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Abstract—The probability hypothesis density (PHD) filter based
on sequential Monte Carlo (SMC) approximation (also known
as SMC-PHD filter) has proven to be a promising algorithm for
multispeaker tracking. However, it has a heavy computational cost
as surviving, spawned, and born particles need to be distributed in
each frame to model the state of the speakers and to estimate jointly
the variable number of speakers with their states. In particular,
the computational cost is mostly caused by the born particles
as they need to be propagated over the entire image in every
frame to detect the new speaker presence in the view of the
visual tracker. In this paper, we propose to use the audio data
to improve the visual SMC-PHD (V-SMC-PHD) filter by using
the direction of arrival angles of the audio sources to determine
when to propagate the born particles and reallocate the surviving
and spawned particles. The tracking accuracy of the audio-visual
SMC-PHD (AV-SMC-PHD) algorithm is further improved by
using a modified mean-shift algorithm to search and climb density
gradients iteratively to find the peak of the probability distribution,
and the extra computational complexity introduced by mean-shift
is controlled with a sparse sampling technique. These improved
algorithms, named as AVMS-SMC-PHD and sparse-AVMS-SMC-
PHD, respectively, are compared systematically with AV-SMC-
PHD and V-SMC-PHD based on the AV16.3, AMI, and CLEAR
datasets.

Index Terms—Audio-visual tracking, mean-shift, multi-speaker
tracking, probability hypothesis density (PHD) filter, sequential
Monte Carlo (SMC) implementation, sparse particles.

1. INTRODUCTION

PEAKER tracking in enclosed spaces has received much
S interest in the fields of computer vision and signal pro-
cessing, driven by applications such as video conferencing [1],
speaker discrimination [2], acoustic beamforming [3], audio-
visual speech recognition [4], video indexing and retrieval [5],
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human-computer interaction [6], and surveillance [7]. However,
speaker tracking in real life scenarios involves several chal-
lenges such as estimation of the variable number of speakers
and their states, and dealing with various conditions such as oc-
clusion, limited view of cameras, illumination change and room
reverberations.

One approach to overcome these challenges is to use multi-
modal information, as it provides additional observations about
the state of each speaker compared to single-modal tracking.
The multi-modal information used for tracking can be collected
by sensors such as audio, video, thermal vision, laser range
finders and RFID [8]. In speaker tracking, audio and video
sensors are widely applied compared to others, for their eas-
ier installation, cheaper cost, and more data processing tools.
Hence, our tracking system is also based on audio and visual
data.

Video tracking is generally reliable and accurate when the
targets are in the camera field of view [9], but is limited when
the targets are occluded by other speakers, when they disappear
from the camera field of view, or the appearance of the tar-
gets or illumination has changed [10]-[15]. On the other hand,
audio tracking [16] is not restricted by these limitations. How-
ever, it is prone to non-negligible tracking errors as audio data
is intermittent over time and may be corrupted by background
noise and room reverberations. Nevertheless, the audio and vi-
sual modalities contain complementary information that can be
used to improve the tracking performance in the case that either
modality is unavailable or both are corrupted [2], [6], [17], [18],
which is our focus here.

Several approaches have been proposed to use the multi-
modal information which can be categorized into two classes:
namely, deterministic (data-driven) and stochastic (model-
driven) [19]-[21]. Deterministic approaches are often consid-
ered as an optimization problem based on a cost function.
A representative method in this category is the mean-shift [22]—
[24] where the cost function is defined in terms of color simi-
larity measured by the Bhattacharyya distance. The stochastic
approaches use a state-space approach based on the Bayesian
framework [25], [26]. Representative methods include the
Kalman filter (KF) [27], extended KF (EKF), and particle filter
(PF) [28]. In comparison to the KF and EKF approaches, the PF
approach is more robust for non-linear and non-Gaussian mod-
els as it easily approaches the Bayesian optimal estimate with
a sufficiently large number of particles [8]. It has been widely
employed for speaker tracking [25], [29], [30].
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The generic PF applied to multi-speaker AV tracking is
often under the assumption that the number of speakers is
known and invariant. In practice, however, the speakers to be
captured by the AV sensors may appear or disappear in a ran-
dom manner. As a result, the number of speakers that can be
observed from the AV measurements may vary with time. To
address this issue, the theory of random finite sets (RFSs) has
been introduced for tracking unknown and variable number of
speakers which allows multi-speaker filtering by propagation of
the multi-speaker posterior [31], [32]. The computational com-
plexity of RFS, however, grows exponentially with the number
of speakers. To overcome this problem, the PHD filtering ap-
proach [32] was proposed as the first order approximation of
the RFS, whose complexity scales linearly with the number of
speakers. It has been found to be promising for multi-speaker
tracking [31], [32]. Different from the Bayesian (Kalman or PF)
approach, the PHD filter does not require the a priori knowledge
of the number of targets, which is actually estimated during the
tracking process.

The SMC implementation [33] is introduced to obtain prac-
tical solutions of the PHD filter. The SMC-PHD filter uses par-
ticles to model the surviving, spawned and born state of the
speaker. In the standard implementation of the SMC-PHD based
visual tracking [33], the born particles are propagated in every
frame to detect the speaker presence in the view, which is com-
putationally expensive. To address this limitation, we propose
to use the DOA information obtained from audio for the propa-
gation of the particles. More specifically, the propagation of the
born particles is decided based on the DOA information and the
particles are re-located around the line drawn upon the DOA.
A similar approach has been used in [34]-[36] under the PF
framework for a fixed number of speakers. Here, the SMC-PHD
filter is used, and to our knowledge, audio information has not
been previously used with visual information in a SMC-PHD
filter as we do here.

The estimation accuracy of the SMC-PHD filter, however, is
compromised due to the use of the first-order approximation
derived from RFS. In this paper, we propose a new method by
employing the mean-shift to improve the particle distribution
within the SMC-PHD filter. The mean-shift is run on the par-
ticle set to pull the centre of the particle distribution towards
the target centre. This leads to improvement in estimation ac-
curacy as observed in our experiments shown in Section VI-C.
Although mean-shift has been previously used with particle fil-
tering in [19], [21], [37], [38], [39], in various frameworks, none
of these were explicitly designed for a variable number of tar-
gets since the structure of both methods was devised for single
target tracking scenarios.

The mean-shift approach is computationally efficient, but it
may converge to saddle points in the case of multi-modal dis-
tribution [40], and may fail to track small and fast moving
targets and is unable to recover a track after partial or total
occlusions [37], [38], [41]. These problems can be easily han-
dled by the SMC-PHD filter due to its ability to recover from
lost tracks [38], and the use of multiple particles which can
help mean-shift to detect the target even if some of the par-
ticles fall in local maxima or saddle points. Another problem
with the mean-shift is its limitation in adapting to the size or
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scale of the target. However, this problem can be solved with
the SMC-PHD filter since the scale is one of the states of the
target.

The mean-shift process is used to move the particle towards
the target location leading to error reduction, but repeating this
process for all the particles induces extra computational cost.
To overcome this problem, we propose a technique based on
“sparse sampling” leading to a new concept “sparse particle”.
The traditional way of using sparsity in tracking is to represent
the target appearance or features with sparsity [18], [42], [43].
Unlike the traditional way, sparse particles are obtained with
sparse sampling strategy, which, to our knowledge, has not been
done before.

