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ABSTRACT

Particle filtering has emerged as a useful tool for track-
ing problems. However, the efficiency and accuracy of the
filter usually depend on the number of particles and noise
variance used in the estimation and propagation functions for
re-allocating these particles at each iteration. Both of these
parameters are specified beforehand and are kept fixed in the
regular implementation of the filter which makes the tracker
unstable in practice. In this paper we are interested in the de-
sign of a particle filtering algorithm which is able to adapt the
number of particles and noise variance. The new filter, which
is based on audio-visual (AV) tracking, uses information
from the tracking errors to modify the number of particles
and noise variance used. Its performance is compared with a
previously proposed audio-visual particle filtering algorithm
with a fixed number of particles and an existing adaptive
particle filtering algorithm, using the AV 16.3 dataset with
single and multi-speaker sequences. Our proposed approach
demonstrates good tracking performance with a significantly
reduced number of particles.

Index Terms— Adaptive particle filter, tracking.

1. INTRODUCTION

The problem of tracking and localization of speakers in in-
door environments using AV information has received much
interest in the last few decades. Many approaches have been
proposed by researchers and among these the particle filter
(PF) is a popular one. The PF became widely used in tracking
after being proposed by Isard and Blake [1]. Speaker tracking
may be achieved in a single modality domain through video
or audio. However, it has been shown in [2], [3] and [4] that
using both video and audio data in tracking gives more reli-
able results than using each modality individually, as is also
confirmed in our recent study [5].

The PF also has some limitations. The samples (particles)
used in PF are weighted in order to approximate the filtering
distributions. The quality of the sample based representation
rises with the number of particles,N . A key question is: How
many particles should be used for a specific estimation prob-
lem. In most cases the choice is made experimentally and
users tend to choose N as large as possible to get accurate
results, leading to an increased computational cost.

Adaptive particle filtering (APF) approaches have there-
fore been proposed in [6], [7] and [8] to address these prob-
lems and to find the optimal N for the PF to use. An early
and popular approach, i.e. KLD-Sampling was proposed by
Fox in [8]. This approach aims to bound the error intro-
duced by the sample-based representations of the PF using the
Kullback-Leibler divergence between Maximum Likelihood
estimates (MLE) of states and the underlying distribution to
optimize the number of particles. Specifically, this method is
applied to mobile robot localization problem, where the initial
set of particles is generally very large. Also, it is not clear how
to apply this approach to more general particle filters that pro-
vide posterior-based estimates rather than MLE. Moreover, It
assumes that the true posterior is given by a discrete constant
piecewise distribution such as a multi-dimensional histogram
bins, but characteristics of robot localization (e.g., binning of
the state space) might not be valid in other situations.

Another parameter in a PF that is often fixed is the noise
variance (Q) which has a critical role in the distribution of
particles. This role makes the determination of Q crucial so
it should not be chosen randomly or empirically since incor-
rectly chosen Q may lead to the use of a greater N than actu-
ally needed. Therefore, we intend to design an APF approach
that involves dynamic estimation of Q in order to find the
optimal N . In this paper, we propose an AV-APF algorithm
which is based on our previous AV-PF algorithm. We show
the efficiency of our algorithm in single and multi speaker
tracking in comparison with the KLD-Sampling algorithm.

The next section introduces related works. Our proposed
APF algorithm is given in Section 3, and experimental results
are presented in Section 4, followed by the conclusions.

2. RELATED WORKS

The AV-APF algorithm presented in this paper is based on our
recent work in [5], and the KLD-Sampling algorithm [8].

2.1. Audio-Visual Particle Filtering Algorithm

The AV-PF algorithm that we presented in [5] is created by
combining a standard sampling importance resampling (SIR)
PF based visual tracker with the direction of arrival (DOA) in-
formation estimated from audio measurements. In the DOA
estimation process, a parametric approach [9] is used for lo-
calization, and the location parameters are optimized with re-



spect to a cost function such as SRP-PHAT [10]. Then, a
third-order AR model is performed to reduce the estimation
noise in the DOA azimuth θk.

θk =

3∑
i=1

ϕiθk−i + εk (1)

where ϕi is the parameter of the AR model and εk is white
noise at time frame k = 1, ...,K.

