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Volkan Kılıç, Mark Barnard, Wenwu Wang, Adrian Hilton, and Josef Kittler

Centre for Vision, Speech and Signal Processing, University of Surrey, UK
Emails:{v.kilic, mark.barnard, w.wang, a.hilton, j.kittler}@surrey.ac.uk

ABSTRACT

Sequential Monte Carlo probability hypothesis density
(SMC-PHD) filter has received much interest in the field of
nonlinear non-Gaussian visual tracking due to its ability to
handle a variable number of speakers. The SMC-PHD filter
employs surviving, spawned and born particles to model the
state of the speakers and jointly estimates the variable num-
ber of speakers with their states. The born particles play a
critical role in the detection of new speakers, which makes
it necessary to propagate them in each frame. However, this
increases the computational cost of the visual tracker. Here,
we propose to use audio data to determine when to propagate
the born particles and re-allocate the surviving and spawned
particles. In our framework, we employ audio data as an aid
to visual SMC-PHD (V-SMC-PHD) filter by using the direc-
tion of arrival (DOA) angles of the audio sources to reshape
the distribution of the particles. Experimental results on the
AV16.3 dataset with multi-speaker sequences show that our
proposed audio-visual SMC-PHD (AV-SMC-PHD) filter im-
proves the tracking performance in terms of estimation accu-
racy and computational efficiency.

Index Terms— Audio-visual tracking, PHD filter, SMC
implementation, multi-speaker tracking

1. INTRODUCTION

The problem of detection and tracking of multiple mov-
ing speakers in indoor environments using audio-visual (AV)
modalities has attracted an increasing amount of attention in
the last decade due to its potential applications such as auto-
matic camera steering in video conferencing and individual
speaker discrimination in multi-speaker environments. Sev-
eral challenges are associated with AV tracking including es-
timation of the variable number of speakers and their states
in various conditions like occlusion, limited view of cameras,
illumination change and room reverberations.

A number of methods have been proposed to address these
challenges. The PHD filtering [1] approach as a first order
approximation of the random finite set (RFS) is a framework
that has recently emerged and has been found to be promis-
ing for multi-speaker tracking. The sequential Monte Carlo
(SMC) implementation [2] is introduced to obtain practical
solutions of the PHD filter. We investigate and modify the
standard SMC-PHD filtering algorithm aiming at improving

its computational efficiency and estimation accuracy under
challenging conditions as mentioned above. The SMC-PHD
filter uses particles to model the surviving, spawned and born
state of the speaker. The standard implementation of SMC-
PHD filter [2] in visual tracking propagates the born particles
every frame to detect the speaker present in the view, which
is computationally expensive. Here, we propose to use the
DOA information obtained from audio for the propagation of
the particles. To reduce the computational complexity and
improve the estimation accuracy, the propagation of born par-
ticles is decided based on DOA information and particles are
re-located around the line drawn upon the DOA as illustrated
in Figure 1. A similar approach has been used in [3], [4]
and [5] under particle filter framework for a fixed number of
speakers. Here, the SMC-PHD filter is used, and to the best
of our knowledge, audio information has not been previously
fused with visual information in a SMC-PHD filter as we do
here.

(a) (b)

Fig. 1. Distribution of 50 particles for visual case in (a) and
audio-visual case in (b).

To use the PHD filter, a set of random measurements is
required to estimate both the position and the number of the
targets. Random measurements can be obtained from sensors
like GPS in application of SLAM (Simultaneous localization
and mapping) [6] or microphone pairs in audio based speaker
tracking [7]. In visual tracking, however, there are no sensors
to generate random measurements except cameras. There-
fore, pre-processing of visual data is needed to find measure-
ments. There are two common ways. The first one is to use a
detector as in [8] and [9] where background/foreground (B/F)
detection algorithm is run on the frame and the centers of the
foreground objects are used as the measurements set. De-
spite being computationally expensive, this method performs
well in tracking of moving objects. However, if it is desired



to track particular parts like face, it does not work well. In
that case, face detection algorithms are needed which have a
higher computational cost than the B/F detection algorithms.
The second method is to use color histogram templates [10]
where the template is created for a single target. In this study,
we extend the template for multi-target scenario. Color his-
tograms of possible targets are stored in the template and dur-
ing the tracking it is used as the measurements set. This
method is computationally cheaper than the first method as
the template is created only once at the beginning.