This paper is an extended version of our previous study de-
scribed in [44]. The main modification lies in the formulation
and justification of the improved tracking scheme, the mean-
shift and sparse sampling integration, and more experiments.
The major contributions of this paper can be summarized as
follows.

1) Audio is used for particle propagation of the SMC-PHD
filter and to improve the tracking performance and ro-
bustness of the visual tracker for a variable number of
speakers.

2) A new method is developed by using mean-shift to im-
prove particle distribution in the particle propagation step
of the SMC-PHD filter.

3) A novel sparse sampling algorithm is proposed to gener-
ate sparse particles for which the mean-shift iteration is
operated in order to reduce the computational cost.

The rest of this paper is organized as follows: the next sec-
tion introduces the PHD filter for visual multi-speaker track-
ing. Section III describes our proposed audio-visual SMC-PHD
(AV-SMC-PHD) filtering algorithm. In Section IV and V, the
mean-shift and sparse sampling are integrated in the pro-
posed AV-SMC-PHD filtering algorithm for further improve-
ments. Section VI shows experimental results performed on
the AV'16.3, AMI and CLEAR datasets and compares the
performance of the algorithms. Closing remarks are given in
Section VII.

II. MULTI-SPEAKER TRACKING WITH THE PHD FILTER

This section describes our problem formulation for multi-
speaker visual tracking based on the PHD filter.

Let us represent the state of a speaker by a vector x =
[21 @ zo @y s ]T in a single speaker tracking system where
x1 and x5 are, respectively, the horizontal and vertical positions
of the rectangle centred around the face that we wish to track,
27 and x5 are, respectively, the horizontal and vertical velocity,
and s is the scale of the rectangle centred around (z1, x5). For
the evolution of the time dependent speaker state, the constant
velocity model is employed [36], [45] given as

x; = Fx;_1 +qp (D

where q;. is the zero-mean Gaussian noise with covariance Q,
ar ~ N (0, Q) for speaker at time frame k = 1, ..., K and F is
the linear motion model.
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In our work, the multi-speaker states and measurements are
characterized by using the RFS theory [32], given by

X = {Xi s )
Zp = {z1 4 3)

where = = | X} | is the number of speakers, with | - | represent-
ing the cardinality of the set. Zj consists of M observations
which may be corrupted by noise due to clutter. Uncertainty in
a single speaker Bayesian tracking is introduced by modelling
x;. and z; as random vectors. In multi-speaker case, uncertainty
is introduced by modelling X}, and Z;. as RFSs [46]

X = Sp (K1) UBL (A1) UT, 4
Zp = O5(X) UG, &)

where ‘U’ denotes union, Sy (X;_1) denotes the RFS of surviv-
ing speakers, By (X;_1) is the RFS of speakers spawned from
the previous set of speakers X}, _; and I'j, is the RFS of the new
speakers that appear spontaneously at time k [33]. O (X)) de-
notes the RFS of the measurements generated by the speakers
X, and C;. is the RFS of clutter or false alarms. Besides, the
dynamics in the state evolution &} and the randomness in the
observations are described by the multi-speaker transition den-
sity frjk—1 (Xk|A% 1) and likelihood g (2 |&X}), respectively.
Then, the RFS formulation can be employed in the optimal
multi-speaker Bayesian filter by propagating the posterior den-
sity using Bayes recursion. Nevertheless, the RFS approach is
computationally intractable since multiple integrals are involved
in the recursion of multi-speaker posterior and the computa-
tional complexity increases exponentially with the number of
speakers. To alleviate the computational complexity, the PHD
filter is proposed which propagates the first-order moment of
the posterior instead of the posterior itself [32] as described
next.

XEk,k}

s LM, .k}

A. PHD Filter

The PHD filter is defined as the intensity vy, whose integral
gives the expected number of speakers. The PHD filter consists
of two iterative steps: prediction and update. The prediction step
of the PHD is shown as [32]

V-1 (%) = &k (Xx)
+/¢k\k71 (Xk k1) Ve—1jk—1 (Xk—1) dXp 1
(6)

where & (xy) is the intensity function of the new speaker birth
RES Ty, and ¢p;—1 (Xi|xx—1) is the analog of the single-
speaker state transition probability [32]

Prje—1 (Xelxk-1) = psr (Xe—1) frp—1 (Xk|xk-1)
+ Brpe—1 (Xk|xx-1) (7N

where pg i (xr—1) denotes the survival probability for the
speakers still existing and fj,;,_1 (X [x_1) denotes the single-
speaker state transition density. The intensity function of RFS
By (AX)-1) is denoted by [y ;— (xk|xx—1) for the speaker
spawned at time k with previous state x;_1. The PHD update is
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given as [32]

Ve (Xx) = [1 = pp .k (%)) vk -1 (Xx)
pp .k (Xk) gr (Zk[Xk) Vpjp—1 (Xn)
+Zk§€; wi (zk) + [ oo (%) g (2 [%0) Vi1 (xk)

®)

where pp i (x;) denotes detection probability and gy, (zx |xy )
denotes the single-speaker likelihood defining the probability
that z; is generated by a speaker state x;. The intensity of
clutter RFS Cj, is given as ky, (z;) = Pu(zy), where U is the
average number of Poisson clutter points per scan and u(zy) is
the probability distribution of each clutter point.

The PHD recursion involves multiple integrals in (6) and
(8) that have no closed-form solutions in general. To obtain a
numerical solution, two implementation methods can be used,
i.e., the Gaussian mixture PHD (GM-PHD) [47] and sequential
Monte Carlo PHD (SMC-PHD) [33]. Different from the GM-
PHD filter where a linear and Gaussian model is assumed, the
SMC-PHD filter has the ability to handle non-linear and non-
Gaussian problems in multi-speaker tracking. For this reason,
we prefer the SMC-PHD algorithm, which is summarized next.

B. SMC-PHD Filter

Attime step k — 1, the PHD vj,_y|;,_1 (X} 1) is approximated

N,
bY{wk l’Xgn)l nk 7

weights as

of N}, particles and their corresponding

Nk

Z wk 1 (Xk'fl _Xl<cn—>1)

where 0(.) is a Dirac delta function. Prediction of the PHD
Uglk—1(Xy) is obtained with particles X; and their weights

~ ~(n) ~(n)\Np_1+J
Wk k1> {wk\k 10 Xk }nfl

©)

Uk —1]k— 1(xk-1)

. Here, N;._; particles of X,

are first drawn from importance sampling g, (x,c |xk 1,Zk)
to propagate the particles from time step k£ — 1, then Jj, parti-
cles of X;, from the new born importance function py, (ién) |Z1)
are drawn to model the state of new speakers appearing in the
scene. The PHD prediction is given as

Ny 1+ Jk

Z wk\kl (~k—il(qn))

where Jj, new particles are generated in the birth process. By
replacing (9) into (6) and employing importance sampling, the

(n)
k|k—1

Vplk—1 (Xk) (10)

predicted weights w are obtained as [33]

