, particle filter.

I. INTRODUCTION

S PEAKER tracking in smart environments has attracted an
increasing amount of attention in the last decade, driven

by applications such as automatic camera steering in video con-
ferencing and individual speaker discrimination in multispeaker
environments. Earlier techniques were designed to track one
person in a static and controlled environment. However, the-
oretical and algorithmic advances together with the increasing
capability in computer processing have led to the emergence
of more sophisticated techniques for tracking in dynamic and
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less controlled (or natural) environments with multiple speakers
[1]–[3]. The type of sensors used to collect the measurements is
also evolving from single- to multi-modality.
Early efforts in speaker tracking often use either visual only

or audio only data despite the fact that both audio and visual
information are readily available in many real world scenarios.
The method of video-only tracking [4], [5] is generally reliable
and accurate when the targets are in the camera field of view,
but limitations are introduced when the targets are occluded by
other speakers, when they disappear from the camera field of
view, or the appearance of the targets or illumination is changed
[3], [6]. Audio tracking [7]–[9] is not restricted by these limita-
tions, however, audio data is intermittent over time and may be
corrupted by background noise and room reverberations, which
may introduce non-negligible tracking errors. In addition, spa-
tial resolution (tracking resolution in the world space) of audio is
in general worse than that of video. Using both audio and visual
data has the potential to improve the tracking performance in the
case that either modality is unavailable or both are corrupted.
A popular approach for tracking speakers with audio and

video data is to use a state-space approach based on the Bayesian
framework, for example, the Kalman filter (KF) for linear mo-
tion and sensor models [10], extensions of KF for the non-
linear models using the first order Taylor expansion including
the decentralized Kalman filter (DKF) [11], [12] and extended
Kalman filter (EKF) [13], [14], and the particle filter (PF) for
nonlinear and non-Gaussian models [15]. In comparison to the
KF and EKF approaches, the PF approach is more robust for
nonlinear models as it can approach the Bayesian optimal es-
timate with a sufficiently large number of particles [15]. It has
been widely employed for speaker tracking problems [16]–[18].
For example, in [16] and [17], PF is used to fuse object shapes
and audio information. In [18], independent audio and video ob-
servation models are fused for simultaneous tracking and de-
tection of multiple speakers. One challenge in using PF, how-
ever, is to choose an appropriate number of particles. An in-
sufficient number may lead to particle impoverishment while
a larger number (than required) will introduce extra computa-
tional burden. Choosing the optimal number of particles is one
of the issues that affect the performance of the tracker, and none
of the above works have addressed this problem as we do here.
Besides the Bayesian method, another approach for tracking

is based on finite-set statistics (FISST) theory called the prob-
ability hypothesis density (PHD) filter [19]. The PHD filter is
a first-moment filter which propagates the first order moment
of a dynamic point process. Some applications of the PHD
filter with speaker tracking are given in [20] and [21]. The
main advantage of the PHD filter over Bayesian (Kalman or
PF) approach is that it does not require any a priori knowledge
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of the number of targets, which is actually estimated during
the tracking process. However, the PHD filter confines the
propagation of the full multi-target posterior to the first order
multi-target moment which corresponds to a loss of higher
order cardinality information that results in erratic estimates
of the number of objects in low signal-to-noise ratio (SNR)
scenarios [22]. Propagating the whole multi-target posterior is
computationally intractable. The cardinalized PHD (CPHD)
filter additionally propagates the cardinality distribution to
PHD and leads to better performance over the PHD for the
estimation of instantaneous target number [22], [23] and the
position of the speakers [24]. The cardinality distribution, nev-
ertheless, makes the CPHD more computationally demanding
than the PHD filter. Also, the CPHD does not provide explicit
models for the spawning of new targets by prior targets.
Apart from the tracking methods mentioned above, multi-

modal usage in speaker tracking brings a problem of associating
each measurement with an appropriate target which is known as
data association. Data association methods can be classified into
two main categories [25]. The first one is unique-neighbor data
association such as multiple hypothesis tracking (MHT) which
associates each measurement to one of the existing tracks. The
second one is all-neighbors data association, such as joint prob-
abilistic data association (JPDA) which uses all the measure-
ments for updating the entire track estimate. MHT filter has an
advantage in maintaining multiple hypotheses of the association
between a target state and the measurements in themeasurement
set. The drawback of MHT is that the number of hypotheses
grows exponentially over time [26]. JPDA approximates the
posterior target distribution as separate Gaussian distributions
for each target [27], [28] which results in an increased computa-
tional cost. Data association algorithms with Bayesian methods
and PHD filter in target tracking applications can be found in
[7], [29]–[32]. However, some researchers found that classical
data association algorithms are computationally expensive, and
this led them to fusemulti-modal measurements inside their pro-
posed framework [11], [14], [16], [17], [20] as we also do here.
Among the approaches presented above, the PF framework

has been chosen for tracking multiple speakers in this study.
Compared to other sequential Bayesian estimation techniques,
the advantage of PF lies in their flexibility with respect to the
types and numbers of features they support, their robustness in
the presence of noise, and the nonparametric fashion in which
they represent the belief about the target state, which makes
them applicable for highly nonlinear, non-Gaussian estimation
problems. Here, we focus on two challenging problems associ-
ated with PF based visual tracking.
The first problem stems from the limitations of using the

single modality of vision which affects the accuracy and re-
liability of tracker because of the limited field of view and
occlusion. To address this problem, audio data is used as a
second modality to improve the performance of visual tracker.
Researchers have presented fusion strategies for integrating
audio localization information with video tracking, [33]–[35],
[2]. These strategies are performed by modifying the obser-
vation model [33], using the likelihood function composition
of different sensor information [34], state association of two
modalities [35], or a graphical model for characterising mu-
tual dependencies of the two modalities [2]. These methods,
however, are sensitive to the outliers in audio data, and noisy
audio data can easily cause deviation in the estimation of the