The rest of this paper is organized as follows: the next
section introduces our proposed audio-visual SMC-PHD (AV-
SMC-PHD) filtering algorithm. Section 3 shows experimen-
tal results performed on the AV16.3 dataset and compares the
performance of the algorithms. Closing remarks are given in
Section 4.

2. AUDIO-VISUAL TRACKING WITH RFS

This section describes our problem formulation for multi-
speaker tracking based on the RFS framework, provides a
brief review on using color information in visual tracking, and
then introduces the proposed tracking algorithm.

2.1. RFS State Model Formulation for Multi-Speaker
Tracking

In a single speaker tracking system, the state of a speaker is
defined as x =

[
x ẋ y ẏ s

]T
, where x and y are, re-

spectively, the horizontal and vertical positions of the rectan-
gle centred around the face that we wish to track, ẋ and ẏ are,
respectively, the horizontal and vertical velocity, and s is the
scale of the rectangle centred around (x, y). The constant ve-
locity model is employed for the evolution of time dependent
state [5] ;

xk = Fxk−1 + qk (1)

where qk is the zero-mean Gaussian noise with covariance Q,
qk ∼ N (0,Q) for speaker at time frame k = 1, ...,K and F
is the linear motion model.

Here, the state of the speaker is defined as a vector with
five dimensions. Measurements can also be defined as a vec-
tor with a different dimension depending on the application.
The state and measurement of a single speaker system evolve
in time with their dimensions fixed which is not the case
for multi-speaker tracking since the number of speakers and
measurements may change. Therefore, the dimensions of the
multi-speaker state and measurements also evolve in time.

Multi-speaker state and measurement are represented by
finite collections Xk and Zk,

Xk = {x1,k, ...,xNk,k} (2)
Zk = {z1,k, ..., zMk,k} (3)

where Zk consists of Mk observations which may be cor-
rupted by noise due to clutter, andNk is the number of speak-
ers in the view.

In a single speaker Bayesian tracking, uncertainty is intro-
duced by modelling xk and zk as random vectors. Similarly,
uncertainty in multi-speaker tracking is introduced by mod-
elling the Xk and Zk as RFSs

Xk = Sk (Xk−1) ∪ Bk(Xk−1) ∪ Γk (4)
Zk = Θk(Xk) ∪ Ck (5)

where Sk(Xk−1) denotes the RFS of surviving speakers,
Bk(Xk−1) is the RFS of speakers spawned from the previous
set of speakers Xk−1 and Γk is the RFS of new speakers that
appear spontaneously at time k [2]. Θk(Xk) denotes the RFS
of the measurements generated by the speakers Xk and Ck
is the RFS of clutter or false alarms. Besides, the dynamics
in the state evolution Xk are described by the multi-speaker
transition density fk|k−1(Xk|Xk−1), while the randomness
in the observations are described by the multi-speaker like-
lihood gk(Zk|Xk). Then, the RFS formulation can be em-
ployed in the optimal multi-speaker Bayes filter by propagat-
ing the multi-speaker posterior density. However, it is com-
putationally intractable since multiple integrals are involved
in the recursion of the multi-speaker posterior. To reduce the
computational complexity, the PHD filter is proposed which
propagates the first-order moment of the multi-speaker poste-
rior instead of the posterior itself [1].

