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Sparse Representation

K<m<n
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Build Good Dictionaries

@ Predefined dictionaries:

» DCT/Wavelet dictionaries: image compression.
» Time-frequency dictionaries: audio presentation.

@ Dictionaries learned directly from the data:

Denoising, inpainting, - - -

Compressed sensing: imperfect calibration.
Spectrum surveillance: off-grid frequencies.
Blind source separation: unknown dictionaries.
Machine learning: feature selection.

vV vy vy VvYy
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Dictionary Learning
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Part I: Outline

Dictionary learning: an optimization framework

@ Two stage procedure

» Sparse coding
» Dictionary update

@ Dictionary update

» MOD
» K-SVD
» SimCO

@ Singularity issue

» How to address the singularity issue
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A Two Stage Procedure

Fix D, find a sparse X.

Update D.

'

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) | Dict. Learning: An Optimization Framework



Sparse Coding

Y.

min || X||, st. |Y — DX} <e.
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Sparse Coding

Y.

min || X||, st. |Y — DX} <e.

Greedy algorithms:
@ OMP v, pai, et al. 1993; J. Tropp 2004
@ Subspace pursuit (SP) w.paiand 0. itenkovic 2000 COS@MP' b. Needel and J. Tropp 2009
@ |HT T Biumensath and M. Davies 2000
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Sparse Coding: Other Approaches

4y —approach . Candes, et al. 2005; Candes, et al. 2006; Donoho 2006

° min | X||; st |Y - DX|% < e
° min [[Y — DX |7+ X[

Bayesian approach:
@ Relevance vector machine (RVM) w. Tipping 2001
@ Bayesian compressed sensing (BCS) s. i etal. 2008
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Dictionary Update: the Formulation

@ Constraints:
» Fixed sparsity pattern

Q2 :{(i7j): Xi,j#o}v
XQ = {X Xi,j ZO, V(Z,j) S QC}

» Unit norm codewords
D={D: |Dyl,=1, Y€ [d]}.

@ Dictionary Update:

min Y - DX|3%.
DeD, XeXq
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The MOD MethOd K. Engan and S. Husoy 1999

min Y - DX|3.
DeD, XeXq

MOD: least squares

@ Fix D, solve for X:
Y -DX
mln I ||F

@ Fix X, solve for D:
in |[Y - DX||%.
min || HF

© (Optional) Normalization:
D:,i = D:,i/ HD,’LHQ .
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Normalization Matters

o m=16, d=32, S=4, # of realization=200, # of iterations=400
10 l T T T T T
,,,u‘
" B MOD
n,r — % — Normalized MOD
107t STRTS 1
= ‘o
N=I.I. . :
x |l
e K
~
z = * b
= _ TR - o
107 Hommge B i
> S i =
o o ﬁ"v.,‘!
‘a
1073 i i i i i
60 70 80 90 100 110 120

n : # of training samples
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The K'SVD MethOd M. Aharon, et al. 2006

min _ ||[Y - DX|)%.
DeD, XeXg

For each column:
Update: this column in D & the corresponding row in X.
D X

. S E—

Fix: other columns in D & the corresponding rows in X.
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K-SVD: Details

Y - DX|?
=Y = D. ;X2 — D.; X, |?
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K-SVD: Details
Y - DX||?
=Y - D:,.;‘;éiX.faéét.,: —D.;X;.|?
=Y, — D.; X;.|

D:,i
|:|]
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K-SVD: Details
Y - DX|?
=4Y—D#Jﬁg—Dm&W
= HK - D:,iXi,:H

2
Z(ﬁ%J—Dm&JH+C
Y, D:,i Xi,i
:c!:!::

Il

Il

Il

t
N

J J
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K-SVD: Details

Y - DX|?
=Y = D. ;X2 — D.; X, |
= ||V, - D.; X, °

2
_ H(YT):J _ D;,iXZ-JH +e

(Yr). 7 D.; Xz
I
[ ——

Rank-one matrix
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K-SVD: Details

Y - DX|?
=Y = D. ;X2 — D.; X, |
=V, - DX, °

2
_ H(YT):J _ D;,iXZ-JH +e
D.;, X7
I
[ —
Rank-one matrix

(Y2). 7

SVD: optimal rank-one matrix approximation.

A =Y Nul AM>A > >N,
~ Alulvf
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The SImCO Formulation w oa eta 2012

min _ ||Y - DX|%
DeD, XeXq
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The SImCO Formulation w oa eta 2012

min _ ||[Y - DX|%

DeD, XeXq
= pin min |[Y - DX
_ ) #(D)

~ BB/

X is a function of D: X (D)

Y,

j D.z Xz,j

M-

Xz;(D)=D!,Y;
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The Objective Function f (D)
f(D) =Y — DX (D)|%, where X (D) = D'Y.

@ Simultaneous Update:
» Update D = X (D) is also updated.

@ Not convex in D.
Example:
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Update the Dictionary

min f (D) where D = {D € R™*“ : unit columns}.
DeD
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Update the Dictionary

By /(D)

where D = {D € R™*“ : unit columns}.
Two ways to ensure D € D:
Option 1:

dy.

Aoy = dy +ad

/
k+1
Ay

i1/l
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Update the Dictionary

min f (D) where D = {D € R™*“ : unit columns}.
DeD

Two ways to ensure D € D:
Option 1:

disa
dy;
d),, =di+ad

di1 = d;ﬁ»l/”d;ﬁ»lu
Option 2: (our choice) A edeiman, etal. 1998
5
dy,

dy41 =djpcosa
+(8/|16]) sina

May 2013
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Connections to MOD and K-SVD

@ MOD: a special case of SIimCO.