target position. Unlike these methods, in this paper, we propose
integrating audio and visual data in the steps of the PF frame-
work, by weighting the contribution of the audio in order to
minimize the negative effect of outliers and noise coming from
the audio data, rather than performing any a priori data fusion
algorithm. One benefit of this approach is that running a data
fusion algorithm is not required which would introduce extra
computational cost. To the best of our knowledge, audio infor-
mation has not been previously fused with visual information
in a PF as we do here.
The second problem originates from the PF itself. It uses a

weighted set of samples (particles) in order to approximate the
filtering distributions and hence the quality of the sample based
representation increases with the number of particles. It is, how-
ever, not clear how to determine the optimal number of parti-
cles to be used for a specific estimation problem. As a rule of
thumb, the number of particles is chosen to be as large as pos-
sible to get accurate results which leads to an increased compu-
tational cost. A detailed analysis of this trade-off is performed
by Pitt et al. [36] who provided practical guidelines for the es-
timation of the optimal number of particles in Markov chain
Monte Carlo particle filter with the Metropolis Hastings sam-
pler. It is assumed that the standard deviation of the estimated
log-likelihood from the PF is around 1 and inversely propor-
tional to the number of particles. Their results are valid for the
Metropolis Hastings sampler, but for other samplers, it is not
clear whether the standard deviation of the likelihood from the
PF plays the same role in the estimation of the optimal number
of particles. Another potential approach for this problem is vari-
able resolution particle filter (VRPF) [37] which introduces the
concept of “abstract particles” that a particle may represent an
individual state or a set of similar states. The VRPF has the ad-
vantage that a limited number of particles are sufficient to rep-
resent the large portions of the state space since a single abstract
particle simultaneously tracks multiple similar states. However,
this method cannot answer the question of how to determine
the optimal number of particles. Subsequent researchers have
therefore proposed adaptive particle filtering (A-PF) approaches
in [38]–[40]. The Kullback-Leibler divergence (KLD) sampling
algorithm was proposed by Fox [38]. The idea behind this algo-
rithm is to adaptively estimate the number of particles at each
step to bound the approximation error introduced by the sample
based representation of the PF below a specified threshold. One
assumption of KLD-sampling is that a sample based representa-
tion of the PF can be used to estimate the posterior by a discrete
piecewise constant distribution consisting of a set of multidi-
mensional bins. Subsequent work [39] modified the KLD-sam-
pling criterion to estimate the number of particles and proposed
an approach for adaptive propagation of the samples. Recent
work [40] uses the innovation error to modify the number of
particles being used where a two-fold metric is employed to se-
lect the number of particles. The first metric is used to eliminate
the particles whose distance to a neighboring particle is below
a predefined threshold, and the second is a basis for setting the
threshold on the innovation error to control the birth of parti-
cles. These two thresholds should be set prior to running the
algorithm, but it is not mentioned how, and also the evaluation
of the algorithm is limited to only a simple computer simulation
which could not give an insight into the strength and weakness
of the framework.
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TABLE I
COMMONLY USED NOTATIONS

As we describe in the rest of the paper, our work differs sub-
stantially from previous works on AV multiple speaker tracking
with respect to audio integration into the PF framework, and
adaptive estimation of the particle number and variance of
Gaussian noise. Direction of arrival (DOA) angles of the audio
sources are used to relocate the particles in the propagation step
and recalculate the weights of the particles in the measurement
step. Audio is fused to the visual particle filter (V-PF) through
modifications of the PF steps. That makes the tracker less
sensitive to outliers and noise in audio data. This method is
then further improved by proposing an adaptive approach to
PF based on the occupied area by the particles in each frame.
Our adaptive approach allows us to estimate dynamically not
only the number of particles but also the noise variance which
makes it different from the adaptive approaches mentioned
above with the advantage that adaptive noise variance is used
in the estimation of the optimal number of particles. Finally,
we demonstrate the results using simulations to compare the
performance of the proposed algorithms with [38] and V-PF.
The rest of this paper is organized as follows: the next section

introduces the PF used in visual tracking. Section III presents
our proposed audio-visual particle filter (AV-PF) algorithm.
Section IV describes our proposed audio-visual adaptive par-
ticle filter (AV-A-PF) algorithm. Section V shows experimental
results performed on the dataset and compares the
performance of the algorithms. Closing remarks are given in
Section VI.
For readability, commonly used notations in the paper are

defined in Table I.

II. PARTICLE FILTERING-BASED VISUAL TRACKING

The PF is an approach for obtaining estimates of the state of a
stochastic dynamical system based on observations recursively
in time. It is also known as sequential Monte Carlo methods
(SMC) based on simulation. It was first introduced by Gordon
et al. [41]. The PF, which is based on sequential importance
sampling and Bayesian theory, is a powerful approach for non-
linear and non-Gaussian problems.
The sampling importance resampling (SIR) is a generaliza-

tion of the PF framework which can be used in visual tracking
to track the position of the speaker face in five steps.
The particles are initialized as , for

in the first step of V-PF. Here is the number
of particles and are the initial weights of the particles. The

state vector is defined as , where
and are the horizontal and vertical positions of the rec-

tangle centred around the face that we wish to track, is the
horizontal velocity, is the vertical velocity and is the scale
of the rectangle centred around . In the second step, par-
ticle propagation is employed by a dynamic model

(1)

where is the state of the th particle at time frame
and is the zero-mean Gaussian noise with covari-

ance , for each particle and is the linear
motion model

where is the period between two adjacent frames, is the
variance of the scale and is the variance for both the position
and the velocity. The third step is the weighting step and the
particles are weighted by the observation model

(2)

where is the design parameter and is the Bhattacharyya
distance

(3)

where is the number of histogram bins, is the Hue his-
togram of the reference image determined by the user in the
initialization step, and is the Hue histogram extracted
from the rectangle centred on the position of the th particle.
The RGB or HSV colour model is commonly used in the liter-
ature [42]. In our study, HSV is chosen since it is observed to
be more robust to illumination variation. Before the fourth step,
normalization is applied to ensure that . In the
fourth step, the position of the speaker is estimated by

(4)

As a last step, the particles are resampled to remove the
particles with very small weights and duplicate particles with
large weights, so a new particle set drawn from
is generated. Then it returns to the second step and continues
recursively. The pseudo code of V-PF algorithm is given in
Algorithm 1.
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Fig. 1. V-PF fails after occlusion. The first row shows Sequence 11 camera
#1 of the dataset where a single speaker disappears for a while and
reenters to the scene. The second row shows the propagation of the particles to
detect the speaker.