The PHD filter is defined as the intensity vk|k whose inte-
gral on any region of the state space gives the expected num-
ber of speakers. The local maxima of the PHD function in-
dicate the highest local concentration of the expected number
of speakers, which also identify the likely positions of the
speakers. The PHD filter has two iterative steps: prediction
and update. The prediction step of the PHD is defined as

vk|k−1 (xk) = γk (xk)

+

∫
φk|k−1 (xk|xk−1) vk−1|k−1 (xk−1) dxk−1 (6)

where γk (xk) denotes the intensity function of the new
speaker birth RFS Γk, and φk|k−1 (xk|xk−1) is the analog
of the single-speaker state transition probability

φk|k−1 (xk|xk−1) = pS,k (xk−1) fk|k−1 (xk|xk−1)

+ βk|k−1 (xk|xk−1) (7)

where pS,k (xk−1) is the survival probability for the speakers
still existing and fk|k−1 (xk|xk−1) is the single-speaker state
transition density. The intensity function of RFS Bk(Xk−1) is
denoted by βk|k−1 (xk|xk−1) for the speaker spawned at time
k with previous state xk−1. The PHD update is defined as

vk|k (xk) = (1− pD,k) (xk) vk|k−1 (xk)

+
∑

zk∈Zk

pD,k (xk) gk (zk|xk) vk|k−1 (xk)

κk (zk) +
∫
pD,k (xk) gk (zk|xk) vk|k−1 (xk)

(8)

where pD,k(xk) is detection probability and gk (zk|xk) is the
single-speaker likelihood defining the probability that zk is



generated by a speaker state xk. The intensity of clutter RFS
Ck is defined as κk (zk) which is κk (zk) = λu(zk), where λ
is the average number of Poisson clutter points per scan and
u(zk) is the probability distribution of each clutter point.

With the multiple integrals in the PHD prediction (6) and
update (8) steps, there are no closed-form solutions in gen-
eral. To obtain a numerical solution for the integrals in PHD
recursion, SMC method has been proposed which approxi-
mates the PHD with a set of random samples (particles) [2].

Suppose that at time step k−1, the PHD vk−1|k−1(xk−1)

is approximated by
{
w

(i)
k−1,x

(i)
k−1

}Lk−1

i=1
ofLk−1 particles and

their corresponding weight as

vk−1|k−1(xk−1) ≈
Lk−1∑
i=1

w
(i)
k−1δ

(
xk−1 − x

(i)
k−1

)
(9)

Prediction of the PHD vk|k−1 (xk) is obtained with weighted

particles
{
w̃

(i)
k|k−1, x̃

(i)
k

}Lk−1+Jk

i=1
(The quantities with tilde

are discussed later.)

vk|k−1 (xk) ≈
Lk−1+Jk∑
i=1

w̃
(i)
k|k−1δ

(
x̃k − x̃

(i)
k

)
(10)

where Jk new particles arise from birth process. By substi-
tuting (9) into (6) and then applying importance sampling, we
get predicted weights w̃(i)

k|k−1 ;

w̃
(i)
k|k−1

=


φk|k−1

(
x̃
(i)
k ,x

(i)
k−1

)
w

(i)
k−1

qk

(
x̃
(i)
k |x

(i)
k−1,Zk

) , i = 1, ..., Lk−1

γk

(
x̃
(i)
k

)
Jkpk

(
x̃
(i)
k |Zk

) , i = Lk−1 + 1, ..., Lk−1 + Jk

(11)

Practically, Lk−1 particles are first drawn from importance
sampling qk

(
x̃
(i)
k |x

(i)
k−1,Zk

)
to propagate the particles from

time step k − 1, then Jk particles from the new born impor-
tance function pk

(
x̃
(i)
k |Zk

)
are drawn to model the state of

new speakers appearing in the scene.
The update step of the PHD recursion is obtained by up-

dating the weight of the predicted particles when the likeli-
hood gk

(
zk|x̃(i)

k

)
is available. Then vk|k−1 (xk) is substi-

tuted into (8) and the predicted weights
{
w̃

(i)
k|k−1

}Lk−1+Jk

i=1
are updated according to

w̃
(i)
k =pM (x̃(i)

k

)
+
∑

zk∈Zk

pD

(
x̃
(i)
k

)
gk

(
zk|x̃(i)

k

)
κk (zk) + Ck (zk)

 w̃(i)
k|k−1

(12)

where

Ck (zk) =

Lk−1+Jk∑
j=1

pD

(
x̃
(j)
k

)
gk

(
zk|x̃(i)

k

)
w

(j)
k|k−1 (13)