The DOAs are then used to constrain the propagation of
the particles and the weights in the observation model of the
visual tracker. To do this, a DOA line is drawn from the cen-
tre of the microphone array to the coordinates of speaker’s

head. The Euclidean distances dk =
[
d
(1)
k ... d

(N)
k

]T
of

the particles to the DOA line are calculated and used to derive
the movement distances d̂k which guide by what distance the
particles should be moved towards the DOA line,

d̂k =
dk � dk
‖dk‖1

(2)

where d̂k =
[
d̂
(1)
k ... d̂

(N)
k

]T
and � is the dot (element-

wise) product and ‖.‖1 is the `1 norm.
The SIR PF has five steps. First, the particles are initial-

ized by x
(n)
0 ∼ p(x0), w(n)

0 = 1
N for n = 1, ..., N . Here

w
(n)
0 is the initial weights of the particles. The state vector is

defined as x =
[
x1 ẋ1 x2 ẋ2 s

]T
, where x1 and x2 are

respectively the horizontal and vertical position of the rectan-
gle centred around the face, ẋ1 and ẋ2 are respectively the
horizontal and vertical velocity, and s is the scale of the rect-
angle centred around (x1, x2). The particles are propagated
in the second step by a dynamic model,

x
(n)
k = Fx

(n)
k−1 + q

(n)
k (3)

where x
(n)
k is the state of nth particle and q

(n)
k is the zero-

mean Gaussian noise with covariance Q, q(n)
k ∼ N (0,Q)

for each particle. F is the linear motion model. In the third
step, the particles are weighted by the observation model,

w
(n)
k = p(y

(n)
k |x

(n)
k ) = e−λ(D

(n))2 (4)

where y
(n)
k is the observation. The observation y

(n)
k is ob-

tained for each state estimate x
(n)
k by the design parameter λ

and D(n) which is the Bhattacharyya distance,

D(n) =

√√√√1−
U∑
u=1

√
r(u)q(n)(u) (5)

where, U is the number of bins used by the histogram, r(u) is
the Hue histogram of the reference image and q(n)(u) is the
Hue histogram extracted from the rectangle centred on the
position of the nth particle. After the weights are normalized,
the position of the speaker is estimated in the fourth step by:

x̃k =

N∑
n=1

w
(n)
k x

(n)
k (6)

The audio information is fused with video in the particle
propagation and importance weighting steps where a weight-
ing parameter γk is also used to balance the potential adverse
effect of estimation noise within the DOA. We choose the im-
age patch q(u) centred on the estimated position and calculate
γk as the distance between q(u) and the reference image patch
r(u), by substituting q(u) for q(n)(u) in (5). The dynamic
model given in (3) is then revised to

x̂
(n)
k = x

(n)
k ⊕ d̂(n)k tan(θk)γk (7)

where ⊕ is the element-wise addition. The importance
weights are also adapted using d̂(n)k and γk as follows:

ŵ
(n)
k = (e−λ(D

(n))2)
‖dk‖1
d
(n)
k

γk (8)

After the weights are normalized, position estimation follows
and it is calculated using (6). Then the resampling step is
performed to generate the new particles.

2.2. Existing APF Schemes

The key idea behind the KLD-Sampling algorithm [8] is to es-
timate the number of particles adaptively to bound the error of
the particle filter. To measure the error, the Kullback-Leibler
(KL) divergence between the empirical distribution and the
true posterior distribution, known as nonparametric maximum
likelihood estimate, is used. KLD-Sampling assumes that the
true posterior can be represented by a discrete piecewise con-
stant distribution consisting of a set of multidimensional bins.
This assumption allows the use of a chi-square (χ2) distribu-
tion in the convergence of the likelihood ratio statistic to find
a bound for the number of particles, N :

N =
1

2ε
χ2
m−1,1−δ (9)

where (1 − δ) is the quantile of χ2 distribution with m − 1
degrees of freedom,m is the number of bins and ε is the upper
bound for the error given by the KL-divergence. In order to
determine N according to (9), a Wilson-Hilferty transforma-
tion [8] is applied to compute the quantiles of the chi-square
distribution, which yields

N =
1

2ε
χ2
m−1,1−δ

=̇
m− 1

ε

{
1− 2

9(m− 1)
+

√
2

9(m− 1)
z1−δ

}3 (10)

where z1−δ is the upper 1− δ quantile of the standard normal
N(0, 1) distribution.