~(n)
Wi k-1

Oklk -1 (i,i” ) Xff',)l ) w,(l)l

o (2 z) n=1,..,N

k (i;v”)) -
m’ niNk_l+la'--,Nk—l+Jk.
(1D
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The update step of the PHD recursion is approximated by up-
dating the weight of the predicted particles when the likelihood

G (zk |5i§7")) is obtained. By substituting v, 1 (X3 ) into (8),
the predicted weights are updated as

")

AR r(”)
| [roen ()] 3 ( ;3?5:’;;0 o

z €2,

12)

where
Ni_1+Jg

Ck (zg) = Z 22s) (5(;61)) 9k (Zk\i/(gj)) @ff\ffl
i—1

j=

13)

Here, J; new particles are sampled for the born speakers at
each iteration and added to the old ones N, = Ny 1 + J; which
increases the number of particles over time and makes the PHD
filter intractable. Besides, to concentrate the particles on the
zones around the speakers, the low weight particles need to be re-
moved and particles with high weights should be duplicated. To
this end, a resampling step is performed after the update step. Ny,
particles are resampled from {ﬁ/;ﬁ,”) / ék|k, i;cn) R

2. 2 Npoa4dp =0 I
Z e is the total mass and 2, = SN w,({”). N, is esti-

where

mated by N; = nék‘ 1 Where 7 is the constant number of par-
ticles per speaker. So, the complexity of the SMC-PHD filter
grows linearly with the number of speakers. After the resam-
pling step, new weights of the set {wl(fn) , xifl) 3
ized to preserve the total mass.

The SMC-PHD filter propagates the surviving, spawned and
born particles to model the new and existing speakers. Conven-
tionally, these particles are used every frame which increases
the computational complexity. To address this problem, we in-
troduce audio information, i.e. the DOA data, into the visual
SMC-PHF filter, as discussed next.

are normal-

III. AuUDIO-VISUAL TRACKER WITH SMC-PHD FILTER

The DOA data is introduced to the SMC-PHD filter based on
[34] and [36] where the efficiency of the particles is improved
under a particle filter framework by re-allocating all the parti-
cles around the DOA line which is drawn from the center of the
microphone array to a point in the image frame estimated by the
projection of DOA to 2D image plane. However, different from
[34] and [36] in which the DOA is used in the same way for all
the particles, here the contribution of the DOA information is
varied depending on the type of the particles. Similar to [34] and
[36], we also use the sam-spare-mean (SSM) method [48] for
the DOA estimation which is further enhanced by a third-order
Auto-Regressive (AR) model. We should note that there are
other audio features and algorithms for extracting these features
that could be used in our proposed system, however, explor-
ing other audio detection methods is beyond the scope of this
work.

To address the aforementioned complexity issue, we propose
to generate the born particles only when the detection of a new
speaker occurs via audio. In other words, we assume that the
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(a) (b)

Fig. 1. Distribution of 50 particles for (a) the visual case and (b) the audio-
visual case.

DOA information is available to control particle distribution. As
a result, the born particles can be uniformly distributed around
the DOA line as illustrated in Fig. 1(b), rather than over the
whole image as in Fig. 1(a). In Fig. 1(a), the born particles are
distributed to detect the speaker on the restricted region of the
frame as this region covers both sides of the scene that new
speaker may enter. The DOA is also used for the surviving and
spawned particles to concentrate them around the DOA line.
The missing DOA data is completed by interpolation in the case
of a short silence. However, the DOA data will be lost when the
speaker stops talking for a long time. Then, our proposed al-
gorithm continues tracking without the DOA information. With
re-allocation of the particles around the DOA line, speaker de-
tection and tracking is likely improved since the DOA indi-
cates the approximate direction of the sound emanating from
the speaker.

The surviving and spawned particles are defined as X ;. for
time £ since the DOA information is used for surviving and
spawned particles in the same way. In addition, the born particles
are denoted as Xy, ;. The surviving particles from the previous
iteration and the particles spawned from the surviving particles
are distributed by a dynamic model given in (1). Details on the
generation of the surviving, spawned and born particles can be
found from [33] and [46].

If the DOA is available in current frame, the DOA line is
drawn [34] and the perpendicular Euclidean distances dj =
[d§€1> dECN 1) ] of the particles to the DOA line are com-
puted. If there are multiple DOA lines, the one closest to the
particles is chosen, as long as the distance to the DOA line is
smaller than a pre-determined threshold to prevent the particles
from converging to the DOA line which belongs to other speak-
ers or is created due to noise or clutter. Then, the movement
distances of the particles Elk are calculated as [36]

~ d;

dy, Id: [ © dy,
where ||.|]; is the ¢; norm and @ is the element-wise product.
ak is used to relocate the X ;. particles around the DOA line

(14)

Rop = X @ hydy (15)

the element-wise addition and h; =
]T which is used to update only the

where @ is
[cos(6r) O sin(f;) 0 0

- . . . T
position (21, x9) of the particle state vector [z @1 z3 @2 §]
in order to provide the perpendicular movement to the DOA line.
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Then, new speaker case is checked using the DOA informa-
tion. If the number of DOA lines is larger than the number of
estimated speakers in k£ — 1, it may imply the presence of a
new speaker in the scene. To detect the new speaker, .J;; born
particles X;  are generated and distributed uniformly around
the new DOA line. The prediction step is employed to calcu-
late the weights of particles 1y, —; after all the particles are
combined under X;,. Then, the update step is performed to cal-
culate wy, after the estimation of color likelihood. Assuming the
noise on the color likelihood function to be Gaussian, the likeli-
hood function of each measured color histogram can be written
as [49]

9" (zi|x1) o< N (2450, 02)

(D0 )
202

2

1
= ex 16
oo p{ } (16)
where o

2 is the variance of noise for the color likelihood,
and DU")(x,) are the color similarities calculated as the
Bhattacharyya distance between the reference models and the
candidate speaker, i.e.,

v m
m)(xk) = \/1 - Zu:l qu (Xk:)ﬂ(;, )

where ¢, (x;) is the color histogram for the state x;, extracted
from the rectangle area centred around the location (xy, ys )
on the frame by which the speaker candidate is defined, and

{ ﬁ” ru rflu

a7)

)}, with u being the index of the histogram
bins, are the color models of the speakers.

The number of estimated speakers is computed using the
total mass which is the sum of the weights of the particles.
After the resampling step is performed, the positions of the
speakers are estimated using the K-means clustering algorithm.
Lastly, the identity of the speakers is detected by measuring the
similarity between the color histogram of the estimated speakers
and that of the reference speakers. The pseudo code of the
proposed AV-SMC-PHD filtering algorithm [44] is depicted in
Algorithm 1.

IV. MEAN-SHIFT-BASED AV-SMC-PHD FILTERING

As mentioned earlier, the tracking performance of the PHD
filter is compromised due to the first-order approximation of
the RFS. To address this limitation, we propose a new and
improved version of the AV-SMC-PHD algorithm based on
the well-known mean-shift technique. The idea is to shift the
particles to a local maximum of the distribution function so
that they are closer to the speaker position, compared to their
original positions. This is achieved by searching and climbing
density gradients iteratively to find the peak of the probability
distribution. This algorithm, which we name as AVMS-SMC-
PHD, offers significant improvement over AV-SMC-PHD in
terms of tracking accuracy. Despite its popularity, to our knowl-
edge, mean-shift has never been used in the way as proposed
here.