» A Gauss-Newton method to solve SimCO.
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Connections to MOD and K-SVD

@ MOD: a special case of SimCO.
» A Gauss-Newton method to solve SimCO.

@ K-SVD: also a special case of SimCO.
min min [[Y — DX |7

y
min min |Y — DX|7
D:,i Xi,:
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Performance: the Ideal Case

The ideal scenario:
@ Nonoise: Y = DiueXirue-

@ True sparsity pattern is known.
ExpectY — DX = 0.
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Performance: the Ideal Case

The ideal scenario:
@ Nonoise: Y = DiueXirue-

@ True sparsity pattern is known.
ExpectY — DX = 0.

However,

@ No algorithm is guaranteed to find a global minimizer.
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Performance: the Ideal Case

The ideal scenario:

@ No noise: Y = DirueXirue-

@ True sparsity pattern is known.
ExpectY — DX = 0.

However,
@ No algorithm is guaranteed to find a global minimizer.

Reason:

@ Most failures are due to singular points.
» Vf (D) O0.
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Singular Points: lllustrative Examples

f(D) =minxexr |Y — DX|%.
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Singular Points: lllustrative Examples

f(D) =minxexr |Y — DX|%.

An artificial example
f(d) =min, |1 —d-z|?

[0 ifd#0
“\1 ifd=0 "
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Singular Points: lllustrative Examples
f(D) =minxex |Y — DX||5.

A more realistic example
2

- [2]-2 )

€ i)
Yy D(e)
[0 ife#0
11 ife=0"

if
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Singular Points: a More Concrete Example

0 07 O

1
700 7
Given Y = U and X =0 7 0 7],
00 —01 1
0o o0 ? 7
00 —01 1

find D and X suchthatY = DX.
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Singular Points: a More Concrete Example

SR TEYE
GivenY = i and X =0 7 0 7],
0 0 —0.1 1
0o o0 7?7 7?
0 0 —0.1 1
find D and X suchthatY = DX.
Optimal solution:
o o
D,y = i and Xope = [ 0 1 0 7
0.0 -01 001 -10
0 0 —0.1
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Singular Points: a More Concrete Example

S ITE
GivenY = i and X =0 7 0 7],
00 —01 1
0o o0 7 7
0 0 —-01 1
find D and X suchthatY = DX.
Our analysis shows
1 0 /(1-2€))/2
_ 2
Assume D ()= | Y 1 (1=2¢) /2| With o = 0.1.
0 0 €
0 0 €

Benchmark algorithms: ¢ — 0 (¢* = —0.1).
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Effects of Singular Points
1 1,
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Effects of Singular Points
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Effects of Singular Points
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Handle the Singularity: Regularization?

Regularization:
fr (D) =minxex |Y — DX|3 + 1| X[

@ Continuous.
» Improve the empirical performance.
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Handle the Singularity: Regularization?

Regularization:
fr (D) =minxex |Y — DX|3 + 1| X[

@ Continuous.
» Improve the empirical performance.
@ Does not solve the singularity problem:
I !
The original The regularized The wanted
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Handle the Singularity Issue: a Modulation Function
f fw

? |

The original The wanted
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Handle the Singularity Issue: a Modulation Function
f fw

? |

The original The wanted

/(D) = minx ¥ - DX|%
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Handle the Singularity Issue: a Modulation Function
f fuo

j !

The original The wanted

f(D)=minx |Y - DX|%
= Y, ming, ||ly; — Dx;lf;
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Handle the Singularity Issue: a Modulation Function
f fuo

j !

The original The wanted

f(D)=minx |Y - DX|%
= Y, ming, ||ly; — Dx;lf;

D
. 2
= 2ymin [ly; — Dizilly. }/

Ji(Di) I

Z;
Z;
|
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Handle the Singularity Issue: a Modulation Function
f fu

j !

The original The wanted

D
f(D) =minx ||Y — DX|7
=Y, ming, |ly; — Dz
[ |

Z;

=2 ;min ly; — Djz;|)3.
1

Ji(Di)

F(D) =3 fi(Dy) - gs (M (D5)).

@ Singular points < 3i s.t. Ay (D;) = 0. 1 .
@ g; is double differentiable. /o
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Effect of the Modulation Function

V%

1-d illustration:

I 5
U, 0—=0
f go=o fu
’ - |
hd !
The original The modulation function The wanted
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Effect of the Modulation Function

V%

1-d illustration:

I 5
U, 0—=0
f 950 fu
. _
hd
The original The modulation function The wanted
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Effect of the Modulation Function: Theoretic Results

Theorem

@ When s > 0, f is continuous.

@ When s — 0, f is the best possible lower semi-continuous
approximation of f.

f and f differ only at singular points.
The lower level sets of f are the closure of the lower sets of f.
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Empirical Performance 1

@ The true sparsity pattern Q.. is given.
@ Noiseless case.

m=16,d=32,5=4# of realization=200
T T

T T T
[
=) IS RRRRE] - RERURT . FRRUNT: T
107%F o -1 Oigegei i oo o R o
0-‘-0-‘-6"‘9""0
"0 -0 -9, _
-
+ - -0- -0
~ -
-4 b
o 10°F
QL N
= \
) ‘,__-4-"’“*
! \
z \
10 " @ MOD \
' =0= K-SVD \
= #+ = Regularized SImCO \
== Smoothed SimCO *---o-__w
10°t
i i i i i
60 70 80 90 100 110 120

n: # of training samples
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Empirical Performance 2

@ The true sparsity pattern Q.. is given.
@ Noisy case.