Fig. 2. Sequence 24 camera #1 of the dataset shows multiple speakers
occluding each other and the visual tracker fails after occlusion.

Algorithm 1: Visual particle filter (V-PF) tracking algorithm.

Initialize: , , , , , , , , ,
while do
Propagate particles:
Calculate using equation (3), for
Weighting: , for
Estimate target position
Resampling: Generate from the set

end

Although the V-PF algorithm works well in regular condi-
tions, it fails in challenging situations like occlusion. This case
is depicted in Fig. 1 and Fig. 2 using sequences recorded by cal-
ibrated cameras in dataset described in Section V-A.
Fig. 1 shows an occlusion case where speaker re-appears in the
scene after going out for a while, and another occlusion case is
shown in Fig. 2 where two speakers occlude each other. The
visual tracker has no visual cues during the occlusion which
causes losing the speaker. Even when the speaker becomes vis-
ible again after the occlusion, the tracker is unable to detect the
speaker as it is depicted in the first row of Fig. 1. In the second
row of Fig. 1, the particles of the tracker, shown as red spots, are
propagated to detect the face of the speaker. Once the tracker
loses the speaker, the particles focus on objects similar to the
speaker, causing divergence from the speaker. To address this
problem, several methods could be used, such as occlusionsmap
[3] and BraMBLe tracker [6]. Here we present an alternative
method by introducing audio information, as discussed next.

III. PROPOSED PARTICLE FILTER-BASED AUDIO CONSTRAINT
VISUAL TRACKING ALGORITHM

In this section, we present a newmethod to enhance the visual
tracker described above by introducing audio information.

Fig. 3. Sector-based activeness measure is depicted in (a) , sector-based detec-
tion in (b), and points-based localization in (c).

Despite the fact that a variety of audio information could be
used such as sound source localization (SSL) and time delay es-
timation (TDE), as a proof of concept, the DOA angle is used
here which is more feasible in audio processing from circular
microphone array in an indoor environment, employed for col-
lecting the dataset used in our experiments. In the literature,
many methods are proposed such as the coherent signal sub-
space (CSS) [43] and the MUSIC algorithm [44]. Our proposed
AV tracking algorithm is designed to handle the noise within
the DOA estimates. Therefore, the choice of DOA estimation
algorithms is not crucial. In this study, we used sam-spare-mean
(SSM) method [45] to estimate the DOA information which
is incorporated to improve the tracking performance and ro-
bustness of the visual tracker. The SSM method is a two-step
method. The first step consists of a sector-based combined de-
tection and localization. The space around a circular micro-
phone array of eight microphones { } is divided into
18 sectors { } in Fig. 3(a) and for each sector an “ac-
tiveness” measure is evaluated at each time frame [46]. Then, in
Fig. 3(b) this measure of activeness is compared to a threshold
in order to give a binary decision of whether there is an active
source in that sector. The second step is a point-based search
conducted in each of the sectors labelled as having at least one
active source in Fig. 3(c). The parametric approach [46] is then
used for localization, and the location parameters are optimized
with respect to a cost function such as SRP-PHAT [47]. Due
to space constraint, more details on the derivation of the DOA
angle are omitted here and can be found in [48].
The DOA estimates given by the SSM method can be noisy

for reverberant audio measurements. To mitigate the noise ef-
fect, we apply a third order model [49] to improve the esti-
mate of the azimuth.

(5)

where is the DOA (azimuth) angle (in degrees) of the speaker
estimated from the audio frame that is synchronized with image
frame , are the parameters of the model and is white
noise. Note that, to estimate the DOA angles, it is not neces-
sary for the microphone array to appear in the field of view the
cameras, as the DOA is estimated from the acoustic recordings
acquired by the microphone arrays which have a listening range
of 360 degrees no matter whether the cameras are presented in
the room.
The V-PF approach described in Section II can now be en-

hanced by the DOAs information discussed above. Here, we as-
sume that the calibration information of the microphone array,
such as its position, is available. If the calibration information
is not available, the positions of the microphone arrays could
be estimated via microphone self-calibration [50] or combined
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microphone and camera calibrations [51], which is however be-
yond the scope of this study. The idea behind our approach is
to relocate the distributed particles around the DOA line and
then re-calculate the weights of the relocated particles according
to their distance to the DOA line [52]. The DOA line can be
drawn as follows. First, the 3-D position of the speaker’s head

is determined based on the estimated DOA angle
and the following assumptions: (1) is the distance from the
centre of the microphone array to the wall in metres (which is
1.75 metres in our experiments), (2) is the estimated height of
the speaker, typically chosen as 1.80 metres in our experiments.
Then is calculated using the standard trigonometric identity
as

(6)

The 3-D coordinate is then projected to the image
frame to obtain the 2-D coordinate using the calibra-
tion matrix, formed from the calibration information of the mi-
crophone arrays and cameras available in the dataset, e.g. the
3-D coordinates of the center of the two microphone arrays
(0, 0, 0), and the three cameras positions, ,

and (unit in meters),
for camera #1, #2, and #3, respectively. The DOA line is drawn
from to the 2-D coordinate of the centre of the micro-
phone array which is estimated only once using the same cali-
bration matrix at the initialization step, since all the cameras are
stationary and the positions of the microphone arrays are always
constant for all the camera views.
When the particles are propagated, we want to concentrate on

particles located around the DOA line. Concentrating around
DOA line is likely to increase the possibility of speaker de-
tection by the particles since the DOA indicates the approx-
imate direction of the sound emanating from the speaker. If
the location of particles is assumed to be initially distributed
in a circular area, then after relocation, it is expected to be el-
liptical instead of being exactly on the DOA line in order to
avoid deviation in the detection in the case of noisy DOAs mea-
surements. To get elliptical distribution, the moving distance of
the particles should be proportional to their initial distances to
the DOA line which allows the farthest particle to move more
than the closest particle thus maintaining the relative distance
to the DOA line. To this end, perpendicular Euclidean distances

of the particles to the DOA line are
first calculated. These distances are then normalized to obtain
distance coefficients to be used to derive the movement dis-
tances as follows:

(7)

where and is the element-wise
product and is the norm. Then is used to guide how
much the particles should be moved towards the DOA line.
This information is then used to relocate the particle distribu-
tion during the propagation step in (8).
The noise within the audio measurements can affect the relia-

bility and accuracy of the DOAs. To deal with these effects, the
impact of audio to the calculation of particle propagation and
importance weighting is controlled by , which is calculated
as the Bhattacharyya distance to measure the similarity between

, i.e the image patch centred on the estimated position, and

the reference image patch , by substituting for
in (3). The dynamic model given in (1) is then revised to

(8)

where is the element-wise addition and
. The movement distance of

each particle is weighted by and this is multiplied by
to update only position ( ) of the particle state vector

in order to provide the perpendicular
movement to the DOA line. Since the positions of the particles
are changed, the importance weights are also revised by
multiplying them with the inverse of the distance coefficients
calculated in the previous step to make sure that the particles
that are close to the DOA line in terms of the Euclidean
distance still have high importance weights

(9)

The weights are then normalized to ensure that .
The fourth and fifth steps of the PF algorithm are performed in
the same way as in Algorithm 1. Position estimation follows the
weighting step and it is calculated using (4) and denoted as .
Before the resampling step, to prevent the tracker to be deceived
by noise in audio, is calculated again with and denoted
as . If is smaller than , the AV tracker results are used
in the next step and iteration. Otherwise, audio is assumed to
be noisy and the visual-only tracker results are used in the next
step and iteration. Then the resampling step is performed to gen-
erate the new particles from the set . The
pseudo code of the proposed AV-PF algorithm is depicted in
Algorithm 2.

Algorithm 2: Proposed AV-PF algorithm.

Initialize: , , , , , , , , ,
while do
Propagate particles:
Calculate using equation (3), for

Calculate weights: , for
Estimate the target position using equation (4)
Calculate using equation (3)
Get corresponding DOA angle
Calculate distances

Find movement distances:

Re-propagate particles:

Re-weighting:

Re-estimate target position using equation (4)
Calculate using equation (3)
if then

, ,
end
Resampling: Generate from the set

end
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Fig. 4. The first row shows Sequence 11 camera #1 of the dataset
where the single speaker disappears for a while and reenters the scene. After
occlusion, the AV tracker continues tracking. The second row shows the distri-
bution of the particles which are relocated by the DOA line.

With our proposed modifications in (8) and (9), the tracking
algorithm can preserve the position of the face even if the visual
tracker is lost, due to the use of the DOAs as depicted in Fig. 4.
Contrary to the visual tracker in Fig. 1, the AV tracker continues
tracking after the speaker comes back to the camera view in the
first row of Fig. 4. The second row shows how the particles are
distributed around theDOA line. Concentrating particles around
the DOA line increases the efficiency of the particles in terms
of speaker detection since all particles converge to the potential
location of the speaker. This allows us to use a smaller number
of particles than required in visual-only PF.
In the dataset that we used in our experiments,

the speakers are talking continuously in most of the time in
the video sequence which therefore provides the advantage of
using DOA information to improve visual tracking. In the case
of missing audio clue, the DOA is estimated by interpolation,
based on those obtained from the previous frames where the
DOAs may be available. If the gap of the missing audio clue
is large, the accuracy of such interpolation will be limited.
However, by making small changes in the proposed algorithm
(details are omitted due to space constraints), the audio-visual
tracker can be reduced to visual-only tracker when the DOA
information is missing.

IV. IMPROVED AV TRACKING WITH ADAPTIVE
PARTICLE FILTER

The limitations of the baseline PF approach using a fixed
number of particles have been discussed in Section I. To ad-
dress these limitations, we propose a new adaptive approach to
estimate the optimal number of particles at each iteration.
Fox [38] proposed an adaptive approach called KLD-sam-

pling where the number of particles is estimated adaptively by
bounding the tracking error of the PF. It uses the Kullback-
Leibler (KL) divergence between the empirical distribution and
the true posterior distribution, known as nonparametric max-
imum likelihood estimate, to measure the error. One assump-
tion in this approach is that the true posterior can be represented
by a discrete piecewise constant distribution consisting of a set
of multidimensional bins. However, there is no certain way to
estimate the size of these bins, and incorrect determination may
cause deviation in the estimation of . Also, it does not men-
tion anything about the second fixed parameter of the PF, i.e.
noise variance whose selection affects the distribution of the
particles, causing the tracker to become potentially unstable.

Fig. 5. Ten mapping tables for different are created to observe the relation
between , and .

In this study, we aim to design a new adaptive approachwhich
addresses the problems in the KLD-sampling algorithm. More
specifically we adapt both and dynamically in a simple
way which is easily applicable to any implementation. The par-
ticles search a rectangular area to detect the face of the speaker
before their weights are allocated. The accuracy of the speaker
detection partly depends on the size of the area searched. We
use this relationship and build our proposed algorithm on the
area occupied by the rectangles centred on the positions of the
particles [53]. The total area, , occupied by the rectangles can
be defined as

(10)

where is the area of each rectangle. The value of depends
on the number of particles, the area of rectangle centred around
each particle, and the overlap between the rectangles. The
overlap is highly related to the distance between the particles,
namely which affects the distribution of the particles. One
way to formulate the calculation of is to analyse the relation-
ships between , , and using mapping tables. These
mapping tables are created by distributing particles with the
variance and calculating the area of pixels occupied by
the particles. For each mapping table, is varied from 5 to
100 with a step size of 5, and is varied from 10 to 150 with
a step size 10. For each point (for example, , ),
it is repeated 100 times and the average of the occupied area
is estimated. Therefore, the relationships between , and
are observed in one mapping table for a particular . Then this
process is repeated for ten different s as illustrated in Fig. 5.
An illustration of the occupied area estimation is presented in