The mean-shift approach aims to find the target in the next
image frame that is most similar to the initialised target (ref-
erence model) in the current frame by iteratively searching the
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Algorithm 1: Proposed AV-SMC-PHD filtering algorithm.

Initialize: 7, o2, U, T, F, \, 7, u, pars Pp» 02, 02, ps,
k, K, No, X
while k£ < K do

For n =1, ..., N1 sample X ~ ¢ (-|x,(€"_)1,Zk>,

where %, € R>*Ne—1

Propagate surviving and spawned particles:
X5,k = FXp + qy

Get the corresponding DOA angle 0,

if DOA exists then
/I ' For surviving and spawned particles

ap o d]
Calculate movement distances d, using Equation
(14)
Concentrate X j, Elround the DOA line :
is,k = >~(s.,k @ hkdk
if new speaker then
/I For born particles
For n = Nj_1 +1,..., Ny_1 + Ji sample
X,k ~ Pk (+|Z2k) uniformly around the DOA

line
end

Calculate distances d;, =

end

Combine all the particles:
Xk = Xk UXp
Prediction: For n =1, ..., N1 + Jj calculate
w]gllz , using Equation (11)

Estimate colour likelihood using Equation (16)
Update: For n =1, ..., Nj_1 + Jj calculate 'u?,(c”)
using Equation (12)

Calculate the total mass =y = = Y Neat i ()

) ( ) n~1(n) Ng k1+Jk
Resampling: Resample { /_k|1€7 } to

n=1
get{ oy )/~k|ku v )}n—

Multiply the weights by = _k‘ . to get {

where Ny = nZ=g
1

(n) (n)
X

Cluster the particles and get the positions of the =t

speakers
k=k+1

end

next frame with a non-parametric kernel [22]. Such similarity is
measured as the Bhattacharyya distance between the histogram
of the target model and that of the candidate target in the next
frame [23]. The mean-shift approach is originally designed for
single target tracking [23]. For multi-target tracking, however,
this approach needs to be adapted, which we propose to modify
as follows.

A. Multiple-Speaker Mean-Shift

During tracking, the target is detected based on the compari-
son of the similarity between the pdf of the candidate target and
the pdf of the reference model, measured by the Bhattacharyya
distance

d(y) = (18)

1—pla(y),r]
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where v = {r,}u_1_ v (XU_, 7, =1) is the U-bin color
histogram of the reference image of the target, q(y) =
U (25:1 qu = 1) is the color histogram of the
image region centered at the point y, and p[q(y),r] is the
Bhattacharyya coefficient, given by

p(y)=rla).rl=> Vel

where p takes values between 0 and 1, with a greater value
representing a higher similarity in their pdfs.

Using Taylor expansion, the Bhattacharyya coefficient in (19)
can be approximated as follows:

19)

T
7u(y0)

where y is the location of the target in the previous frame.
Using a kernel-based histogram representation for ¢, (y) [23],
equation (20) can be further written as
| )

v n
~ L Ch _ Y — X
py) =~ 3 > Vaulyo)ra + - ;W,k <H -
21

1< 1<
4 (y) ~ 5 Z m (yO)Tu + 5 Z m (y) (20)

u=1 u=1

u=1

where C), is a normalization constant, £ is the kernel function
(giving higher weights to the pixels at the center of the target
region), and W; are the weights given by

U
Wi = ; \ /r 5o 8b(x;) — u]

where b(x;) is a function which assigns one of the histogram
bins to a given color at location x;. By employing the mean-
shift procedure [22], we can find the mode of the density in the
neighbourhood of x;. In this procedure, the kernel is applied
recursively from the current location y to the next, i.e. y,
which is related to y, as follows:

Sl x Mg )
2ty Wig(1+4=1)
where g(x) = —£/(z), and £/(x) is the derivative of £(x) as-
suming that £'(z) exists for all z € [0, o), except for a finite
set of points.
Several kernels could be used such as normal, uniform

and Epanechnikov. As recommended in [23], we choose the
Epanechnikov kernel here which is defined as

(22)

(23)

=%, [x[l<1
k(x) = : (24)
0, otherwise.
In this case, its derivative g(z) a constant
o) = —# (= b =t (25)
0, otherwise.
Hence, (23) reduces to
T x; Wi Yo —Xi T h W,
yi = 2O ) 2 W o
Doty WIQ(HT ) il W
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B. Particle Distribution With Mean-Shift

The above mean-shift algorithm can then be used to distribute
the particles in AV-SMC-PHD filter, as follows. First, the iter-
ation is initialized before it is run over the nth particle X" at
the time frame k. In this step, the horizontal and vertical posi-
tions within 5(2”) are assigned to yy = [5(2,") (1), 5(5: ) (3)] since
X = 21 @1 w9 @2 s]7. The candidate speaker model, g, (yo),
evaluated at the centre yg, is compared with all the mod-
els from the reference template. The closest reference model
r = {ry }u=1,. v is then selected and used to move the particle
towards the speaker in the following steps of the mean-shift it-

eration. The Bhattacharyya coefficient p[q (yo ), r] is calculated

before running the mean-shift iteration for the particle 5&;{” ) The
mean-shift iteration is performed in a loop controlled by two pa-
rameters, namely, iteration flag ContIter and iteration number
Numlter.

The iteration of the mean-shift process continues if the pre-
defined condidtions for the two parameters are satisfied. Oth-
erwise, the loop will be broken and the same process will
be repeated for the next particle with NumlIter set to 0 and
Contlter set true. In the first step of the loop, the weights
are derived according to (22). Then, the next location y; is
calculated via (26). In practice, it may not be the correct di-
rection to move the particle towards y;. To avoid this issue,
the Bhattacharyya coefficient of y1, p[q(y1),r], is calculated
and compared with p[q(yo), r]. If pla(y1),r] < pla(yo), r], it
means that y; is not a good estimate and the loop will be bro-
ken. If pla(y1),r] > pla(yo), r], the amount of shifting needs
to be checked. If ||y; — yo|l > ¢, where ( is a threshold value,
y1 is set to yo and then used for the next iteration provided that
NumlIter < MaxIter.If ||ly1 — yoll < ¢, the iteration will be
broken again. This process is repeated for all the particles.

We refer to the above process as MIS, which is performed after
the audio contribution is considered, and all the born, spawned
and surviving particles are combined as X;. This enables the
MS process to be applied to all types of the particles even
without the DOA information. The pseudo code of the MS is
given in Algorithm 2.

The algorithm is also illustrated in Fig. 2. Here, suppose
10 particles )"(2"), n = 1,..., 10, are given, which have different
Bhattacharyya coefficients p [q (yo ) , r]. With these coefficients,
the mean-shift iteration is performed to move the particles to the
local maxima of the measurement function. As a result, the parti-
cles X, that have higher values of the Bhattacharyya coefficients
tend to be closer to the speaker position.

In the end, the shifted particles provide good local character-
ization of the likelihood which allows the multi-mode distribu-
tion to be maintained with the use of a fewer number of particles
[50]. After the MS, the step of weight prediction is performed,
followed by the remaining steps as in the AV-SMC-PHD filter.