Incorporation of KLD-Sampling into the PF algorithm is
done by estimating m in the sampling step by incrementally
checking for each generated sample whether it falls into an
empty bin. The bin size is specified initially, depending on
the application where PF is used, and kept constant during im-
plementation. At the beginning of sampling, m goes up with



almost every new sample since virtually all bins are empty.
After each sample, N is updated by equation (10) required
for the current estimate of m. Eventually, more and more
bins become non-empty and once N remains unchanged, the
update stops.

Detailed information about the KLD-Sampling algorithm
can be found in [8].

3. PROPOSED APF APPROACH

The adaptive approach brings flexibility on the determination
of optimal parameters and potentially improves the perfor-
mance of the tracking system. The KLD-Sampling approach
introduced in Section 2.2, builds on the assumption that the
distribution consists of a set of multidimensional bin sizes.
There is no certain way to estimate that size and it may eas-
ily cause deviation in the estimation of N if the size is not
selected properly. Another problem is the fixed parameter
Q which needs to be found empirically. Its selection affects
the distribution of the particles, causing the tracker to be po-
tentially unstable. Therefore we introduce a new algorithm
which is able to adapt both N and Q dynamically in a simple
way and can be applied to any implementation.

Our proposed algorithm is based on the area occupied by
the rectangles centred on the positions of the particles in order
to detect the face of the speakers. The rectangles occupy an
area on the image frame, and size of the area can be defined
as below:

A = f(N,Q, d) (11)

where A is the area, d contains the horizontal and vertical
distances from the center of the rectangle. The A depends on
N , dimension of the rectangle d and the overlap between the
rectangles. The overlap is highly related to the distance be-
tween the particles, namely Q, which affects the distribution
of the particles. To be able to calculate A, we need to iden-
tify a mapping function f which is analytically challenging
and intractable. We develop another solution by creating a
mapping table using extensive tests under fixed d (in our ap-
plication d = (15x22)) by changing Q from 10 to 150 with
10 steps and N from 5 to 100 with 5 steps to calculate the oc-
cupied area in pixels. For every point (for example, N = 10,
Q = 50), it is repeated 100 times and the average of the oc-
cupied area is taken as shown in Figure 1. Illustration of the
occupied area estimation is given in Figure 2. After particle
distribution, rectangles are drawn centred on the position of
particles. For N = 5 and Q = 50, the occupied area inside
the blue line of Figure 2 is calculated as 2000 in pixel units
for the point stressed by red cross in Figure 1.

Then, every corresponding point (A, Q) is interpolated
using theN lines in the mapping table. So, givenA andQ we
can use the mapping table to find N . From the observation of
the mapping table, A and Q are approximated empirically as:

Ak = Ak−1 ∗ eγk−γthreshold

Qk =
√
Ak/π ∗ 2

(12)

Fig. 1. Mapping between N and A,Q.

Fig. 2. Occupied area of the particles

where γthreshold is our desired upper error bound.
For every iteration, after γk is calculated using equation

(5), γthreshold is subtracted to calculate the error in order to
re-calculate Nk and Qk values using (11) (approximated by
Figure 1) and (12) respectively. One of the advantages of us-
ingQk in APF is to be able to tolerate small errors by increas-
ing Qk. When the area, A, of the particles is increased, the
error becomes smaller. Therefore, if the error is smaller than a
pre-defined level γmin, Nk stays the same and Qk is changed
by Qmin. If the error is larger than γmin, then the occupied
area Ak and Qk are calculated using equation (12). So, after
new Ak and Qk values are calculated, the mapping table is
checked for (Ak, Qk) in order to find the optimal Nk.

The last step of the PF algorithm is resampling and since
the Nk value has just changed, this step is also modified for
the new Nk. In the case that Nk is decreased, the particles
with the smallest weights are removed and if Nk is increased
then the particles with largest weights are duplicated before
the resampling step is performed. The pseudo code of the
proposed algorithm is given in Table 1.