Fig. 6. Based on the particle distribution, rectangles are drawn
centred on the position of the particles. Since overlaps between
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Fig. 6. The area inside the blue line indicates the total occupied area by five
particles.

rectangles are inevitable, the total occupied area, , is estimated
by counting the number of pixels inside the blue line in Fig. 6.
For adaptive estimation of , we need to describe 20 dif-

ferent lines in each 10 different mapping tables using a single
formula. However, the behaviour of the lines in the mapping ta-
bles is nonlinear and this makes the problem intractable. As a so-
lution, a curve fitting process is applied to linearise the nonlinear
relation as shown in Fig. 5. Based on the goodness-of-fit test re-
sults, a polynomial model is chosen among the several candidate
curve fitting methods. A th order polynomial model is repre-
sented by coefficients. In our mapping tables, the occupied
area, , depends on three variables: , and . Therefore,
the number of polynomial coefficients grows with the power
of three. Clearly, there is a trade-off between the order of the
model and the goodness-of-fit as measured in terms of the sum
of squares due to error (SSE). A higher order leads to a lower
SSE, but it requires a higher number of polynomial coefficients.
As a trade-off, the order of the polynomial model is set to 2.
Let us denote , and

. These three vectors form a tensor
where is the outer product. Then, the total

area, , can be expressed as

(11)

where is the element of the tensor and is the
element of tensor containing the coefficients determined by
the second order polynomial model fitting. After rearranging we
get

(12)

Equation (11) has 27 coefficients calculated by the curve fitting
process and given in Table II. Then equation (12) can be sim-
plified to

(13)

where

and

TABLE II
CURVE FITTING COEFFICIENTS

.
From equation (13) can be readily found as

(14)

Note that is estimated in every frame after the face of the
speaker is detected. In practice, is implicitly bounded by the
choice (or calculation) of , and which usually take a lim-
ited range of values. In equation (14), and are unknown
parameters that need to be estimated. To this end, we propose
an iterative method where the values of and in step are
derived from the initial values confined by which is the dif-
ference between and . In other words, the calculation of
and is linked to the difference of in successive frames.

We propose to use a statistical model to establish that link.Many
distribution functions could be employed. In our case, however,
we have several requirements: (1) the input parameter should
change between 0 to 1 (to match with the range of value);
(2) the function may be controlled by at most two parameters
(for simplicity); (3) the output of the function should be in the
range of 0 to 1 to point out alteration ratio. To meet these re-
quirements, a cumulative beta distribution (CBD) function ap-
pears to be the best choice and therefore it is used to model the
link between and , as well as . The CBD function is de-
picted in Fig. 7 and given in (15).

(15)

It needs two control parameters ( and ) and both input and
output values change between 0 to 1. Then, and at time
are defined as

(16)

where and are the control parameters of the CBD for
modelling , and and are the control parameters of
the CBD for modelling . and are the initial values of
and . Absolute value of is used in the CBD function, be-
cause input values of CBD range between 0 to 1 and may be
positive or negative depending on the change of in successive
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Fig. 7. Cumulative beta distribution function for different and values.

frames. The output of CBD is multiplied with the sign of to
make the change of and dependent on the change in .
The proposed AV-A-PF algorithm is an improved version

of our proposed AV-PF algorithm explained in Section III. At
every iteration, after the comparison of with , and
values are updated using (16) in order to find the optimal by
(14). The last step of the PF algorithm is resampling and since
the value has just been changed, this step is also modified for
the new . If is decreased, the particles with the smallest
weights are removed. The particles with largest weights are du-
plicated if is increased before the resampling step is per-
formed. The pseudo code of the proposed AV-A-PF algorithm
is depicted in Algorithm 3.

Algorithm 3: Proposed AV-A-PF Algorithm.

Initialize: , , , , , , , , , ,
while do
// AV Particle Filter - Section III.
Calculate , , and using equation (1),
(2), (4) and (3), respectively.
Find movement distances by equation (7)
Calculate and using equation (8) and (9)
Re-estimate target position:
// Adaptive approach modifications - Section IV
Calculate using equation (3)
if then

, , ,
end
Calculate value:
Calculate new value:

Calculate new value:

Estimate optimal using equation (14)
Resampling: Generate from the set

end

V. EXPERIMENTAL EVALUATIONS

In this section, the proposed and baseline algorithms are eval-
uated on the dataset [54] and the results are presented
in plots and tables. First, the experimental setup is described and
the evaluation metrics are discussed. Then, comparative results
betweenV-PF and our proposedAV-PF are given and discussed.
Last, the performance of our adaptive algorithm AV-A-PF is

Fig. 8. Some challenging cases from . The case of face rotation is
shown in (a), contiguous faces in (b), and multispeaker occlusion in (c) and (d).

compared with our AV-PF algorithm and the baseline KLD-
sampling algorithm.

A. Setup

In order to perform a quantitative evaluation of the proposed
algorithms, both audio and video sequences are required,
together with the calibration information of the cameras and
microphone arrays (circular arrays). Apart from “ ”,
we have also explored the suitability of several other publicly
available audio-visual datasets, such as “CLEAR” [55], “AMI”
[56] and “SPEVI” [57], and concluded that only the
dataset is suitable for the evaluation of our proposed methods.
It complies with our requirements in terms of having circular
microphone arrays with calibration information, mostly talking
speakers, and challenging scenarios such as occlusion and rapid
movements of the speakers. The other datasets do not fit at least
one requirement of this study. For example, in “CLEAR” and
“AMI”, the speakers are mostly static or with small movements.
In “SPEVI” and “CLEAR”, the audio signals were acquired
with linear microphone arrays. In addition, none of the three
datasets contains the calibration information required for the
quantitative evaluations of the proposed algorithm.
The corpus has many sequences for different sce-

narios where subjects are moving and speaking at the same time
whilst being recorded by three calibrated video cameras and
two circular eight-element microphone arrays. The audio and
video were recorded independently from each other. The audio
signals were recorded at 16 kHz and the concurrent video se-
quences were recorded at 25 Hz. They were then synchronized
before being used in our system. Each video frame is a color
image of pixels. Some sequences are annotated to
get the ground truth speaker position which allows us to mea-
sure the accuracy of each tracker and compare the performance
of the algorithms. To analyze the performance of the compared
algorithms, several metrics are employed. The first one is the
mean absolute error (MAE) which is estimated as the Euclidean
distance in pixels between the estimated and the ground truth
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Fig. 9. Frames are taken from Sequence 11 camera #3. The first row shows the V-PF and the second row shows our proposed AV-PF tracking.