-1

m=16,d=32,S=4.# of realization=200
T T

10 T T T

+@ MOD

+=0= ' K-SVD

= + = Regularized SimCO
=—#— Smoothed SImCO

IY-D*X|| Zn

i i
60 70 80 90 100 110 120
n: # of training samples
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Empirical Performance 3

@ The true sparsity pattern Q¢ is given.

@ Noiseless case.
@ Success rate.

m=16,d=32,5=4# of realization=200

Success Rate

I T o *
<@ MOD
+=0=" K-SVD
14 Regularized SImCO
=#— Smoothed SIMCO
o
e
. ’d
s
e
’
;l‘
€
.a
R
i i
70 80 90

n: # of training samples
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Implementation: A Newton CG Method

Gradient descent: slow convergence.

Newton CG: fast convergence.
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Implementation: A Newton CG Method

Gradient descent: slow convergence.

Newton CG: fast convergence.
fi = ming, |y — Dis|?

= |lys — Djx7||* where @F = D]y;.

@ Newton method: VD!.
@ Newton CG: directional derivative of DJ.
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Directional Derivatives

Gradient:
f(D): R™"™ 5 R

Vf=[0f/0D; ;] € R™*"
V2f = [0%f/0D; j0Dy,] € Rimm>(mn)
Consider dim (D) = 64 x 128:
dim (V2 f) ~ 8000 x 8000 ~ 64, 000, 000.
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Directional Derivatives
Gradient:
f(D): R™" R
= [0f/0D; ;] € Rm*n
V2f = [62f/0D; j0Dy, ] € RImmx(mn)
Consider dim (D) = 64 x 128:
dim (V2 f) ~ 8000 x 8000 ~ 64, 000, 000.

Directional gradient:

t—>0
v‘f|D+tn_
t

ovnvfzg%

Complexity is highly reduced.
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Weighting: Make the Complexity Further Lower
Smoothed objective function:
f=22 fi (D) g5 (Amin (D))
Comparedto f =), fi:
g, Vg, V,Vg require extra computations.
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Weighting: Make the Complexity Further Lower
Smoothed objective function:
f=22 fi (D) g5 (Amin (D))
Comparedto f =), fi:
g, Vg, V,Vg require extra computations.

Weighted objective function:

At the k" optimization iteration:
=¥ i (D) -l

w™: a constant in the k" iteration.
@ A Newton method similar to MOD (w; = 1).
@ Mitigate the singular issue.
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A Summary

@ Dictionary learning.

» MOD
» K-SVD
» SimCO

@ Singularity problem
» A modulation function to smooth the objective function
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ﬂ Global optimization ideas for dictionary learning
@ Online methods
@ Step size influence, LGD

e Structured dictionary learning
@ Shift-invariant dictionary learning
@ Low-coherence dictionaries

e Dictionary learning software: SMALLbox
@ Overview

@ Toolbox contents
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Outline of the second part

ﬁ Global optimization ideas for dictionary learning
@ Online methods
@ Step size influence, LGD



Non-convexities in dictionary learning

@ Dictionary learning:
(15, X) = min ||Y — DX|%
D.X
s.t. Ixyllp <K, VyeY
and ||d||, =1, vde D

@ 2 sources of non-convexity:
» the ¢y constraint,
» the matrix product DX where both D and X are variables.
» (the /3 normalization turns out to be convex.)

@ lIdeas for dictionary update: use stochastic updates to find a global
minimum.
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Outline of the second part

@ Global optimization ideas for dictionary learning
@ Online methods



ODL [Mairal10] and RLS-DLA [Skretting10]

@ Stochastic gradient: use approached gradients to avoid local
minima.

@ Online processing: at iteration 4, only the first ¢ data points are
available.

2
fraD, Xp ) = [ Ypg — DXp g

@ Real-time: the complexity of an iteration must be constant over
time.
fori=1to / do
x; = decomp(y;, D)
D= dict_update(Y[M], X[l,i})
normalize(D)
end for

@ How to perform the dictionary update with constant complexity?

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) | Dictionary learning extensions and software May 2013



Online dictionary updates
f[lz](Dxlz HY[lz]_DxleF

@ Successive optimal step gradient descent (ODL):

d«d+ H 5 (Y —DXpg) xf g
1 z
- H; <Y“ i1, z] DX[“']X?M*)
X[1,4]

@ Least-squares solution (RLS-DLA):
D« Y 41X
* ) —1
=YX (Xpa X"

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) | Dictionary learning extensions and software
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Constant complexity updates
AW =X}y X" B = Y[, 1 X[1"

@ Computing A and B® in constant time:

@ ODL:
1 ; i
d«d+— (bY ~Daf)
Aq.q
@ RLS-DLA:

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) | Dictionary learning extensions and software May 2013

10



Forgetting factor

@ the signal y; is used in all iterations from i to I.
@ Early selected signals carry more weight than late ones.
@ Fix: decrease the influence of the past data over time

A = BACD 4 xx,* B® = 3B~ ¢ yiXi'
with0 < 3; < 1.
A+~0,B+0

fori=1to 7 do
x; = decomp(y;, D)
A ,BZA + xixi*
B« 8B +y;x;*
D = dict_update(A, B)
normalize(D)
end for

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) | Dictionary learning extensions and software May 2013
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Outline of the second part

0 Global optimization ideas for dictionary learning

@ Step size influence, LGD



Fixed points of dictionary learning algorithms
[Mailhé13]

Consider K-SVD, MOD and Olshausen-Field in a fixed support context.
@ Olshausen-Field [Olshausen97]: fixed step gradient descent.