V. SPARSE SAMPLING FOR AVMS-SMC-PHD FILTERING

The use of mean shift in AV-SMC-PHD leads to a reduction
in tracking error (to be demonstrated in Section VI). However,
the computational cost is increased due to the application of the
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Algorithm 2: MS function for the mean-shift iteration.

Given: xXj, Ni_1, Jix, MaxIter, U,
forn=1,..Ny_1+ J; do

Assign position coordinates of the particle to
yo = XV (1), %" (3)]

Find the closest reference model r,, for X}’ by
comparing the candidate speaker model ¢, (yo) and
the reference models.

Evaluate: p[a (yo),r] = Yoy v/¢u(yo)ru

Set iteration number: Numlter = 0;

Set iteration flag: C'ontIter = true;

while Contlter == True or Numlter < MaxlIter do
Derive the weights according to Equation (22)
Find the next location y; by Equation (26)
Compute: p[a (y1),r] = >_; V/au(y1)ru

/I Continue mean-shift iteration as long as the
Bhattacharyya coefficient goes up. Otherwise,
stop iteration

if pla(y1),r]>pla(yo),r| then

/I Tf position change exceeds the threshold
value (, then continue mean-shift iteration.
Otherwise, stop iteration

if |ly1 —yoll > ¢ then

Yo =Yi1;
Contlter = true;
else
| Contlter = false;
end
else
Y1 =Yo

Contlter = false;
end

Numlter = Numliter + 1,

end
%" (1),%7(3)] = y1:

end

mean shift to all the particles [41]. To reduce the complexity,
we introduce a sampling technique to select a subset of most
relevant particles before applying the mean-shift, leading to a
filtering algorithm of improved computational efficiency and
similar accuracy, termed as sparse-AVMS-SMC-PHD.

More specifically, one dimensional bins, B with 7 subinter-
vals are created on the interval [0, 1]. Each subinterval, denoted
by B;, hasarange of [{1 — (¢ — 1)/7}, {1 — ¢/7}]. The number
of bins in B, and hence the choice of 7, will affect the sparse
sampling results. Experimental studies suggest that, as a practi-
cal choice [51], 7 can be set to a constant number of particles per
speaker, 7.

Fig. 3 gives a demonstration of the proposed sampling algo-
rithm. Suppose a set of 10 particles is given in Fig. 3(a), and B
is created for this set, as illustrated in Fig. 3(b). We can consider
n as 10, and as a result, 7 can also be set to 10. Hence, each bin
is allocated a subinterval with a length of 1/10 = 0.1, and these
subintervals are sorted in a descending order, as shown on the
left side of Fig. 3(b). The top subinterval has a range from 0.9
to 1 while the bottom subinterval is ranged from O to 0.1.

2423

Initial particles ¥,

Incoming
measurements for the

particles: g, (¥o)

Estimated
Bhattacharyya
coefficients: p[q(y,).7]

Mean-shift iteration:
Each particle is shifted
to a local peak.

The particles ¥, after
the mean-shift process.

Fig. 2. Mean-shift process for the particles.
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Fig.3. (a)Setof 10 particles is given. (b) Initial B is illustrated. (¢) Distribution

of the particles on B according to Bhattacharyya coefficients. (d) Updated B
after the estimation of the number of particles with KLD-Sampling is given.
(e) Sparse particle selection is shown.

At the beginning, each bin is set to B,—; . =0 as it is
empty. For each particle, the Bhattacharyya coefficient p is then
calculated using (19), which has a value between [0, 1] with 1
being the best similarity matching between the reference and
candidate histograms, and O the worst. After p is obtained, its
corresponding range B, is found and updated from O to 1. Then,
the number of particles, 91;, in B; is increased by one. In the
end, p is estimated for all the particles and the allocation of these
particles in B is shown in Fig. 3(c), where the particles are sorted
in terms of the values of p. Such representation resembles sparse
categorization of the particles, hence the proposed method is
referred to as “sparse sampling”. Here, the total number of true
bins b is estimated via b = Zle B;, which, in this case, gives
a value of 6 since only 6 subintervals are updated from O to 1,
as shown in Fig. 3(c).

The number of bins b can be used to estimate the number of
particles, ./, as follows [52]:

3
b—1 2 |2
_ _ 27
- {1 9(b_1)+ g(b_l)zl—é} 27

where e is the upper error bound given by the KL-divergence, b
is the number of bins, and z;_; is the upper 1 — § quantile of
the standard normal distribution A/(0, 1).

N




2424

Algorithm 3: SS function for sparse sampling.

Given: Xy, Ng_1, Ji, 7, €, z1_§
Create B with 7 subintervals.
fOl’j = 1, ...Nk,1 + Jk do
Calculate p; using Equation (19)
Find ¢ where p; € [{1 — (i —1)/7}, {1 —i/7}]
Set B, =1
Increase the particle counter for B;, 91, =91, + 1
end
Estimate the total bin number. b= _| B;
Calculate ./ using Equation (27)
Choose the sparse particles X, by taking one particle
from the subintervals B;_;.; where ¢ is the upper bound
for L, 0 = A

In this example, .4 is estimated as 5, which means that only 5
particles need to be chosen from the right side of Fig. 3(c). This
selection starts from the top subintervals of B as the particles are
already sorted according to p in a descending order. In Fig. 3(d),
B is updated by removing all the particles except those in the
first ¢ top subintervals for which Zﬁ:l N; = A . Therefore,
here t = 5 since only the first 5 subintervals contain .4/ =5
particles. These five particles can be employed as the “sparse
particles”. However, we take one step further in the selection of
the sparse particles. It is observed that the mean-shift process
to be performed afterwards tends to move the particles within
the same subinterval to the same local maxima. As a result, it
is unnecessary to have more than one particle from the same
interval. Therefore, one particle from each of the intervals that
have non-zero number of particles is chosen and added to the
sparse particles X, as illustrated in Fig. 3(e). It can be seen from
the above example that (27) plays a key role in the estimation
of the number of particles, ./, for generating a smaller subset
from the source particles.

The sparse sampling process is denoted as function SS. The
pseudo code of SS is presented in Algorithm 3.

The SS function is integrated into the AVMS-SMC-PHD
filter as follows. First, all the particles are combined as X;, after
incorporating the DOA contribution. Then the S is applied to
obtain the sparse particles Xy,

Xr =SS (Xx) (28)
before applying the MS operation. Since X, has less particles
than X, the number of particles used in the mean-shift iteration
is reduced with the sparse sampling method, which leads to a
significant reduction in the computational cost.

VI. EXPERIMENTAL RESULTS

This section presents experimental evaluations of the pro-
posed algorithms as compared with baseline algorithms. We
start with a description of the experimental setup, datasets and
performance metrics, before giving the analysis and comparison
of the results.
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A. Setup and Performance Metric

Several publicly available audio-visual datasets could be used
for the evaluation of the proposed algorithms, such as “AV'16.3”
[53], “CLEAR” [54], “AMI” [55], and “SPEVI” [56]. How-
ever, there are several requirements in our evaluations that nar-
row down the choice of the suitable datasets. First, the dataset
should consist of real-world scenarios with both audio and video
sequences.