Note that Jk new particles, sampled for the born speakers at
each iteration, are added to the old ones Lk = Lk−1 + Jk
which causes the number of particles to grow over time and
makes the PHD filter inefficient. In addition, the low weight
particles need to be removed and the particles with high
weights should be duplicated in order to concentrate the par-
ticles on the zones around the targets. To this extent, a re-
sampling step is performed after the update step. Lk particles

are resampled from
{
w̃

(i)
k /N̂k|k, x̃

(i)
k

}Lk−1+Jk

i=1
where N̂k|k is

the total mass and N̂k|k =
∑Lk−1+Jk
i=1 w̃

(i)
k . Lk is estimated

by Lk = ρN̂k|k where ρ is the constant number of particles
per speaker. Therefore the complexity of the SMC-PHD fil-
ter increases linearly with the number of speakers. After the

resampling step, the new weights of set
{
w

(i)
k ,x

(i)
k

}Lk

i=1
are

normalized to preserve the total mass.

2.2. Color Likelihood Model

The color information of the state xk is represented using a
color histogram. Let the speaker candidate be defined with the
rectangle centred around the location (xk, yk) on the frame.
This rectangle is converted to color histogram q̂(xk) in or-
der to calculate its similarity with the reference speaker mod-
els. In multi-speaker tracking, we have many color models
of speakers

{
r
(u)
1 , r

(u)
2 , ..., r

(u)
M

}
where u is the index of his-

togram bins. The color similarities between speaker candi-
date and reference models are calculated in terms of the Bhat-
tacharyya distance.

Dm(xk) =

√√√√1−
U∑
u=1

√
q̂(u)(xk)r

(u)
m (14)

Assuming that noise on the color likelihood function is Gaus-
sian, then the likelihood function of each measured color his-
togram can be written as [11]:

gm(zk|xk) ∝ N (zk; 0, σ2
c )

=
1

σc
√

2π
exp

{
−Dm(xk)2

2σ2
c

}
(15)

where σ2
c is the variance of noise for the color likelihood.

2.3. Proposed AV-SMC-PHD Filtering

The way we introduce the DOA data into SMC-PHD filter is
based on [3] and [5] where the efficiency of the particles is
improved with DOA information under a particle filter frame-
work. The DOA is used to draw a line, named as DOA line,



from the center of microphone array to a point in the image
frame estimated by the projection of DOA to 2D image plane.
Then, all particles are re-allocated around the DOA line. De-
tails on projecting 3D DOA information to 2D can be found
in [3] and [5].

Here, DOA data is not used in the same way for all parti-
cles as in [3] and [5], instead the contribution of DOA infor-
mation is varied by the type of the particles. In the RFS, multi
speaker state is defined in equation (4) as the union of surviv-
ing, spawned and born particles in the SMC-PHD filter. In
our proposed algorithm, the born particles are generated only
when the detection of a new speaker occurs. The born parti-
cles are uniformly distributed around the DOA line as illus-
trated in Figure 1 (b). The surviving and spawned particles are
also concentrated around the DOA line if DOA data exists at
that time. Although for a short silence, the missing DOA data
is completed by interpolation, DOA data will be lost in the
case where the speaker stops talking for a long time. In that
situation, our proposed algorithm continues tracking without
the DOA information. Reallocating the particles around the
DOA line is likely to increase the possibility of speaker de-
tection since the DOA indicates the approximate direction of
the sound emanating from the speaker.