@ MOD [Engan99]: least-squares dicitonary update
(pseudo-inverse).

@ K-SVD [Aharon05]: joint atom/coefficient update by SVD.
+ least-squares coefficients update.

Theorem (Mailhé13)

The set of the fixed points of K-SVD with an oracle support is strictly
included in the set of the fixed points of MOD and gradient-based
methods with an oracle support.

Can we use Olshausen-Fields or MOD to initialize K-SVD?

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) | Dictionary learning extensions and software May 2013 13



K-SVD with data initialization

300

% Switch to K—SVD 4.000
lteration

@ 20% success
@ Some very long plateaux
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MOD, then K-SVD

300

% Switch to K—SVD 4.000
lteration

@ 4 % success
@ Lots of plateaux
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Olshausen-Field, then K-SVD

300
)
o
o 150’ 7
prd
wn
% Switch to K—SVD 4,000
lteration
@ 98 % success
@ Some non-monotonicities: was the step size too large?
Dai, Mailhé, & Wang (IC, QMUL, & Surrey) | Dictionary learning extensions and software May 2013
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Goldilocks and the fixed step gradient descent

Let « be the step size.

300 300 300
150 150 150
G0 500 1000 00 500 1000 G0 500 1000

a=0.1:toolarge :-( «a =0.01:toosmall:-( «a = 0.05: just right :-)

@ With the right step, gradient descent outperforms both MOD and
K-SVD

@ The "right" step must be larger than the optimal step to avoid local
minima

@ Can we estimate the step automatically?

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) | Dictionary learning extensions and software May 2013 17



Large step Gradient "Descent" (LGD) [Mailhé12]

@ Maximal exploration principle:
d « argmax |d — do||3
d
s. 1. f(D,X) < f(Dg, X)

@ Gradient "descent" update with twice the optimal step size:

@ Followed by renormalization.

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) | Dictionary learning extensions and software May 2013
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Monotonicity proof sketch

@ With OMP, the gradient is orthogonal to the atom.
@ The atom level set is circular.
@ Normalization strictly decreases the error.

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) | Dictionary learning extensions and software
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Results

300 300
150 150
0 0
0 500 1000 0 500 1000
Optimal step: 8% success LGD: 88% success
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Outline of the second part

9 Structured dictionary learning
@ Shift-invariant dictionary learning
@ Low-coherence dictionaries



Outline of the second part

e Structured dictionary learning
@ Shift-invariant dictionary learning



Shift-invariant dictionary learning

@ Training data: one long signal y of length L.
@ D of size N x M with N <« L.

o T:{Tt | t e [1,L]}
Oth
T, = | Idy
0

Z TtDXt

@ Learning problem:

mm

2

s. t. Z Ix¢]lp < K and [|d], = 1,¥d € D.

t=1
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Shift-invariant dictionary learning

@ Sparse decomposition: the dictionary structure allows for faster
implementations [Mallat93, Krstulovic05, Mailhé11]
@ Dictionary update:
» the gradient is still known [Blumensath06, Mailhé08]:

L
Vp =2 Z T, rx}
t=1

» closed form solution for one atom with fixed coefficients
[Skretting06]:

L
Tq = ZTtx@d d«—d+ TLI‘
t=1

» no closed form solution for K-SVD and MOD: overlaps between
different shifts of the same atom invalidate the standard equations
[Mailhé08].
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Outline of the second part

e Structured dictionary learning

@ Low-coherence dictionaries



Learning low-coherence dictionaries

@ Coherence

D)= max, | dy)]
(ds,dj)eD? i)

@ Hard formulation (see [Ramirez09] for soft version):
in|Y — DX
min | Ir3

st [[xyll, <K, VyeY
and y(D) < pand |dfl, =1,vd € D

@ Sparse approximation: same as before!
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INK-SVD [Mailhé12-2] and IPR [Barchiesi13]

@ Principle: add a dictionary decorrelation step to the learning, after
the dictionary update.

@ Decorrelation: projection on the (non-convex) set of low
coherence dictionaries:

minp ||D — Do||%
s. t. u(D) < pand |d|,=1,vd € D.
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INK-SVD decorrelation

@ Decorrelate atoms pair by pair.

@ For a pair (d;, ds), the projection (v, v,) is the symmetric
rotation of the atoms.

@ Disjoint pairs can be decorrelated in parallel.
while x(D) > i do
E = disjoint pairs in D with correlation higher than
for v(d;,d;) € £ do
decorrelate_pair (d;, d;)
end for

end while

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) | Dictionary learning extensions and software May 2013
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IPR decorrelation

@ Decorrelation in 2 steps:

» decorrelate the Gram matrix DDy,
» factorize it back.