Second, the calibration information of the cameras should be
available for the projection of DOA from the physical space
to the image plane. Third, the audio detection and localiza-
tion algorithm employed here is compatible only with circular
microphone arrays.

Finally, apart from these physical features, the dataset should
contain challenging scenarios such as occlusion and rapid move-
ments of the speakers, and audio-visual sequences with mostly
talking speakers. Here, having mostly talking speakers enables
the DOA information to be detected and used for generating
the born particles. Among these datasets, the AV 16.3 offers the
best fit to the requirements. Therefore, sequences from AV'16.3
are mostly used for quantitative evaluation of the baseline and
proposed algorithms. To show the flexibility of the proposed
algorithms, sequences from the AMI and CLEAR datasets are
also used in our tests, as shown in Section VI-D.

The AV'16.3 consists of sequences where the speakers are
moving and speaking at the same time whilst being recorded by
three calibrated video cameras and two circular eight-element
microphone arrays. The audio and video were recorded at
16 kHz and 25 Hz, respectively, and synchronized before
being used in our system. The size of each image frame is 288 x
360 pixels. The speakers wear a colored ball for annotation pur-
pose, which however is never used in our tracking algorithms.
All the algorithms are tested for two and three speaker cases with
all three different camera angles of four sequences: Sequences
24, 25, 30 and 45, which are the most challenging sequences
in term of movements of the speakers and the number of
occlusions.

To measure the tracking performance, the Optimal Subpat-
tern Assignment for Tracks (OSPA-T) metric [57] is employed
which is widely used for the evaluation of multi-speaker track-
ing systems. The OSPA-T is an extension of the OSPA metric
[58] for tracking management evaluation. The OSPA metric,
which uses a penalty to transfer the cardinality error into the
state error, is able to evaluate the performance in both source
number estimation and speaker position estimation

eosea (X, Xk

SR ST R = =
rell \/: (Zildw(xz‘k»xm,k)” +c (G — :k)>
. -

= min
=k
(29)

Ep Sk

where itis assumed that X, = {%1 j;,...,%z , } is anestimation

of the ground truth state set X, = {x1 j,...,xz, »} and [Iz -

is the set of maps 7 : 1, ...,ék — 1, ...,Z. Here the state car-
dinality estimation =; may not be the same as the ground truth
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Zi. The OSPA error given in Equation (29) is for ék < Z.
If ), < 2y, then eospa (X, Xi) = eospa (X, Xj ). The func-
tion d'®)(-) is defined as min(c,d(-)) where c is the cut-off
value which determines the relative weighting of the penalties
assigned to cardinality and localization errors. In addition, a
describes the metric order which determines the sensitivity to
outliers.

In addition to the OSPA-T metric, we used the Wasser-
stein distance [59] to enable the comparison of the proposed
algorithms with another baseline algorithm by Pham et al.
[15], since the results reported in this baseline algorithm are
based on the Wasserstein distance. These results are given
in Section VI-C.

In our evaluations, we used twelve multi-speaker sequences
and the average results are shown in Table II at the end of
this section. As it is not feasible to plot the results of all these
sequences, only the results of two sequences are illustrated by
the plots. The first one is Sequence 24 camera #1 where two
moving speakers are walking back and forth, crossing the field
of view twice and occluding each other. The second is Sequence
45 camera #3 where three moving speakers occlude each other
many times. In these two sequences, the speakers are speaking
continuously and the number of speakers varies between 0 to 3.
Here, the experiments are run on Intel core 77 2.2 GHz processor
with 8 GB memory under Windows 7 operating system. Each
experiment is repeated 10 times and the average results are
presented with plots and tables.

B. V-SMC-PHD Versus AV-SMC-PHD on AV16.3

First, we compare between the V-SMC-PHD and AV-SMC-
PHD filters. The parameters for the SMC-PHD are set as:
pp = 0.98, ps =0.99, L =0.26 and o, = 0.1. The uniform
density u is (360 x 280)~! and the number of particles per
speaker is 17 = 50. In this case, the cut-off parameter ¢ = 65,
the OSPA-T metric order parameter a = 2. These parameters
are set empirically based on extensive experimental studies
in [51], where the impact of these parameters on the track-
ing performance is also studied and is omitted here for space
limitations.

To show the computational efficiency of these two filtering
algorithms, we ran experiments on Sequence 24 camera #1 and
Sequence 45 camera #3. The number of particles per speaker
changes from 25 to 500. The experiments are repeated 10 times
and Fig. 4 shows the average time costs.

It can be observed that the computational cost of V-SMC-
PHD is higher than that of AV-SMC-PHD and they both increase
with the number of particles. The time required for processing
Sequence 45 is higher than for Sequence 24 since the maximum
number of speakers to be tracked is three in Sequence 45 while
it is two in Sequence 24. Using audio information introduces
some computational cost, however, as shown in Fig. 4, this cost
is negligible as compared with that for propagating the particles.
In fact, AV-SMC-PHD is computationally more efficient than
V-SMC-PHD as the born particles are propagated only when
necessary.
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Fig. 4. Computational cost of the V-SMC-PHD and the proposed AV-SMC-
PHD filters measured on Sequence 24 camera #1 and Sequence 45 camera
#3.

The following experiments aim to investigate the estimation
accuracy of the algorithms. Some frames from Sequence 24
camera #1 are shown in Fig. 5. The first row shows the results
of V-SMC-PHD, while the second row for AV-SMC-PHD.

In the first two columns, both speakers are detected by our
proposed AV-SMC-PHD filter while only one speaker is de-
tected by the V-SMC-PHD filter. After occlusion, in the third
and fourth columns, our proposed AV-SMC-PHD filter tracks
the speakers more accurately. In the fifth column, the DOA in-
formation is available only for one speaker while in the last
column, there is no DOA information. Nevertheless, our pro-
posed AV-SMC-PHD filter is still able to track both speakers
while the V-SMC-PHD filter fails to track one of them. This can
be explained by the fact that the surviving particles are always
dense until the DOA information is lost and more particles sur-
vive for the next frame in the AV-SMC-PHD filter. Even when
the DOA information no longer exists after some points, the
AV-SMC-PHD filter still has an advantage over the V-SMC-
PHD filter on the number of surviving particles. Fig. 6 shows
the estimation of the number of speakers. Here, we performed
down-sampling to the plots for better visualization. The number
of active speakers varies from 2 to 0, and as can be observed, our
proposed AV-SMC-PHD filter gives better performance than the
V-SMC-PHD filter.

The same experiments are performed on Sequence 45 camera
#3 and some chosen frames are given in Fig. 7. Here, occlusion
happens between the three speakers many times and the AV-
SMC-PHD filter is able to detect and follow all the speakers
even after the occlusions. The number of speakers estimated for
Sequence 45 camera #3 is given in Fig. 8. Similarly, we can
observe the improved performance of the AV-SMC-PHD filter
over the V-SMC-PHD filter.

