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ABSTRACT

This technical report describes the methods used for classifying
sound events as part of Task 2 of the DCASE 2018 challenge. The
data used in this task requires a number of considerations, including
how to handle variable-length audio samples and the presence of
noisy labels. We propose a number of neural network architectures
that learn from mel-spectrogram inputs. These baseline models
involve the use of preprocessing techniques, data augmentation, and
pseudo-labeling in order to improve their performance. They are
then ensembled using a popular technique known as stacking. On the
test set used for evaluation, compared to the baseline mean average
precision score of 0.694, our system achieved a score of 0.951.

Index Terms— Audio classification, convolutional network,
recurrent network, deep learning, data augmentation, stacking

1. INTRODUCTION

Audio classification is the task of identifying sounds of interest in
a given audio signal, where the sounds to be detected are typically
defined in advance. The Detection and Classification of Acoustic
Scenes and Events (DCASE) [1] is a recurring challenge with several
tasks pertaining to the classification of audio. This paper describes
the system we used to participate in DCASE 2018, Task 2 [2].

In Task 2, participants are provided with a dataset developed
by the Freesound initiative [3]. This dataset contains a variety of
classes, including domestic sounds, warning sounds, and various
musical instruments. It is comprised of 41 classes, and each audio
clip is associated with exactly one class; therefore, it is a single-label
classification problem. There is a labeled training set of 9473 audio
clips and a test set of 9400 audio clips. The availability of labels
allows supervised machine learning methods to be used.

In recent times, the state-of-the-art in machine learning has come
from research in neural networks [4]. Audio classification is no
exception, with many of the top submissions in DCASE challenges
utilizing such architectures [5, 6, 7, 8]. We follow this trend and
use two types of neural networks: a convolutional neural network
(CNN) and a convolutional-recurrent neural network (CRNN). Two
variants of each type are used, giving four architectures in total. The
purpose of training multiple models is to use an ensembling method
to combine their predictions. The rationale is that the strengths of
each model can be consolidated. To achieve this, we use a popular
technique called stacking [9].

Although the training examples are labeled, only 40% of them
are manually verified. It is assumed that approximately 30% to 35%
of the unverified labels are incorrect. This problem can be formulated
as a form of label noise, for which there is considerable research

in the field. These wrongly-labeled examples can negatively affect
the performance of the system and should be handled appropriately.
Our method is rather simple, and relies on a combination of sample
weighting and pseudo-labeling.

Other than the unverified labels, there are a number of other
points to note. Firstly, the lengths of the audio clips vary greatly,
from 0.3 s to 30 s. This is a problem because many training models
expect a fixed-length input. Another consideration is the saliency of
the inputs; does the entire clip contain important information or is it
only specific parts? We address both these issues later in the paper
and present our findings.

The rest of this paper is organized as follows. In Section 2,
the preprocessing and feature extraction methods are described. In
Section 3, the neural network architectures, training methodology,
and ensembling algorithm are presented. The results are then given
in Section 4. Finally, we summarize in Section 5.

2. PREPROCESSING AND FEATURE EXTRACTION

Prior to training, we applied preprocessing to the inputs followed by
feature extraction. As mentioned earlier, the audio clips may contain
sections that are uninformative. Upon analyzing the clips, although
there was very little background noise, some of them contained
sections of silence. Long sequences of silence were deemed to be
unhelpful, and were therefore detected and removed. More precisely,
the non-silent sections of the signal were extracted and considered as
separate inputs. Silence was detected by segmenting the audio signal
into frames and thresholding the root mean square (RMS) energy of
the frames. We required the length of the silence between separate
sections to be at least 500ms. Moreover, 500ms of “silence” was
retained at the beginning and end of each section to prevent over-
cropping of information. Refer to Figure 1.

In terms of the silence threshold, we chose two values: a default
value of −48 dBFS and a less-aggressive value of −56 dBFS. We
used the latter for transient sounds, as the default was found to over-
crop the sounds. Note that neither value is supposed to match the
threshold of hearing; it would be more correct to say that it detects
quiet parts of the audio that are likely unimportant.

After silence removal, the extracted non-silent sections, which
are now considered as separate inputs, were downsampled from
44.1 kHz to 32 kHz and transformed into log-scaled mel-frequency
(log-mel) spectrograms. Log-mel features are a popular choice
for classification using neural networks, as they benefit from the
additional information that is retained relative to mel-frequency
cepstrum coefficients. As shown in Table 1, two sets of parameters
were used to capture multiple resolutions.
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Figure 1: Illustration of the silence removal process on the file
“071e836c.wav”, which is 13 s in length. The non-silent sections that
are extracted are highlighted in gray. The length of silence between
sections must be at least 500ms.

Table 1: Log-mel spectrogram parameters

Parameter Configuration A Configuration B

Sample rate 32 000Hz 32 000Hz
Window size 1024 512

Hop size 512 256
Mel bands 64 64

Following feature extraction, each feature vector was split into
chunks of a fixed size, which resolves the problem that audio clips
vary in length. We chose a chunk size of 128× 64, where the first
axis is the temporal dimension. This corresponds to 2 s chunks and
1 s chunks for configurations A and B, respectively (cf. Table 1). In
our system, the chunks were non-overlapping, as this gave better
results. When the length of the feature vector was less than the chunk
length, it was padded. When it was greater, but not evenly divisible
by the chunk length, an additional chunk was added to align with the
end of the feature vector to include the remainder.