4. EXPERIMENTS

4.1. Setup

The proposed algorithm was tested using the AV 16.3 corpus
developed by the IDIAP Research Institute [11]. The corpus
consists of subjects moving and speaking at the same time
whilst being recorded by three calibrated video cameras and
two circular eight-element microphone arrays. The audio was
recorded at 16 kHz and video was recorded at 25 Hz. They



Table 1. Proposed APF Algorithm
Initialize: N0, Q0, A0, U , T , F, λ, r(u), x(n)

0 , w(n)
0 , k

while k < K do
// AV Particle Filter - Section 2.1.
Calculate x

(n)
k , w(n)

k and γk using equation (3), (4) and
(5), respectively.
Find movement distances by equation (2)
Calculate x̂

(n)
k and ŵ(n)

k using equation (7) and (8)
Re-estimate target position using equation (6)
// Adaptive approach modifications - Section 3
Re-calculate γk using equation (5)

if γk < γthreshold + γmin then
Qk = Qk−1 +Qmin; and Nk = Nk−1

else
Ak = Ak−1 ∗ eγk−γthreshold ; and Qk =

√
Ak/π ∗ 2;

Nk = mapping table(Ak, Qk) in Figure 1.

Resampling: Generate x(n)
k from the set

{
x̂
(n)
k , ŵ

(n)
k

}Nk

n=1
k = k + 1

end

Fig. 3. Sequence 11 (camera #3): Single speaker.

were synchronized before being used in our system. Each
video frame is a colour image of 288x360 pixels.

In the sequences, the speakers wear a ball for annotation
but in our application this ball is never used. In this paper, we
used one single speaker sequences (sequence 11, cameras #3)
which has 769 frames and one multiple speaker sequence (se-
quence 24, camera #1) which has 1201 frames to test our pro-
posed algorithm shown in Figure 3 and Figure 4, respectively.
In all simulations, λ in (4) is chosen as 150. The number of
bins used for Hue histogram is 8.

4.2. Results and Discussion

Our proposed APF algorithm is based on the AV-PF presented
in [5]. To show the efficiency of our approach, it is compared
with KLD-Sampling algorithm which is discussed in Section
2.2. This approach is then combined with our proposed AV-
PF [5] to make fair comparison with our proposed AV-APF.

In our application, the ideal γk value is determined as
0.25. So we chose γthreshold = 0.25. γmin is typically set
to 0.04 and Qmin to 10. For the KLD-Sampling algorithm,
z1−δ is set to 2.55 and bin size is chosen as 30x40 pixels.

To show the advantage of the APF, we perform an exper-
iment to compare our proposed AV-APF with a fixed number
AV-PF. Firstly, the AV-APF is run on Sequence 11 (Figure 3)

Fig. 4. Sequence 24: Multiple speakers with occlusion.

(a) (b)

Fig. 5. In (a) Average N for Proposed APF and Fixed N are
16. In (b) Average γ for Proposed and Fixed APF are 0.26
and 0.32, respectively.

and we reach an average γ = 0.26 with an average N = 16.
Then, the fixed AV-PF is run with N = 16 and the value of γ
goes up to 0.32. This almost 23% error difference shows that
the APF is better than the fixed number PF, as shown in Fig-
ure 5. In Figure 5-(a), N is changing over time for the APF,
and Figure 5-(b) shows γ for both approaches. In Figure 5-
(b), the error increases for fixed PF approach around frame
number 300 since it can not react to sudden movement of the
speaker. In contrast, the error in our proposed APF is stable
because of the adaptive change in N and Q.

The KLD-Sampling algorithm is also tested on the same
sequence and comparison results with the proposed APF are
given in Figure 6. The KLD-Sampling algorithm needs an
average of 34 particles to reach the same value γ = 0.26.
Figure 6-(a) and Figure 6-(b) show the effect of changing N
and γ respectively. Q is set to 50 in KLD-Sampling, but since
Q is also adaptive in our proposed approach, the average Q is
found to be 57 as seen in Figure 6-(c). The effect of changing
A is shown in Figure 6-(d) which is a parameter specific to
our proposed approach.

In another experiment we look at a multi-speaker se-
quence (see Figure 4) with speakers occluding each other.
The results of these experiments are shown in Figure 7 and
it can be seen that both APF approaches need to increase
N when the occlusion occurs. Our proposed APF used an
average of 41 particles and KLD-Sampling used 60 particles.
Both continued tracking with γ = 0.30.