@ Gram matrix decorrelation:
» enforce low coherence and normalization: threshold the

off-diagonal terms to i and the diagonal terms to 1,
» enforce rank N s.d.p.: keep the N largest positive eigenvalues only.
@ Factorization: find one factorization D; and rotate it to minimize
the error:

W= min [[Y - WD X|%
WEO(N)

@ Closed form solution:

D, XY* = UAV*
W =VuU*
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Results

Data Initialisation

Gabor Initialisation

25
d
5 25
20 Hmin - Hmax
201 Hmin
@ 15 g o % B
2 v = o @ 15 =R =R =
g © T
10
%) IS % 10 $
o)
5 5 o
o]
0 0
0.05 0.5 1 0.05 0.1

mutual coherence p

0.5 1
mutual coherence

Dictionary learning typically learns coherent dictionaries, even when
there are much less coherent ones with the same error.

Dai, Mailhé, & Wang (IC, QMUL, & Surrey)
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Outline of the second part

e Dictionary learning software: SMALLbox
@ Overview
@ Toolbox contents



Outline of the second part

e Dictionary learning software: SMALLbox
@ Overview



Dictionary learning software: SMALLbox
[Damnjanovic10]

SMALLDbox is a dictionary learning benchmarking toolbox proposing a
common API for dictionary learning problems, a few implementations
and wrappers to third-party toolboxes.

@ Coded in MATLAB

@ Separation between problems and algorithms
@ Integration of third-party code

@ Add-on structure to plug more problems and algorithms

http://code.soundsoftware.ac.uk/projects/smallbox
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Workflow

Problem creation:

@ create_problem: preprocess signals to form a training set
Sparse representation:

@ SMALL_init_solver: create a sparse solver structure

@ SMALI_solve (problem, solver): apply a solverto a problem
Dictionary learning:

@ SMALI_init_DL: create a dictionary learning algorithm structure

@ SMALL_learn (problem, DL):apply a dictionary learning
algorithm to a problem
The final signal reconstruction is called automatically by
SMALL_solve and SMALL_learn.
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APls

@ problem:

A: the (initial) dictionary

b: the signal(s)

@reconstruct: the synthesis function from the sparse
coefficients to the signal

p: the number of atoms to learn

@ solver:

toolbox: the toolbox name

name: the algorithm name in toolbox

param: a structure of parameters

solution: the output sparse coefficients
reconstructed: the output reconstructed signal

vV vy

v

vV vy VY VvYYy

toolbox: the toolbox name

name: the algorithm name in toolbox
param: a structure of parameters

D: the learnt dictionary

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) | Dictionary learning extensions and software May 2013
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Outline of the second part

e Dictionary learning software: SMALLbox

@ Toolbox contents



Problems

In SMALLbox:
@ Music transcription
@ Audio declipping
@ Audio denoising
@ Image denoising
Third party:
@ Sparco http://www.cs.ubc.ca/labs/scl/sparco/
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Sparse solvers

In SMALLbox:
e MP
@ OMP for Gabor dictionaries
e CGP
Third-party:
@ Sparselab (41, IRLS, greedy)
http://sparselab.stanford.edu/
@ SPGL1 (¢4, group sparsity)
http://www.cs.ubc.ca/~mpf/spgll/
@ Sparsify (greedy, IHTs) http://users.fmrib.ox.ac.uk/
~tblumens/sparsify/sparsify.html
@ GPSR (/1) http://www.1lx.it.pt/~mtf/GPSR/
@ Alps (IHTs) http://lions.epfl.ch/ALPS
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General convex optimization toolboxes

@ CVXhttp://cvxr.com/cvx/
@ UNLocBox http://unlocbox.sourceforge.net/
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Dictionary learning algorithms

In SMALLbox:

@ twoStepDL: gradient descent (Olshausen-Fields, LGD), MOD,
K-SVD, INK-SVD, with a modular sparse solver choice

@ Recursive Least Squares (RLS)
Third-party:
@ KSVD-box: KSVD, KSVDS (double sparsity) http:
//www.cs.technion.ac.il/~ronrubin/software.html

@ SPAMS (Online Dictionary Learning + structure)
http://spams-devel.gforge.inria.fr/
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Add-ons

@ Create a new problem: just write the create_problem and
reconstruct functions.

@ New solvers/DL algorithms must be registered so that
SMALL_solve and SMALL_learn find them. This is done by
editing the SMALI,_solve_config_local.mand
SMALL_learn_config_local.m files.
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Outline for the Third Part

@ Underdetermined blind speech separation xu etal. 2013; pai, etal., 2012
@ Image separation and denoising zhao, etal., 2013; pai, etal. 2012
© Audio-visual source separation v, etar., 2012; Q. Liu, etal, 2013

o Multi-Speakel’ traCking Barnard, et al., 2012; Barnard, et al., 2013
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Underdetermined Blind Speech Separation (BSS)

@ Instantaneous noiseless BSS model:

Z=AS
where both the mixing matrix A and source signals S are
unknown:
@ Expanded form:
Z aip -+ Q1N S1
ZyM apmi -+ AMN SN

@ Underdetermined BSS:
» when M < N, e.g. four sources and two mixtures.

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) Dict. Learning: Applications May 2013



Reformulating Underdetermined BSS

@ Interpretation: xuand wang, 2009, 2010, 2011

z1(1) s1(1)
z1(T) s1(T)
. A o My .
: Av1 -+ Aun :
zm (1) sn(1)
. M .
zm(T) sn(T)
N—— T
b
@ Links to sparse signal recovery:
b = Mdy

where @® is a dictionary to sparsify f.