positions, then divided by the number of frames. This metric
is chosen because of its simplicity and explicit output for the
performance comparison. The algorithms are also evaluated by
two other metrics. One is the multiple object tracking (MOT)
metric proposed in [58], together with its quantities, MOT pre-
cision (MOTP) and MOT accuracy (MOTA). The MOTP mea-
sures the precision of the tracking system by comparing it with
a threshold value pre-defined in terms of the Euclidean distance
(either in pixels [59] or meters [58]). On the other hand, the
MOTA measures the tracking configuration errors, consisting
of the false positives (i.e., the case where the error is greater
than the threshold value), false negatives (if the speaker is not
tracked with the accuracy measured by the threshold) and mis-
matches (when the speaker identity is switched). The last metric
is the trajectory-based measures (TBM) proposed in [60] and
[61] which measures the performance on the basis of trajectory.
According to their definitions, a trajectory can be categorized
as mostly tracked (MT) or mostly lost (ML) if, respectively, at
least 80% or less than 20% of its ground truth (GT) trajectory
is covered by the tracker. Otherwise, it is considered as par-
tially tracked (PT). Additionally, track fragmentation (Frag) is
the total number of times that GT is interrupted in tracking re-
sult, and identity switches (IDS) measures the total number of
times that a tracked trajectory changes its matched GT identity.
We have evaluated our proposed algorithms and the baseline al-
gorithms using both MOT and TBMmetrics, and because of the
space constraints, only overall average results are given in Sec-
tions V-B and V-C.
The speakers wear a coloured balls in particular sequences

which are only used for annotation, but not for tracking in
our system. In the experiments with the AV-PF algorithm, the
number of particles, , is selected to be 10. The covariance
matrix is a diagonal matrix with , and this is used
as the variance for both the position and velocity. For the
AV-A-PF algorithm, and are estimated dynamically. is
the period between frames and equals 0.04 seconds and in (2)
is chosen as 150. The number of bins used for Hue histogram
is 8. The scale factors and are set to 1. Both and
values are chosen as 8, and and are chosen 0.5 for CBD
functions. These and values are intuitively chosen based
on expected response of the CBD function with respect to the
error change (see Fig. 7). The value of is taken as 2000 and
is 50 in the simulations. These initial values are found to

be appropriate based on cross-validation. In our work, we have

Fig. 10. In (a), (b), and (c), the performance of algorithms is given for Se-
quence 11 camera #3, Sequence 11 camera #1, and Sequence 24 camera #1,
respectively.

used annotated DOAs as a priori to avoid mis-correspondence
of person-ID after occlusion. Such information may not be
available in a practical tracking system, and the person-IDs
would have to be modelled and adapted during tracking using
methods such as in [2] and [3].
Ten different sequences (3 single speaker, 5 two speakers

and 2 three speakers) with three different camera angles from
corpus have been used to perform the experiments.

Some frames from are shown in Fig. 8. These selected
sequences cover many challenging situations such as rotation
of head [Fig. 8(a)], contiguous faces [Fig. 8(b)], occlusions
[Fig. 8(c) and (d)] which make tracking much more difficult
than an ordinary case.

B. Visual PF Versus Audio-Visual PF

The V-PF and AV-PF algorithms are run in thirty experiments
(10 sequences with 3 different camera angles) in order to com-
pare their performance. One of the single speaker experiments is
Sequence 11 camera #3 in which the speaker is making random
motions as illustrated in Fig. 9. Here, the speaker moves around
the table and makes rapid and sudden movements. In the first
row, the performance of the V-PF algorithm is shown. At the
beginning, the tracker follows the speaker with small errors,
but the error increases in challenging situations and eventually
the tracker fails. In the second row, the results of the proposed
AV-PF algorithm are given and here the tracker successfully fol-
lows the speaker with the assistance of the audio line. The plot
in Fig. 10(a) shows the tracking error for this sequence. Here,
the error at frame is given as the average of the errors from
frame 1 to . This representation is chosen instead of plotting
error on corresponding frame , which would give oscillating
graph since errors may change abruptly in subsequent frames.
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Fig. 11. Sequence 24 camera #1: Multiple speakers with occlusions. V-PF in the first row cannot track the speaker after occlusion. On the contrary, the proposed
AV-PF algorithm keeps tracking.

Fig. 12. Sequence 40 camera #1: Three speakers with occlusions. V-PF performance is shown in the first row, and AV-PF shows better performance in the second
row.

Fig. 13. Sequence 45 camera #2: Multiple speakers with occlusions. Occlusions occur multiple times. V-PF fails in the first row, but AV-PF continues to tracking
in the second row.

On the other hand, plotting average error at each frame gives
smooth graph which can be interpreted easily and the overall
performance of each tracker can be compared clearly.
The experiment for Sequence 11 camera #1 is given in