KLD-Sampling is a popular approach in the literature, but
one of the limitations of this approach is having only one
adaptive parameter (N ). Another one is that it needs the bin
size ∆, a parameter, which also affects the performance of
the algorithm. Generally, KLD-Sampling shows better per-
formance in the area of robotics in which tracking is done in a



(a) (b)

(c) (d)

Fig. 6. In (a) average N for the Proposed and KLD sampling
APF are 16 and 34, respectively. In (b) average γ for both
algorithm are 0.26. In (c) Q = 50 in KLD-sampling and
average Q for the Proposed APF is 57. In (d) change of A
with respect to frame number is given and average A is 2565.

(a) (b)

Fig. 7. Multi person tracking. In (a) average N for Proposed
and KLD sampling APF are 41 and 60, respectively and (b)
average γ for both sampling algorithm are 0.30.

vast area with a large number of N (over 1000). In our adap-
tive approach, we also use the Q value to find the optimum N
value. Small errors can be overcome by increasing Q with-
out changing N . The mapping table also simplifies the cal-
culation of N . These make our proposed AV-APF algorithm
simple and efficient.

5. CONCLUSION

In this study, we have presented a new adaptive particle fil-
tering algorithm which uses audio and visual information to
adapt the number of particles and noise variance. Our pro-
posed algorithm has been tested on both single and multi-
ple speaker sequences and compared with fixed particle fil-
ter and an existing adaptive particle filter algorithm. The ex-
periments demonstrate that the proposed algorithm can effec-
tively track moving objects and increase robustness in track-
ing in the sense that it reduces the number of particles without
increasing error.

6. ACKNOWLEDGEMENT

This research was supported by the Engineering and Physical
Sciences Research Council of the UK (grant no. EP/H050000/1).

7. REFERENCES

[1] M. Isard and A. Blake, “Condensation - conditional den-
sity propagation for visual tracking,” International Jour-
nal of Computer Vision, vol. 29, pp. 5–28, 1998.

[2] M. Heuer, A. Al-Hamadi, B. Michaelis, and A. Wen-
demuth, “Multi-modal fusion with particle filter for
speaker localization and tracking,” in Int. Conf. on Mul-
timedia Technology, 2011, pp. 6450–6453.

[3] S.T. Shivappa, B.D. Rao, and M.M. Trivedi, “Audio-
visual fusion and tracking with multilevel iterative de-
coding: Framework and experimental evaluation,” IEEE
Journal of Selected Topics in Signal Processing, vol. 4,
pp. 882–894, 2010.

[4] D. Gatica-Perez, G. Lathoud, J.-M. Odobez, and I. Mc-
Cowan, “Audiovisual probabilistic tracking of multiple
speakers in meetings,” IEEE Trans. on Audio, Speech,
and Language Proc., vol. 15, pp. 601–616, 2007.

[5] V. Kilic, M. Barnard, W. Wang, and Josef Kittler, “Au-
dio constrained particle filter based visual tracking,” in
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal
Proc., Vancouver, Canada, 2013.

[6] P. Closas and C. Fernandez-Prades, “Particle filtering
with adaptive number of particles,” in IEEE Aerospace
Conference, 2011, pp. 1 –7.

[7] Alvaro Soto, “Self adaptive particle filter,” in Proc. of
the 19th Int. Joint Conf. on Artificial Intelligence, 2005,
pp. 1398–1403.

[8] D. Fox, “Adapting the sample size in particle fil-
ters through kld-sampling,” International Journal of
Robotics Research, vol. 22, pp. 985–1003, 2003.

[9] G. Lathoud, J. Bourgeois, and J. Freudenberger,
“Sector-based detection for hands-free speech enhance-
ment in cars,” EURASIP Journal on Applied Signal Pro-
cessing, 2006.

[10] J. DiBiase, “A high-accuracy, low-latency technique
for talker localisation in reverberant environments,” in
Ph.D. dissertation, Brown University, Providence, RI,
USA, 2000.

[11] G. Lathoud, J. M. Odobez, and D. Gatica-perez,
“Av16.3: an audio-visual corpus for speaker localization
and tracking,” in Proceedings of the 2004 MLMI Work-
shop, S. Bengio and H. Bourlard Eds. 2005, Springer
Verlag.