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) Dict. Learning: Applications
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A Multi-Stage Algorithm for Underdetermined BSS

A typical two-mixture-four-source case:

#  Clustering
A
gf
e i - 5;
Z; | > 5% - 5
. i v . ; ] P ; e [T
z, Blocking Z5 . Separating s: : Reconstruction :
Sy » —
Dictionary
Learning
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Learning Dictionary from Data

@ The dictionary can be learned from either sources (STD) or
mixtures (MTD) Xu and Wang, 2011; Xu, et al., 2013

@ Algorithms discussed in the previous two parts of this tutorial,
such as K-SVD and SimCO can be used to obtain the dictionaries.

Aharon, 2006; Dai, et al., 2012

s1(1) yi(1)
51(T) D1 y1(T)
s2(1) ya(1)
: Da f
s2(T) | _ y2(T)
s3(1) ys(1)
Ds
s3(T) ya(T)
sa(1) Dy ya(l)
54(T) > ya(T)
L — e et
f ¥
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Experiments on TIMIT dataset

@ A pool of 12 speech signals from the TIMIT database, sampled at
10 kHz, and trimmed to 5 seconds.

@ In each random test, a group of 4 speech signals is randomly
picked from the pool to generate the mixtures.

@ For each comparison, 50 random tests have been performed.

@ Performance measured by SDR, SIR, and SAR. vincent, etat. 2006

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) Dict. Learning: Applications May 2013 10



Results on TIMIT data

@ Comparison between predefined v.s. learned dictionaries:

STD | MTD | DCT | STET | MDCT

SDR | 7.85 | 532 | 6.87 | 6.00 5.14

SIR | 12.43 | 894 | 10.86 | 9.37 9.33

SAR | 10.36 | 8.80 | 9.86 | 10.19 8.58

@ Comparison between SimCO, K-SVD and GAD:

SimCO | K-SVD | GAD

SDR 5.32 3.99 2.93

SIR 8.94 6.25 6.19

SAR 8.80 9.35 7.08

Dai, Mailhé, & Wang (IC, QMUL, & Surrey)
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Experiments on SiISEC 2008 data

@ The sources are available for comparison, which are sampled at
16 kHz, with length 10 seconds.

@ The method (Gowreesunker and Tewfik, 2008, 2009) whose
results were reported in the evaluation campaign is used as a
baseline. This algorithm uses peak picking on threshold histogram
to estimate the mixing matrix and achieves separation using
coefficient space partitioning with K-SVD trained dictionary.

@ Following algorithms are used in each stage of our proposed
multistage algorithm: K-means clustering for the estimation of the
mixing matrix, BP for signal recovery, and SimCO trained
dictionary using the MTD strategy, and blocking for improving
computational efficiency.

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) Dict. Learning: Applications May 2013 12



Results on SISEC 2008 data

@ Male speech mixtures:

Proposed method | Gowreesunker and Tewfik | STFT method
SDR 4.38 2.73 4.77
SIR 7.53 8.15 7.99
SAR 9.02 5.93 9.23

@ Female speech mixtures:

Proposed method | Gowreesunker and Tewfik | STFT method
SDR 4.04 3.80 4.51
SIR 6.19 8.58 6.86
SAR 9.73 6.60 9.78

May 2013 13
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Scatter Plots

Mixtures:

Speech mixtures
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Scatter Plots

Transformed coefficients using SimCO:

Transformed female mixtures
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Scatter Plots

Transformed coefficients using STFT:
STFT of mixtures
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Sound Demonstrations

@ Two speech mixtures (x1, x2), four sources (s1-s4), and four
estimated sources (es1-es4)

s1 s2 s3 s4
¢ ¢ 4§ )
X1 X2
¢ ¢
es1 es2 es3 esd
< < < <
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Image Separation and Denoising

@ Cost function for joint dictionary learning and source separation:

in_ A|Z— AS|? t(DXx) - ST|2,.
Jmin A [+ |7 (DX) ~ 875,
@ Joint optimisation: znao, etat, 2013

» Dictionary learning stage
T 2
min HDX—(PS) H ,
D, X F

» Mixture learning stage

. 2
min A || Z — AS|[}. + [|PT(DX) - ST[..

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) Dict. Learning: Applications May 2013
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Proposed Joint DL and BSS Algorithm

Input: Observations Z, patch size n, number of dictionary codewords

d, regularization parameters A\ and p, and total number of iterations
lmaz-
Output: Dictionary D, sparse coefficients X, separated images S,
and estimated mixing matrix A.

@ Set D to over-complete DCT dictionaries.

@ Set a random column-normalized matrix A.

© Compute S = AfZ.

Q Fork=1,2,... 14, repeat (6) — (10).

2
Q X « argmin HDX - (RS)THF.
X

2
Q D, X « argmin HDX—(RS)TH X
Dely, q,XEN F

@ Lletz=[az? RT]",A=[VaaT 1]
@ ComputeS = AfZ.