Fig. 9(a) and Fig. 9(b) show the OSPA-T errors for Sequence
24 camera #1 and Sequence 45 camera #3, respectively, aver-
aged over 10 experiments. In Fig. 9(a), the average OSPA-T
error is 27.12 for V-SMC-PHD and 17.71 for AV-SMC-PHD.
This means that AV-SMC-PHD offers 34.69% improvements
over V-SMC-PHD for Sequence 24 camera #l. The aver-
age OSPA-T errors for Sequence 45 camera #3 in Fig. 9(b)
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Fig. 5.
AV-SMC-PHD filter.

are 39.09 and 28.43 for V-SMC-PHD and AV-SMC-PHD,
respectively. In this case, AV-SMC-PHD offers a 27.27% im-
provement over V-SMC-PHD.

C. AVMS-SMC-PHD and Sparse-AVMS-SMC-PHD on AV16.3

To make a fair comparison, we use the same parameters as
those in the previous section for the evaluation of the AVMS-
SMC-PHD filter. The mean-shift method has two specific
parameters, i.e. the threshold for shifting distance ¢ and the
maximum number of iterations, which are set to 0.5 and 6,
respectively. These parameters are set empirically based on ex-
tensive experimental studies in [51], similar to the experiments
presented in the previous section.

The proposed AVMS-SMC-PHD algorithm was tested on Se-
quence 24 camera #1 and Sequence 45 camera #3. Because of
the space constraints, plots for the AVMS-SMC-PHD could not
be presented separately. Numerically, the AVMS-SMC-PHD
algorithm gives an average error of 13.93 for Sequence 24 cam-
era #1, resulting a 21.33% performance improvement over AV-
SMC-PHD and a 48.64% improvement over V-SMC-PHD. For
Sequence 45 camera #3, the average error by the AVMS-SMC-
PHD algorithm is 22.43, showing an improvement over V-SMC-
PHD and AV-SMC-PHD by 42.61% and 21.10%, respectively.

The proposed sparse-AVMS-SMC-PHD algorithm was tested
with the same sequences and parameters as those used in the
AVMS-SMC-PHD algorithm. In addition, the design parameters
of Equation (27) are set to ¢ = 0.25 and z;_; = 0.99 based on
empirical tests. A key parameter in sparse-AVMS-SMC-PHD is
the dimension of the bins 7 which may cause either performance
failure, or an increase in the computation cost, depending on its
size. To get a practical guidance for the selection of 7, pilot
simulations were conducted on Sequence 24 camera #1 and
Sequence 45 camera #3. We found that it seems to be reasonable
to set 7 as 77. More details about these simulations can be found
in [51].

As discussed earlier, the motivation for using sparse sampling
is to reduce the computational cost of the AVMS-SMC-PHD
filter. To this end, we measure the computational cost of the
V-SMC-PHD, AV-SMC-PHD, AVMS-SMC-PHD and sparse-
AVMS-SMC-PHD filters when applied to Sequence 24 camera
#1, as illustrated in Fig. 10.

Sequence 24 camera #1: two speakers with occlusions. The first row shows the results of the V-SMC-PHD filter and the second row for our proposed
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Fig. 6. Comparison of the V-SMC-PHD and the proposed AV-SMC-PHD

filters in estimation of the number of speakers for Sequence 24 camera #1.

The integration of mean-shift to the AV-SMC-PHD causes a
dramatic increase in computational cost. However, using sparse
particles with the mean-shift iteration reduces the computational
cost significantly by approximately 10 times, as the sparse sam-
pling process generates a small subset from the source particles.
To see the estimation accuracy, the proposed sparse-AVMS-
SMC-PHD algorithm is further compared with the previous
algorithms, the results on Sequence 24 camera #1 and Sequence
45 camera #3 are plotted all together in Fig. 11, which depicts
the mean absolute error at each time step.

From this figure, it can be observed that sparse-AVMS-SMC-
PHD and AVMS-SMC-PHD filters perform better than the AV-
SMC-PHD and V-SMC-PHD filters, and the AVMS-SMC-PHD
filter is slightly better than the sparse-AVMS-SMC-PHD fil-
ter. All the three algorithms perform better on Sequence 24
than on Sequence 45. This result is not surprising as the three-
speaker sequence is more complex in terms of the movement of
the speakers and the number of occlusions, which result in an
increase in the estimation error.

Abar plotis also given in Fig. 12 to show the average results of
the four algorithms over all the frames. According to these plots,
the AVMS-SMC-PHD filter performs only 3.94% and 5.74%
better than the sparse-AVMS-SMC-PHD filter for Sequence 24
camera #1 and Sequence 45 camera #3, respectively.

These trackers are also run over the remaining sequences and
the results are given in Table I. The average error for V-SMC-
PHD and AV-SMC-PHD is 32.01 and 22.75 respectively, which
shows that with the contribution of audio, 28.93% reduction
in tracking error has been achieved. This clearly demonstrates
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Fig. 7.
AV-SMC-PHD filter, respectively.
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Fig. 8. Comparison between V-SMC-PHD and AV-SMC-PHD for estimating

the number of speakers in Sequence 45 camera #3.
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Fig. 9. Performance comparison of the V-SMC-PHD and the proposed AV-
SMC-PHD filters in terms of the OSPA-T error. The data points on the V-SMC-
PHD curve were down sampled for better visualisation.

that adding the audio information to the visual tracker leads
to improvement in performance. In addition, Table I shows
that the AVMS-SMC-PHD filter improves the estimation ac-
curacy by 24.02% and 46.00% over the AV-SMC-PHD and
V-SMC-PHD algorithms, respectively. Taking the average of
all the experiments, sparse-AVMS-SMC-PHD outperforms AV-
SMC-PHD and V-SMC-PHD by 18.96% and 42.41%, respec-
tively. Its performance is slightly reduced by 6.65% as compared
with AVMS-SMC-PHD. Howeyver, it is a reasonable sacrifice,
given a ten-fold reduction in the computational cost as shown
in Fig. 10. To further understand the cost reduction offered by
the sparse-AVMS-SMC-PHD, we calculated the total number
of particles used in each frame of the whole sequence for both
AVMS-SMC-PHD and sparse-AVMS-SMC-PHD algorithms.
In AVMS-SMC-PHD, the total number of particles for all the

Sequence 45 camera #3: three speakers with occlusions. The first and second row show the tracking results of the V-SMC-PHD and the proposed
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Fig.10. Computational cost comparison between the V-SMC-PHD, AV-SMC-
PHD, AVMS-SMC-PHD, and sparse-AVMS-SMC-PHD filters.
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Fig. 11.  Comparison of the V-SMC-PHD and the proposed algorithms AV-
SMC-PHD, AVMS-SMC-PHD, and sparse-AVMS-SMC-PHD using mean ab-

solute OSPA-T error. The data points on the V-SMC-PHD curve were down
sampled for better visualisation.

speakers is 61853, while in sparse-AVMS-SMC-PHD it is 6301.
With the proposed sparse sampling, the number of particles has
been reduced to almost 10% which, in other words, leads to a
ten-fold improvement in computational efficiency.

In addition, we used another baseline algorithm [18] for com-
parison. The results available in [18] cover only Sequences 24,
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Fig. 12. Performance comparison of the V-SMC-PHD with the proposed

algorithms AV-SMC-PHD, AVMS-SMC-PHD, and sparse-AVMS-SMC-PHD
with bar plots.