Figs. 1 and 4 shown in Section II and III respectively where the
speaker comes back after disappearing for a while. In Fig. 1,
the V-PF approach results are given in the first row and as
seen from the frames, when the speaker re-appears, the tracker
fails to track the face. Contrary to the V-PF, tracking resumes
with the reappearance of the speaker in our proposed AV-PF
algorithm as shown in Fig. 4. The plot in Fig. 10(b) shows
the tracking error for this sequence. After occlusion, the V-PF
algorithm lost tracking, but our proposed AV-PF algorithm
continued tracking.
Fig. 11 shows the result for multispeaker occlusion case, Se-

quence 24 camera #1 where one speaker is occluded by the
other. After the occlusion, our proposed AV-PF algorithm (in
the second row) resumes tracking. The average error of the two

speakers for this sequence is shown in Fig. 10(c), and after the
350th frame the V-PF fails, but our proposed AV-PF algorithm
continues tracking with small errors.
These two algorithms are also tested on the case of three

speakers with two sequences, Sequence 40 and Sequence 45,
respectively. The results for Sequence 40 camera #1 are illus-
trated in Fig. 12. Even this sequence is not challenging, V-PF
fails to track all three speakers. Sequence 45 is the most chal-
lenging sequence in this corpus where all the speakers walk and
occlude each other many times as shown in Fig. 13. The V-PF
fails as expected. Unlike the V-PF, the proposed AV-PF algo-
rithm successfully tracks the speakers both on Sequence 40 and
Sequence 45. The error plots for three speaker experiments are
given in Fig. 14. Both plots show that the proposed AV-PF ap-
proach has more stable performance than the V-PF.
Because of space constraints, we are not able to show all

the frames for 30 experiments. All experiments are repeated 10
times and the results are given in Tables III and IV.
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Fig. 14. In (a) and (b), the performance of the V-PF and AV-PF algorithms is
given for Sequence 40 camera #1 and Sequence 45 camera #2, respectively.

TABLE III
EXPERIMENTAL RESULTS FOR V-PF AND PROPOSED AV-PF

The V-PF and AV-PF algorithms are compared according to
MAE in Table III, and using TBM andMOTmetrics in Table IV.
From these tables, it can be observed that the proposed AV-PF
algorithm is consistently better than the V-PF algorithm.
Another experiment has been performed in order to see the ef-

fects of particle numbers on the performance of the algorithms.
The numbers of particles are selected as: 10, 20, 30, 40, 50, 75,
100, 150 and 200 for all the three sequences. The results for Se-
quence 11 camera #1, Sequence 24 camera #1, and Sequence 11
camera #3 are shown in Fig. 15(a), (b) and (c), respectively. In
the case of occlusion, the V-PF fails even if it has high numbers
of particles as seen in Sequence 11 camera #1 and Sequence 24
camera #1. Sequence 11 camera #3 features a person making
a variety of rapid movements, despite the fact that no occlu-
sion is involved. The V-PF has almost the same performance
as our proposed AV-PF algorithm when it has a larger number

TABLE IV
EXPERIMENTAL RESULTS WITH TBM AND MOT METRICS FOR V-PF AND

PROPOSED AV-PF

Fig. 15. Average error comparison between the V-PF and AV-PF algorithms
for a variable number of particles .

of particles as seen in Fig. 15(b). However, when the number
of particles is reduced significantly, e.g. when , the
tracking errors increase dramatically in the V-PF while our pro-
posed AV-PF tracking algorithm continues to show excellent
performance.
We have also compared our proposed AV-PF algorithm with

one of the non-PF approaches, i.e. mean-shift tracking [62]
which is a nonparametric statistical method. DOA is also fused
in the same way as in our approach. As an example, here we
show the results for Sequence 12 camera #3. Using the AV
mean shift tracking, we got , and
MOTA %. For our proposed approach, these
values are 12.8, 12.3 and 97.9% respectively. It is clear that the
PF approach outperforms the mean shift tracking algorithm.

C. Audio-Visual PF Versus Audio-Visual A-PF

The results in Fig. 15 show that the AV tracker is better than
the visual-only tracker in handling occlusions even with a small
number of particles. Here we demonstrate that we can further
reduce the tracking errors by using our proposed adaptive ap-
proach, i.e. the AV-A-PF algorithm, as explained in Section IV.
The AV-A-PF algorithm is also tested on and its perfor-
mance is compared with the baseline algorithm, i.e. KLD-sam-
pling [38]. Since the adaptive approach is based on our proposed
AV-PF algorithm, the KLD-sampling is also combined with our
proposed AV-PF algorithm in order to make a fair comparison
between these two approaches.
To see the advantage of the A-PF, we perform an experiment

to compare the proposed AV-A-PF algorithm with the use of a
fixed number of particles (AV-PF). Firstly, the AV-A-PF algo-
rithm is run on Sequence 12 camera #1 and we reach an av-
erage with an average in 138.17 seconds.
Then, the AV-PF is run with and goes up to 0.35 in
135.87 seconds. The 30% difference shows that the AV-A-PF
approach is better than the fixed number AV-PF approach with
a more accurate tracking result. On the other hand, adaptive es-
timation of the particle numbers took around extra 2 seconds
computational cost. However when we increase up to 22 to
get in the fixed AV-PF, the computational cost be-
came 149.35 seconds. Here, experiments are implemented in
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Fig. 16. The average for the AV-A-PF and the fixed for AV-PF is 15
in (a). The average for the proposed adaptive and fixed PF is 0.27 and 0.35,
respectively, in (b).

Fig. 17. The average for the AV-A-PF algorithm and KLD-sampling is 15
and 68, respectively in (a). The average for AV-A-PF algorithm and KLD-
sampling is 0.27 and 0.26 respectively in (b). In (c) is used for KLD-
sampling and while a changing is for AV-A-PF algorithm with an average
equal to 67.61. In (d) change of is given by time and the average is 2083.

Intel core 2.2 GHz processor with 8 GB memory under Win-
dows 7 operating system. Adaptive estimation of and vari-
ance adds slight computational cost, but it is reasonable when
compared with fixed usage to reach the same accuracy. It
shows that the adaptive approach is beneficial both in terms of
accuracy and the computational cost. The plot for this exper-
iment is shown in Fig. 16. In Fig. 16(a), is changing with
time for AV-A-PF algorithm, while it is fixed for AV-PF and
Fig. 16(b) shows for both approaches.
The KLD-sampling algorithm is also tested on the same se-

quence and compared with the AV-A-PF algorithm and the re-
sults are given in Fig. 17. The KLD-sampling algorithm needs
an average of 68 particles to reach almost the same value,