N o2
Q A + argmin HZfASH .
Acl, E
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Simulations

Mixtures:

Dai, Mailhé, & Wang (IC, QMUL, & Surrey)
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Simulations

Learned dictionary:

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) Dict. Learning: Applications May 2013 21



Simulations

Sepal’ation results: znao, etal, 2013; Elad, et al., 2006; Abolghasemi, et al., 2012

PSNR=27.9018 dB PSNR=22.8487 dB PSNR=27.7434 dB PSNR=30.2880dB

(a) original

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) Dict. Learning: Applications



Simulations

Estimation errors:

Mixing matrix error

¢
10 —y— FastiCA
—8— GMCA

—©— Proposed Method

7 L L L L L L L L
2 4 6 8 10 12 14 16 18 20
Noise level

10
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Audio-visual Blind Source Separation (AV-BSS)

Source separation system based on audio-visual dictionary learning

(AVDL): Liu, etal, 2012, Liu, etal., 2013

Vs

Training
AV sequences

(&

Off-line training stage

AVDL '

Source
estimates

Audio mixture

( .
[m]—( Visual mask ) Separation stage
generation
AV Mask

Audio domain
BSS
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Audio-Visual Dictionary Learning

@ Audio-visual sequence:
= (Pp*¢Y)

Yt = (Y(m,w)) € RN,
Pr = (Wj(yax»l)) € RY*XxL,

@ Audio-visual atom:

d)z c RMXW,
oi = (Bi(y.2,1)) € RN

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) Dict. Learning: Applications May 2013
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Signal Model

@ Generative model: L, etal., 2013; Monaci, et al., 2007; Casanovas, et al., 2010

o = )
(wa; RS ZK: }V/&X?Ls 5 kgl o kg 5
k=1 Zyzl,x:lel bkgfﬂb%(y — Y, T — ‘T,l — l)

where

g € { (210 ] + 1, [zl

@ Parameters to learn:
Q0 ={C,B,M},

where
C= (Ckgjaﬁ)?B = (bkﬁ[)vM = (mkyif) € REXYsxXsxLs
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Coding and Learning in AVDL

@ Given a dictionary, sparse coding algorithms (such as matching
pursuit) can be used to find the coding parameters, according to
the signal model and a pre-defined matching criterion.

@ Given the parameter set, the dictionary atoms are updated to fit
the signal model. We used the K-SVD and K-means to update the
audio and visual atoms respectively.

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) Dict. Learning: Applications May 2013 27



Integrating AVDL with Audio-Domain BSS

@ Probabilistic time-frequency masking based binaural speech
separation method is used to estimate a soft mask. mandel, etal., 2010

@ This soft mask is then modified using the following power-law
transformation where the visual information is incorporated:

Mav(m7 w) — Ma(m7 w)r(M”(m,w))j

M™(m,w) r{M®(m, w))

- r[0.80) = 1.0

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) Dict. Learning: Applications May 2013
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Synthetic Examples

Orlglnal AV atoms and the synthesized AV sequence (with noise): v, et
., 2013; Monaci, et al., 2007

(NERRRRN] g

000 002 nus 005 007 o 00z 00 005 007 0
Time {s) Time (s)

00z Uc@ 005 007

0 00z 003 005 007 000 o0z ou 005 007
Time (s

A [ "LJ-I'I'l IIIII

(a) AV: /af (b) AV: A/ (c) AV: /ol (d) Visual only (e) Audio only: /u/

1.00

i

(f) The generated AV synthetic sequence (only one second data is shown)
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Synthetic Examples

Learned AV atoms (additive noise):

LELLULLLLL L

T

i i 1
L L '

. e
E

=9 = e =

:.-. , . el

(a) AVDL: /a/ (b) AVDL: /i/ (c) AVDL: /of
mwmw | S

(d) Monaci: /a/ (e) Monaci: /i (f) Monaci: /of

P
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Synthetic Examples

Learned AV atoms (convolutive noise):

i O st B i
(a) AVDLI1 (b) AVDL2 (c) AVDL3

(d) Monacil (e} Monaci2 (f) Monaci3 (g) Monaci4

Dai, Mailhé, & Wang (IC, QMUL, & Surrey)
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Real Speech Example

Learned AV atoms:

Magniude

I 1 | | L 1 1 1
0.00 0.04 0.08 012 0.16 0.20 0.24 0.28 032 0.36 0.40
Time (s)

(a) AVDL

OSO)1  Y E Te #.J,MWMWW—LL— ﬁ._..j

Magnitude

| I | | | I | | |
0.00 0.04 0.08 0.12 0.18 0.20 0.24 0.28 032 0.36 0.40
Time (s)

[l

(b) Monaci
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Separation Performance

SDR measurements: i, etal., 2012; Liu, et al., 2013

o - — i
- P et
§ 3 25 o £
gL T Yot o
2 g
Pl 7 IS L L i
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£ o] 4 $ e
g ¥ i
H
B =% = Wan =]
5 | e o
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e ) B o E E a 60 80 kL o 50 E; o
‘Angla [deal ‘Anale [deq] ‘Anals [deq]
(a) SDR
_— _— e —
. .
g [T },‘/'Jt -t "—}
§ e
i, a
s |¥
B
s
z ‘ 'S = lande!
2 22 Dl el - i rieme=s
SIoATR o [ i
- 80 100 E 1 . E kL i 100
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Separation Performance

PEASS measurements: Emiya, etal., 2011

. — o S
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Multi-Speaker Tracking

Overall tracking system (including training and testing phases): samarg, et
al., 2012; Barnard, et al., 2013

Training Sequence

Feature Support Vector
Dictionary
Extraction Machine

Feature Audio-Visual Dictionary based Identity Modelling

Extraction Face Detection Particle Filter and Adaptation
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Dictionary Based Particle Filter

Initialisation

SIR.