TABLE I
EXPERIMENTAL RESULTS FOR [18], V-SMC-PHD, AV-SMC-PHD,
AVMS-SMC-PHD, AND SPARSE-AVMS-SMC-PHD

Tracking \4 AV AVMS sparse AVMS
algorithm [18] SMC-PHD SMC-PHD SMC-PHD  SMC-PHD
seq24 caml 22.28 27.12 17.71 13.93 14.50
cam?2 17.60 2591 19.83 14.97 15.35
cam3 28.18 24.32 18.94 14.12 15.72
seq25 caml 21.49 25.84 19.13 15.72 17.17
cam?2 19.17 25.66 18.47 13.93 15.39
cam3 29.35 29.99 21.61 17.07 17.62
seq30 caml 35.98 35.60 25.22 16.65 19.27
cam?2 28.40 24.97 19.37 14.86 16.16
cam3 34.60 37.64 25.31 19.29 19.67
seq45 caml NA 48.68 29.46 22.95 23.40
cam2 NA 39.24 29.47 21.47 23.16
cam3 NA 39.09 28.43 22.43 23.80
Average 26.34 32.01 22.75 17.28 18.43
TABLE II
SIGNIFICANCE TEST
v AV AVMS sparse-AVMS
SMC-PHD  SMC-PHD  SMC-PHD SMC-PHD
\Y% NA 12.51 35.59 30.23 F
SMC-PHD NA 1.9E-3 5.28E-6 1.59E-5 p-value
AV 12.51 NA 11.12 6.92 F
SMC-PHD 1.9E-3 NA 3E-3 1.53E-2 p-value

25 and 30. With the average of 26.34 achieved on these se-
quences, the algorithm in [18] outperforms the V-SMC-PHD
filter. However, the proposed algorithms show better perfor-
mance than [18].

In order to show how significant the difference is between
the results of the tested algorithms in Table I, the ANOVA
based F'-test [60] is applied and the significance test results
are given in Table II. The results of Sequence 45 are missing
in [18], therefore the corresponding column could not be used
in significance test. For all the significance tests, we found the
same degree of freedom (1,22) and so, the corresponding F,;¢
value for (1,22) is 4.30 from the F-distribution table given in
[60]. The p-value (or probability value) is the probability of a
more extreme result than what we actually achieved when the
null hypothesis is true. The F'-value is defined as the ratio of
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TABLE III
COMPARISON OF TRACKING RESULTS IN TERMS OF
MEAN WASSERSTEIN DISTANCE (IN PIXEL)

seq24 Tracking Tracking \% AV AVMS sparse
algorithm algorithm SMC- SMC- SMC- AVMS
[18] [15] PHD PHD PHD SMC-PHD
caml 9.02 7.20 16.96 7.94 6.67 7.45
cam2 6.4 4.80 19.17 7.59 5.24 5.73
Average 7.71 6.00 18.06 7.76 5.96 6.59

the variance of the group means to the mean of the within group
variances. The F'-test was carried out at a 5% significance level.
According to this test, the results are considered as statistically
significant if /' > F¢,;; and p-value is less than 0.05 (for a 5%
significance level). From the test results, we can observe that
the results of Table I are indeed statistically significant.

Our tracking results are also compared with those of Pham
et al. [15] where the Wasserstein distance [59] was used for
evaluating the tracking results of Sequence 24 cameras #1 and
#2. Hence, the results of [18] and ours are also evaluated in
terms of the Wasserstein distance and given in Table III. Among
the six methods, the proposed AVMS-SMC-PHD outperforms
the others.

D. Evaluations on the AMI and CLEAR Datasets

In order to show the performance of the proposed algorithms
on other datasets than AV16.3, we selected sequences from
another two multiple-subject datasets, namely, the AMI dataset
[55] and the CLEAR dataset [54].

In our proposed algorithm, it is assumed that the born particles
are generated and propagated only when a new speaker is de-
tected in terms of the DOA information derived from audio. The
main purpose of this assumption is to reduce the computational
cost induced by propagating new born particles in each time
frame. Different from the AV16.3 dataset, however, the speak-
ers in both AMI and CLEAR datasets are talking one by one.
For the visual tracker it is convenient to detect all the speakers
as the born particles are propagated in each time frame, while
in audio-visual tracking, it happens only if the speaker talks.

Therefore, to evaluate the tracking algorithms on these two
datasets, we allow the proposed audio-visual tracker to run on
the sequence from the beginning until the image frame where
each of the speakers talks at least once, and the tracking errors
were measured from this particular frame onwards. Another is-
sue about these two datasets is that the calibration information of
the cameras is not available, which prevents us from projecting
the DOA information from 3D to 2D (i.e. image plane). To allow
fair comparison, we have used noisy DOA information which
was obtained by adding noise to the results from the annotation
of the video frames.

As an example, we include the results for Sequence IS1001a,
and Sequence UKA_20060726. Some frames of the track-
ing results are shown in Figs. 13 and 14 for V-SMC-PHD
and AV-SMC-PHD. The average errors for V-SMC-PHD,
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Fig. 13.  Sequence IS1001a from AMI. The first and second row show the
results of the V-SSMC-PHD and the proposed AV-SMC-PHD filter, respectively.

Fig. 14.  Sequence UKA_20060726 from CLEAR. The first and second row
show the results of the V-SMC-PHD and the proposed AV-SMC-PHD filter,
respectively.

TABLE IV
AVERAGE TRACKING ERRORS (IN PIXEL) OF THE ALGORITHMS ON
THE CHOSEN SEQUENCES FROM THE AMI AND CLEAR DATASETS

Methods— \% AV AVMS sparse
Sequences SMC-PHD SMC-PHD SMC-PHD AVMS SMC-PHD
IS1001a 25.32 21.51 18.91 20.37
UKA_20060726 28.33 25.94 23.14 24.82

AV-SMC-PHD, AVMS-SMC-PHD, and sparse-AVMS-SMC-
PHD are summarised in Table IV.

As the speakers are talking one by one, performance differ-
ence between visual and audio-visual trackers is less significant.
In this case, the audio-visual tracker acts similarly to a visual
tracker for the silent speakers, while it is more effective for the
talking speakers.

VII. CONCLUSION

In this study, we have presented several contributions for
multi-speaker tracking. First, we have introduced a SMC-PHD
approach for tracking a variable number of speakers in a smart
room environment using audio-visual measurements. The effi-
cient distribution of the born particles based on the DOA in-
formation reduces both the computational complexity and the
estimation error. The mean-shift method is introduced to further
improve the estimation accuracy of the AV-SMC-PHD filter
by driving the particles to their neighbouring local peaks. We

2429

have also proposed the use of sparse sampling, to allow the
mean-shift to run on a subset of the particles, thus significantly
reducing the extra computational cost induced by the mean-shift
with only a very small sacrifice in estimation accuracy. The pro-
posed algorithms have been tested on the AV'16.3 dataset for
two and three-speaker scenarios, where the number of speakers
varies over time. In addition, these algorithms have been tested
with sequences from AMI and CLEAR datasets for four and
five-speaker scenarios. Experimental results demonstrated that
the proposed techniques can reliably estimate both the number
of speakers and the positions of the speakers with significant
improvement. The proposed tracking system could be further
improved by formulating the sparse sampling process with a
sparse coding framework, and extended to include other audio
information or microphone array types.
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