The state vector used for surviving and spawned parti-
cles is defined as x̃s,k for time k since DOA information is
used for surviving and spawned particles in the same way.
In addition, born particles are defined as x̃b,k. In each it-
eration, surviving particles from the previous iteration and
the particles spawned from them are distributed by a dy-
namic model given in equation (1). More details about the
generation of surviving, spawned and born particles can be
found in [7] and [2]. If the DOA exists in current time, the
DOA line is drawn [3] and perpendicular Euclidean distances
dk =

[
d
(1)
k ... d

(Lk−1)
k

]
of the particles to the DOA line

are calculated. In the case that multiple DOA lines exist, the
closest DOA line is chosen for the particles as long as the
distance to the DOA line is under a pre-determined threshold
value. It is required since one speaker may keep quiet while
another speaker is still talking which causes the particles be-
longing to silent speaker to converge to the DOA line that be-
longs to another speaker. Then, the movement distances d̂k
of the particles are calculated as follows [5]:

d̂k =
dk
‖dk‖1

� dk (16)

where � is the element-wise product and ‖.‖1 is the `1 norm.
d̂k is used to relocate the particles x̃s,k to around the DOA
line:

x̃s,k = x̃s,k ⊕ hkd̂k (17)

where ⊕ is the element-wise addition and hk =[
cos(θk) 0 sin(θk) 0 0

]T
. It is multiplied by hk

to update only the position (x, y) of the particle state vector[
x ẋ y ẏ s

]T
in order to provide the perpendicular

movement to the DOA line. After that, new speaker case is
checked using the DOA information. If the number of DOA
lines is greater than the number of estimated speakers in
k − 1, it means a new speaker appears in the scene. Then Jk
born particles x̃b,k are generated and distributed uniformly
around the new DOA line. All particles are combined under
x̃k and the prediction step is employed to calculate the
weights of particles w̃k|k−1. After the estimation of color
likelihood using equation (15), the update step is performed
to calculate w̃k. The total mass, which gives the number of
estimated speakers, is calculated by summing the weights of
the particles. After the particles are resampled, then positions
of the estimated speakers are estimated using the clustering
algorithm. Lastly, the identity of the speakers is detected by
measuring the similarity between the color histogram of the
estimated speakers and the reference speakers models.

3. EXPERIMENTAL RESULTS

In this section, we evaluate the SMC-PHD algorithm on the
AV16.3 dataset for AV tracking. First, the experimental setup
and the performance metric for tracking error analysis are de-
scribed, and then the comparative results between V-SMC-
PHD and AV-SMC-PHD are discussed.

3.1. Setup and Performance Metric

The SMC-PHD was tested using the AV16.3 corpus developed
by the IDIAP Research Institute [12]. The corpus consists of
subjects moving and speaking at the same time whilst being
recorded by three calibrated video cameras and two circular
eight-element microphone arrays. The audio was recorded at
16 kHz and video was recorded at 25 Hz. They were synchro-
nized before being used in our system. Each video frame is a
colour image of 288x360 pixels. In the sequences, the speak-
ers wear a ball for annotation but in our application, this ball
is never used.

In this paper, we used only two multi-speaker sequences
because of the space constraints. The first one is Sequence
24 (camera #1) where two moving speakers are walking back
and forth, crossing the field of view twice and occluding each
other. Sequence 45 (camera #3) is the second sequence where
three moving speakers are occluding each other for many
times. In these two sequences, the speakers are speaking con-
tinuously and the number of speakers is changing up to 3.
Therefore, with these two sequences, we are able to evalu-
ate the proposed algorithm on the following two challenging
tracking scenarios: a variable number of speakers and speaker
occlusion.

The parameters for the SMC-PHD are set similar to [9],
[10] as: pD = 0.98, pS = 0.99, λ = 0.26 and σc = 0.1. The
uniform density u is (360× 280)−1 and the number of parti-
cles per speaker is ρ = 50. As a performance metric, the well-
known OSPA-T (Optimal Subpattern Assignment for Tracks)
metric [13] is chosen which is a mathematically consistent
metric for the evaluation of multi-speaker tracking systems.



The OSPA-T is based on OSPA metric [14] and extends it
for tracking management evaluation. The OSPA employs a
penalty value to transfer the cardinality error into the state er-
ror and is able to present the performance on source number
estimation as well as speaker position estimation.