. Fig. 17(a) and Fig. 17(b) show the effect of changing
and respectively. is set to 50 in the KLD-sampling al-

gorithm. Since is adaptive in our proposed approach, the av-
erage is found to be 67.61 as seen in Fig. 17(c). The effect of
changing is shown in Fig. 17(d) which is a parameter specific
to our proposed approach.
In another experiment, we used three multispeaker sequences

with speakers occluding each other. The results of these exper-
iments are shown in Fig. 18. The AV-A-PF used an average of
27, 12 and 17 particles for Sequence 24 camera #2, Sequence 40
camera #1 and Sequence 45 camera #2, respectively. However,

Fig. 18. Multi-person tracking. In (a), (b), and (c) the average is given
for both sampling algorithms. For Sequence 24 camera #2, the average for
the AV-A-PF and KLD-sampling is 27 and 64, respectively. For Sequence 40
camera #1, the average for the AV-A-PF and KLD-sampling is 12 and 56,
respectively. For Sequence 45 camera #2, the average for the AV-A-PF and
KLD-sampling is 17 and 63, respectively. The average is shown in (c), (d),
and (e) for both algorithms. For Sequence 24 camera #2, it is 0.24 for both. For
Sequence 40 camera #1, the average for the AV-A-PF and KLD-sampling is
0.24 and 0.22, respectively. For Sequence 45 camera #2, the average for the
AV-A-PF and KLD-sampling is 0.32 and 0.30, respectively.

the KLD-sampling used 64, 56 and 63 particles for the same se-
quences. The difference in values is quite small despite the big
difference in . For Sequence 24 camera #2, it is 0.24 for both.
For Sequence 40 camera #1, the average for the AV-A-PF and
KLD-sampling is 0.24 and 0.22, respectively. For Sequence 45
camera #2, the average for the AV-A-PF and KLD-sampling
is 0.32 and 0.30, respectively.
KLD-sampling is a popular approach in the literature, but one

of the limitations of this approach is having only one adaptive
parameter, . Another limitation is that it needs a parameter, the
bin size , which also affects the performance of the algorithm.
Generally, KLD-sampling shows better performance in the area
of robotics in which tracking is done in a vast area with a large
number of (over 1000). In our adaptive approach, we have
used the value to find the optimal value for . The errors can
be reduced by adapting without changing . The mapping
table also simplifies the calculation of . These make AV-A-PF
algorithm simple and efficient.
We performed KLD-sampling and AV-A-PF algorithm over

30 experiments. The results for all the experiments are given
in Tables V and VI. Here also, all experiments are repeated 10
times and the averages of these results are shown in the tables.
Overall, our proposed AV-A-PF approach shows almost the

same performance as the KLD-sampling despite it uses a much
smaller , as shown in Tables V and VI. The average of the
estimated by the KLD-sampling method for all sequences is
around 53, while our proposed AV-A-PF algorithm gives an es-
timate of at around 17. To examine whether the difference
in between these two methods is statistically significant, we
have performed one-way ANOVA based -test [63]. We ob-
tained , -value = and the degree of
freedom (1, 58). Using the degree of freedom value, the critical
value is found to be 4.01 from the -distribution table
given in [63] which is the number that the test statistic must
overcome to reject the test. The -value (or probability value) is
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TABLE V
EXPERIMENTAL RESULTS FOR KLD-SAMPLING AND PROPOSED AV-A-PF

TABLE VI
EXPERIMENTAL RESULTS WITH TBM AND MOT METRICS

FOR KLD-SAMPLING AND PROPOSED AV-A-PF

the probability of a more extreme result than what we actually
achieved when the null hypothesis is true. The -value is de-
fined as the ratio of the variance of the group means to the mean
of the within group variances. The -test has been carried out
at 5% significance level. According to this test, the results are
accepted as statistically significant if and -value is
less than 0.05 (for a 5% significance level). From the test re-
sults, we can observe that the difference in between the two
methods is indeed statistically significant.

VI. CONCLUSION

We have presented a new audio-visual tracking algorithm
in which audio information has been used to modify particle
propagation and the weights assigned to the particles. Our pro-
posed algorithm has been tested on both single and multiple
speaker sequences and showed significantly improved tracking
performance over the V-PF approach for the scenarios where
the speaker is either occluded by other speakers or out of the
range of the camera view. We demonstrate that by using audio
information we can significantly reduce the number of particles,
whilst maintaining good tracking performance. This approach
has the potential for handling weight degeneracy and particle

impoverishment problems due to the significant reduction in the
number of particles being used in tracking.
As an enhanced version of our proposed algorithm, we have

presented a new adaptive PF algorithm which uses audio and vi-
sual information to adapt the number of particles and noise vari-
ance dynamically. Our proposed AV-A-PF algorithm has also
been tested on both single and multiple speaker sequences and
compared with a fixed particle filter and an existing A-PF algo-
rithm. The experiments demonstrate that the proposed algorithm
can effectively track moving speakers and increase robustness
in tracking in the sense that it reduces the number of particles
without increasing errors.
Despite the fact that our proposed algorithms offer advan-

tages in speaker tracking and the estimation of the optimal
number of particles, there are also some constraints and lim-
itations associated with them that we want to point out. The
first one is about the audio detection and localization algorithm
which assumes that the microphone array is circular. Secondly,
the audio information used in tracking is DOA, and as a result,
the calibration information is required when projecting the
DOA into the 2-D image plane. Third, we assume that the
speaker to be tracked is active, from which the DOA infor-
mation can be obtained. These assumptions or constraints
may limit its generalization capability for other scenarios or
datasets. However, with some modifications to the proposed
algorithm, the proposed method could also be used in these
cases. For example, if the audio localization algorithm used in
the proposed tracking system is replaced by a linear microphone
array based localization method together with the microphone
calibration information, then the proposed system can also
be applied to “CLEAR”, “AMI” or “SPEVI” datasets. If the
calibration information of the microphones is not available in
the dataset, the proposed system could still be used, provided
that the calibration information can be derived by a reliable
self-calibration algorithm.
In conclusion, we first reduced the number of particles needed

for tracking by combining audio information with V-PF, and
then we converted AV-PF to AV-A-PF to increase the accuracy
and robustness. The limitations associated with the proposed
algorithms could be interesting directions for future work.
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