3. TRAINING AND INFERENCE

In order to utilize the training set that was provided for this task, we
used two types of neural networks: CNNs and CRNNs. For each
type, we also used two variants: one using standard convolutions
and another using gated convolutions. Since there are two log-
mel configurations, this gives eight training models in total. In the
subsections to follow, we describe the architectures, the training
methods, and ensembling algorithm.

3.1. Neural Network Architectures

The neural network architectures are outlined in Table 3. Beginning
with the standard CNN, it is essentially equivalent to the VGG13
network proposed in [10], hence the name. Each convolutional block
consists of two convolutional layers followed by a max pooling layer
that halves each spatial dimension. After each convolution, which
uses a rectified (ReLU) activation function [11], batch normalization
[12] is applied as a form of regularization. Following the convolu-
tional blocks, each channel is averaged to a scalar value. Finally, a
softmax layer is used to generate the predictions.

The CRNN architecture is an extension of VGG13. Instead
of averaging across both spatial dimensions after the convolutions,

Table 2: Training parameters

Parameter Value

Batch size 128
Learning rate (LR) 0.0005

LR decay factor 0.9
LR decay rate 2

only the frequency dimension is averaged initially. A bidirectional
recurrent layer [13] is then applied to output a feature vector for each
time step, and these feature vectors are then averaged. By using a
recurrent layer, the temporal dynamics of the input can be learned.
Indeed, our experiments suggested that it helped.

The other two architectures are GCNN and GCRNN, which are
variants of VGG13 and CRNN, respectively. The difference is that
each convolutional layer is replaced with a gated convolutional layer
[14]. The idea of a gated layer is inspired by the gating mechanisms
found in recurrent neural networks [15, 16], and is used to control
the information that is propagated to deeper layers. This mechanism
has been shown to produce good results for similar tasks [7], and it
has worked well for this task too.

To train the various models, the training set was split into five
cross-validation folds, ensuring that there was a similar number of
verified examples in each fold. The cross-entropy function was used
as the training loss and Adam [17] was used as the gradient descent
algorithm. Refer to Table 2 for the values of the free parameters.
Decay rate is the number of epochs until the learning rate is decayed.

In terms of generating the predictions, the top four epochs were
selected based on performance on the validation set. The metric used
was the mean average precision (MAP) score. Recalling that the
inputs to the neural networks are chunks, and that the chunks are
from sections of the original audio clip (cf. Section 2), the chunk
predictions need to be merged to produce clip-level predictions. This
was achieved using the geometric mean, as this is less sensitive to
outliers than the arithmetic mean. With the clip-level predictions,
the top four epochs were merged using the arithmetic mean.

3.2. Learning from Noisy Labels

To account for the unverified labels, we experimented with a number
of techniques. The first, known as pseudo-labeling, was to relabel
the unverified examples automatically using a previously-trained
classifier. For pseudo-labeling to be effective, the error rate of the
classifier should be lower than the noise rate of the original labels,
which was stated to be around 30%. We used the same system
described in this paper as the relabeling classifier, except that it was
trained with the original labels.

The second technique was to weight the training loss function for
examples that were unverified. If an example is incorrectly labeled,
the computed loss will be incorrect and should be disregarded. Of
course, we do not know whether it is correct or not if the label is
unverified. Therefore, we chose to use a weight, w ∈ (0, 1), that
would at least lower the magnitude of the loss. This was set to 0.7
for the original labels and 0.9 with pseudo-labeling.

The final technique, similar to pseudo-labeling, was to “promote”
examples from unverified to verified if a previously-trained classifier
agreed with the labels with high confidence. We used a confidence
threshold of 0.7 to promote examples. As this has no effect on its
own, it needs to be used in tandem with the second technique.
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Table 3: Description of the neural network architectures. The parameters used in the convolutional blocks are encapsulated by square brackets.
The first two parameters in each line are the kernel size and the number of filters. “BN” refers to batch normalization. “GLU” refers to the use
of gated linear units, as described in [14]. “Bi-GRU” refers to using bidirectional gated recurrent units [16].