3.2. Results and Discussions

To test the computational efficiency of the proposed and base-
line algorithms, we ran experiments on Sequence 24 and 45
where the number of particles per speaker changes from 25 to
500 in Intel core i7 2.2 GHz processor with 8 GB memory un-
der Windows 7 operating system. Experiments are repeated
10 times and average time costs are given in Figure 2.

Fig. 2. Computational cost

The computational cost increases with the number of par-
ticles and the cost of the V-SMC-PHD filter is larger than
that of the AV-SMC-PHD filter. Time cost for Sequence 45
is expected to be higher than Sequence 24 since the maxi-
mum number of speakers is three in Sequence 45 while it
is two in Sequence 24. It is true that using audio informa-
tion brings some computational cost to our proposed tracking
system. However, Figure 2 shows this cost is negligible and
makes the proposed algorithm computationally more efficient
than the baseline algorithm. The following experiments are
about the estimation accuracy of the algorithms. Some frames
from Sequence 24 are shown in Figure 3. The first row shows
the results of V-SMC-PHD filter, and the second row for AV-
SMC-PHD filter.

In the first column, only one speaker is detected by the
V-SMC-PHD filter while both speakers are detected by our
proposed AV-SMC-PHD filter. After occlusion in the second
column, our proposed AV-SMC-PHD filter tracks the speak-
ers more accurately. There is no DOA information in the
third column, but still our proposed AV-SMC-PHD filter man-
ages to track both speakers while the V-SMC-PHD filter lost
one speaker. Figure 4 shows the estimation of the number of
speakers.

Here, the number of active speakers is changing from 2 to
0 and our proposed AV-SMC-PHD filter shows better perfor-
mance than the V-SMC-PHD filter. For visualization, down-
sampling is performed to the plots.

The same experiments are conducted on Sequence 45 and
frames are given in Figure 5. Here, the three speakers occlude

Fig. 3. Sequence 24 (camera #1): Two speakers with occlu-
sions. The first row shows the results of the V-SMC-PHD fil-
ter and the second row shows tracking results of our proposed
AV-SMC-PHD filter.

Fig. 4. Number of speakers estimation for Sequence 24.

each other many times and the AV-SMC-PHD filter is able to
detect and follow all speakers even after occlusions.

Fig. 5. Sequence 45 (camera #3): Three speakers with oc-
clusions. V-SMC-PHD performance is shown in the first row,
and AV-SMC-PHD shows better performance in the second.

The number of speakers estimated for Sequence 45 is
given in Figure 6. It can be observed that the performance
of the V-SMC-PHD filter is not as good as the AV-SMC-PHD
filter.

To see the performance difference between the filters, the
OSPA-T errors are plotted for Sequence 24 and Sequence 45
in Figure 7-(a) and (b), respectively. To get more reliable
results, the experiments are repeated 10 times and the av-
erage error is plotted. In Figure 7-(a), average OSPA-T er-
ror is 27.12 for V-SMC-PHD and 17.71 for AV-SMC-PHD.
It means that AV-SMC-PHD offers 34.71% improvements
over V-SMC-PHD in Sequence 24. The average OSPA-T er-
rors for Sequence 45 in Figure 7-(b) are 39.09 and 28.43 for
V-SMC-PHD and AV-SMC-PHD, respectively. Again, AV-



Fig. 6. Number of speakers estimation for Sequence 45.

SMC-PHD filter performs better with a 27.27% improvement.
It is clearly seen that adding audio information to the visual
tracker leads to an increase in performance.

(a) (b)

Fig. 7. Performance comparison in terms of OSPA-T error.

4. CONCLUSION

In this study, we have proposed a SMC-PHD approach for
tracking a variable number of speakers in a smart room envi-
ronment using audio-visual measurements. Efficient distribu-
tion of the born particles based on the DOA information re-
duces both the computational complexity and the estimation
error. The proposed AV-SMC-PHD algorithm has been evalu-
ated on two different sequences from the AV16.3 dataset. Ex-
perimental results demonstrated that the proposed technique
can reliably estimate both the number of speakers and the po-
sitions of the speakers with significant improvement in a chal-
lenging tracking scenario such as occlusions.
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