Zo = {ao(1), bo(1), a0(2). bo(2). 8o}

Particle filter tracking algorithm with modified measurement step

|
# o {xf}

Modified PF Measurement Step
#f =3 ,+% ;

Kers

Test for degeneracy

Dai, Mailhé, & Wang (IC, QMUL, & Surrey)
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Modified Measurement Step

Using SVM to produce the likelihood:

Input: 2. K. L, U
output: p(z|z¢)
for k. =1to K do
Extract image patch at frame ¢ according to {af(1),55(1),af(2),bF(2)}:
Extract L features ﬁ [ =1,...,L from the image patch:
Create umage patch representation v/ = {ul. L P R UU}- where
Uy = max gu(ﬁ), =1, ...05
Classify each image patch using SVM classifier to produce the likelihood p(Z;|7f).

end for

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) Dict. Learning: Applications May 2013
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Dictionary Construction

@ Dictionary construction can be regarded as a density estimation
problem using a Gaussian mixture model (GMM) via the
optimation of the following likelihood function:

A(X§ 9) = HlL:1 Zgzl Wug(ﬁ; Moy 5u)a
where

9(fi: 0, 3a) = ([20)M - [Sul]=2)eap(— L (fi — 17a) TSy (fi — 1)),

@ The parameters of the GMM can be estimated e.g. using an
expectation maximisation (EM) algorithm. In our work, the means
of the Gaussian mixtures is obtained by the k-means clustering.

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) Dict. Learning: Applications May 2013 38



Histogram Generation (Coding)

@ Hard assignment (HA):

1 if d, = arg min(E(CZ: ﬁ))
Uy = %Zlel { deD

0 otherwise

@ Soft assignment (SA): koniusz, etal, 2013

L R
vu =1 211 0u( 1),
where

ou(f1) = wug(fi;mu,Gu)

S wu g(fismy Gor)

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) Dict. Learning: Applications May 2013
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Histogram Generation (Coding)

@ Approximate locality constrained SA (LcSA):

9(fis1u,5) . .
r ——— it m, € Dj
ou(fi) = { >, eny 9(fismys,7)

0 otherwise
where

D¢ = NNp (ﬁ,c)

@ Fast Hierarchical Nearest Neighbour Search (FHNN):

D¢ = NNp, <ﬁ, c>
where
D), = NNp (7, pn)

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) Dict. Learning: Applications
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FHNN

Comparison among SA, LcSA and FHNN:

— X Lower level cluster centre iy
& % x | % N X ar
- : . . Feature vector fi
s |k wom =
/ X % X mx e [ Reconstructed feature vector
. 1 : i
| % NO@® sox
\ ' / i S g/7< “ ® ® High level cluster centre mi;,
X : X \
I X X === High level cluster boundary
A A
x X \\ x \ = Dilated cluster boundary
» x w% @ X 9 % ® Xy .
\ N[ — ¢ nearest neighbours to f;
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Experiments on AV16.3 dataset

Room layout (camera and microphone array set-up):

1.75m

Camera3

3.0m

Camera 1 Camera 2|
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Tracking Errors v.s. Dictionary Size

Average results of 50 independent random tests measured on
sequences 11, 12, and 15:

Average tracking performance for different dictionary sizes Average tracking performance for different dictionary sizes

—5— Soft Assignment (SA)
— = — Locality Constrained Soft Assignment (LcSA)

—— SIFT Dict
— 4 —Hue Dict
-—@— Combined Hue and SIFT Dict

0 800 1000 1200 0 200 200 600

RMSE (In metres)
2 B2 ¢
& S
\

\
\
\
\
—

RMSE (inmetres)

1000 1200

[ 200 400 0 500
Number of atoms in the dictionary Number of atoms in the dictionary
(a) Hue, SIFT and combined Hue and SIFT dictionaries using (b) SA and LcSA dictionaries

HA
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Single-Speaker Tracking Errors

RMSE (in meters) for sequence 11 (single speaker) over frames:

Error Plot for Sequence 11

0.4r
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Multip-Speaker Tracking Errors
RMSE (in meters) for sequence 18 (two speakers) over frames:

Error Plot for Sequence 18

0.4r
SA (identity model)
LcSA (identity model)
0.35H SA (no identity model)
LcSA (no identity model) f’

0.3

o
N
&

RMSE (in metres)
o
N

0.15

0.1 fiih,

0.05

0 200 400 600 800 1000 1200 1400

Frame Number
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Overall Tracking Errors for the Tested Sequences

Tracking errors measured over all the frames.

@ Single speaker

Sequence Hue Hist | SIFT Hist | Hue Dict | SIFT Dict | Combined Hue and SIFT Dict
Sequence 15 0.11 012 0.9 0.10 0.03
Sequence 11 0.13 0.15 0.10 0.10 0.05
Sequence 12 0.22 0.13 0.15 0.10 0.06

@ Two speakers

Sequence SA | LeSA | SA (with identity) | LeSA (with identity)
Sequence 18 | 0.19 | 0.17 0.13 0.10
Sequence 24 | 0.11 | 0.10 0.09 0.09
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Video Demonstrations

@ Single-speaker tracking

@ Two-speaker tracking

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) Dict. Learning: Applications



A Summary

@ Underdetermined blind speech separation
@ Image separation and denoising

@ Audio-visual source separation

@ Multi-speaker tracking

Dai, Mailhé, & Wang (IC, QMUL, & Surrey) Dict. Learning: Applications May 2013 48
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