Feature Size VGG13 CRNN GCNN GCRNN

128× 64 Log mel spectrogram

64× 32

[
3× 3, 64,BN,ReLU
3× 3, 64,BN,ReLU

] [
3× 3, 64,BN,ReLU
3× 3, 64,BN,ReLU

] [
3× 3, 64,BN,GLU
3× 3, 64,BN,GLU

] [
3× 3, 64,BN,GLU
3× 3, 64,BN,GLU

]
2x2 Max Pooling

32× 16

[
3× 3, 128,BN,ReLU
3× 3, 128,BN,ReLU

] [
3× 3, 128,BN,ReLU
3× 3, 128,BN,ReLU

] [
3× 3, 128,BN,GLU
3× 3, 128,BN,GLU

] [
3× 3, 128,BN,GLU
3× 3, 128,BN,GLU

]
2x2 Max Pooling

16× 8

[
3× 3, 256,BN,ReLU
3× 3, 256,BN,ReLU

] [
3× 3, 256,BN,ReLU
3× 3, 256,BN,ReLU

] [
3× 3, 256,BN,GLU
3× 3, 256,BN,GLU

] [
3× 3, 256,BN,GLU
3× 3, 256,BN,GLU

]
2x2 Max Pooling

8× 4

[
3× 3, 512,BN,ReLU
3× 3, 512,BN,ReLU

] [
3× 3, 512,BN,ReLU
3× 3, 512,BN,ReLU

] [
3× 3, 512,BN,GLU
3× 3, 512,BN,GLU

] [
3× 3, 512,BN,GLU
3× 3, 512,BN,GLU

]
2x2 Max Pooling

4× 2

[
3× 3, 512,BN,ReLU
3× 3, 512,BN,ReLU

] [
3× 3, 512,BN,ReLU
3× 3, 512,BN,ReLU

] [
3× 3, 512,BN,GLU
3× 3, 512,BN,GLU

] [
3× 3, 512,BN,GLU
3× 3, 512,BN,GLU

]
- Bi-GRU, 512, ReLU - Bi-GRU, 512, ReLU

Global Average Pooling

Softmax (41 Classes)

3.3. Data Augmentation

To reduce overfitting during training, data augmentation is a popular
approach. We used a method called mixup [18] to achieve this.
Mixup operates on the fly by randomly mixing a pair of inputs and
their associated target values. Consider a pair of inputs, x1 and x2,
and their one-hot-encoded target values, y1 and y2. To mix these, a
parameter, λ ∈ (0, 1), is used to create convex combinations.

x = λx1 + (1− λ)x2. (1)

y = λy1 + (1− λ)y2. (2)

The output, x, y, is then used as the training example rather than the
original examples. In our system, the parameter λ was a random
variable from the Beta distribution B(1.0, 1.0), and a different value
was used for each mixing pair. Note that because we used sample
weights (cf. Section 3.2), they were also mixed in the same manner.

3.4. Ensembling

To combine the predictions of the different models, we used a method
known as stacking [9, 19, 20]. In this method, the base model
predictions are used as features to train a second-level classifier. The
output of a base model is anN×K vector of probabilities, whereN
is the number of data samples and K = 41 is the number of classes.
By concatenating the outputs of the models, the result is an N × 8K
vector; this is the input of the new classifier.

As the validation sets constitute the training set, the validation
set predictions were used to generate the features for the training set.
Similarly, the test set predictions were used as the test set features.

We used logistic regression with an L2 penalty as the second-level
classifier. It was configured to use class weights to compensate for
class imbalance and sample weights as described in Section 3.2.

4. RESULTS

To assess the performance of our system, we evaluated the training
set and test set predictions. The former is possible because we used
cross-validation folds. We also only evaluated the manually-verified
training examples. The metric used to assess the performance is the
mean average precision (MAP@3) score, which is defined as

MAP@3 =
1

N

N∑
n=1

min{K,3}∑
i=1

P (i), (3)

where N is the number of data samples, K = 41 is the number of
classes, and P (i) is the precision at cutoff i.

The results for the training set are shown in Table 4. The systems
that are compared are the single models (log-mel configuration A
only), an arithmetic-mean ensemble of the models, and the stacked
ensemble described in the previous section. It can be seen that the
mean ensemble performs much better than all of the single models –
by almost 2%. However, it is the stacked ensemble that performs the
best, with a MAP@3 score of 0.972. The weight-learning capability
of stacking, with respect to model and class, appears to help.

In Table 5, the results for the test set are presented. This is for
the private subset of the dataset. We look at the 8-model stacked
ensemble compared to a smaller 4-model version. In the latter, the
VGG13 and CRNN architectures are omitted. The results of both
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Table 4: Training set results. Only the results of configuration A
models are given to highlight the difference in architectures.

Model MAP@3

VGG13 0.950
GCNN 0.951
CRNN 0.952
GCRNN 0.958
Arithmetic Mean 0.968
Stacking 0.972

Table 5: Test set results comparing the 8-model stacked ensemble
with a 4-model version that excludes VGG13 and CRNN models.

Model MAP@3

4-Model Stacking 0.948
8-Model Stacking 0.951

systems are far superior to the competition’s baseline system, which
scored 0.694. Although the additional models in the 8-model version
help, the difference is minor. This can be explained by the lack of
diversity that the omitted models have to offer.

5. CONCLUSION

This report described a system used to participate in Task 2 of the
DCASE 2018 challenge. A number of steps were involved in feature
extraction, including silence removal, computing mel-spectrograms,
and splitting the feature vectors into chunks. We used eight neural
network models and combined their predictions using stacking. To
ameliorate the effects of label noise, a combination of loss function
weighting and pseudo-labeling was used. To reduce overfitting, we
used a data augmentation technique called mixup. On the test set,
the system achieved a mean average precision score of 0.951, which
surpassed the baseline by a large margin.
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