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Abstract— Decentralized cooperative localization (DCL) is a
promising method to determine accurate multirobot poses (i.e.,
positions and orientations) for robot teams operating in an
environment without absolute navigation information. Existing
DCL methods often use fixed measurement noise covariance
matrices for multirobot pose estimation; however, their per-
formance degrades when the measurement noise covariance
matrices are time-varying. To address this problem, in this
article, a novel adaptive recursive DCL method is proposed for
multi-robot systems with time-varying measurement accuracy.
Each robot estimates its pose and measurement noise covariance
matrices simultaneously in a decentralized manner based on the
constructed hierarchical Gaussian models using the variational
Bayesian approach. Simulation and experimental results show
that the proposed method has improved cooperative localization
accuracy and estimation consistency but slightly heavier compu-
tational load than the existing recursive DCL method.

Index Terms— Adaptive filter, decentralized cooperative local-
ization, extended Kalman filter, multirobot systems, variational
Bayesian.

I. INTRODUCTION

A. Background

MULTIROBOT systems have been widely used in many
applications, such as area exploration [1], [2], region

surveillance [3], and fast search and rescue [4]. Accurate
positions and orientations (poses) of all the robots are essential
for the success of their operation in performing various tasks
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[5], [6]. For an environment with accurate and persistent
absolute1 measurements, it is easy to achieve highly accurate
estimates of robots’ poses. For example, if the global position
system (GPS) signal is accessible, the resultant integration
of odometry and GPS can provide accurate estimates of
robots’ poses. However, for an environment with intermittent
absolute measurements or without absolute measurements,
it is a challenge to achieve accurate estimates of poses [7].
Cooperative localization (CL) is a promising technique to
improve the localization accuracy of multirobot systems for
the above scenarios [8], [9]. In the CL, each robot is equipped
with the proprioceptive and exteroceptive sensors, and the
proprioceptive sensors are used to measure the self-motion
of each robot, and the exteroceptive sensors are employed to
provide the occasionally accessible absolute measurements and
the relative measurements between any two mobile robots.
In addition, each robot can share its pose information with
other robots through a wireless communication module. With
CL, the accurate absolute localization information obtained
by some team members can be spread to other members
through information exchanges and relative measurements,
based on which the multirobot systems can achieve improved
localization accuracy [8], [10].

B. Related Works

The Bayesian filtering technique plays an important role to
fuse the self-motion measurements, the occasionally accessible
absolute measurements, and the relative measurements in the
CL. A large number of Bayesian filters have been specifically
designed for the CL, such as the extended Kalman filter (EKF)
[8], the particle filter [11], [12], the maximum likelihood
estimation algorithm [13], and the maximum a posteriori
estimation algorithm [14]. Among these filtering methods,
the EKF has been a popular choice due to its satisfactory
estimation accuracy, ease of implementation, and relatively
low computational complexity [15]. Under the assumption that
the motion modeling noise and the absolute and relative mea-
surement noises all have Gaussian distributions, the EKF can
achieve almost optimal pose estimates of all team members for
overall multirobot systems (except for the first-order lineariza-
tion errors) [16]. So far, there are two kinds of EKF-based

1The word “absolute” means that the measurements are taken relative to
accurately known reference positions.
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CL (CL-EKF) schemes: the EKF-based centralized CL (CCL-
EKF) [8], [10], [17]–[21] and the EKF-based decentralized CL
(DCL-EKF) [7], [22]–[25].

In the CCL-EKF method, the self-motion measurements
(e.g., linear and rotational velocities) and the occasionally
accessible absolute and relative measurements (e.g., relative
position, bearing, and range) are all sent to a fusion center,
based on which the poses of all robots are jointly estimated
using the EKF. Although this CL method is able to achieve
almost optimal and completely consistent2 pose estimates
of all robots under assumptions of Gaussian motion and
measurement noises, it requires centralized implementations
of the EKF and global communications between the fusion
center and all robots in the motion and measurement updates.
As a result, the CCL-EKF method is prone to failure caused
by the local communication faults and suffers from substantial
computational complexities, which may limit its practical
applications. To improve the CCL-EKF method, some distrib-
uted centralized-equivalent CL (DCECL) methods have been
proposed [8], [10], [17]–[21]. Roumeliotis and Bekey [8] first
proposed a DCECL method, in which the cross correlation of
any two robots is decomposed into two half cross correlations,
and the two robots maintain and update the two half cross cor-
relations, respectively, and each robot implements the motion
update in a distributed manner. This DCECL method can
save communications and computations if the motion update
frequency is greater than the measurement update frequency.
However, it still requires global communications among all
robots. To further alleviate the communication requirements,
Kia et al. [10], [21] proposed an improved DCECL method,
where new intermediate local variables are introduced to
achieve decentralized implementations of the EKF. Although
this method only requires local communications with the
adjacent team members, it imposes an additional constraint
that the multirobot systems need to have a communication
graph with a spanning tree rooted at the interim master in
every time step, which limits the scope of CL for multirobot
systems.

As a popular alternative to the CL-EKF, the DCL-EKF
method can solve the above problems inherent in the
CCL-EKF methods, in which each robot serves as a local
fusion center and the CL is implemented in a decentralized
manner. However, the DCL-EKF method suffers from an
important problem of double-counting which treats correlated
pose estimates as uncorrelated and uses shared measurements
repeatedly so that inconsistent pose estimates of all robots
are thereby induced [26]. Covariance intersection (CI) is a
standard technique to address this problem [27]–[29]. In the
CI technique, the effects of unknown cross correlations are
alleviated by inflating the measurement noise variances of
all sensors to obtain more consistent state estimates [27],
[28]. Many DCL-EKF methods that exploit the CI-technique

2Suppose that x̂ and P are, respectively, the estimate and estimated error
covariance matrix of a random state vector x. The state estimate pair (x̂, P) is
consistent if the difference between the estimated error covariance matrix and
the real error covariance matrix is positive semidefinite, i.e., P−E[(x− x̂)(x−
x̂)T] ≥ 0, and completely consistent if the estimated error covariance matrix
is identical to the real error covariance matrix, i.e., P = E[(x − x̂)(x − x̂)T].

(DCL-EKF-CI) have been proposed [7], [22], [23]. Although
these DCL-EKF-CI methods can guarantee estimation
consistency, their estimated error covariance matrices of pose
estimates are overly inflated (i.e., overly conservative) due to
the inflations of measurement noise variances, which results
in poor CL accuracy. Another strategy for addressing the
problem of double counting is to estimate cross correlations.
Zhu and Kia [24] proposed an improved DCL-EKF-CI
method by estimating and compensating for the unknown
cross correlations. However, this method suffers from heavy
computational burdens incurred by a constrained numerical
optimization problem. On the other hand, Luft et al. [25]
proposed a recursive DCL-EKF (RDCL-EKF) method,
in which every cross correlation is factored as two half cross
correlations,3 and each robot estimates its pose and half cross
correlations with the other robots recursively. As compared
with the improved DCL-EKF-CI method [24], the RDCL-EKF
method has better CL accuracy and smaller computational
costs. Although the RDCL-EKF method cannot guarantee
that the pose estimates are strictly consistent, it exhibits
satisfactory estimation consistency [25]. Unfortunately, its
estimation accuracy and consistency degrade substantially
when inaccurate measurement noise covariance matrices are
exploited, as will be detailed in the next section.

C. Motivations for Paper

The absolute and relative measurement noise covariance
matrices are important parameters for implementing the
RDCL-EKF method, which will be shown in our simulation
and experimental study. In practical multirobot CL applica-
tions, the absolute and relative measurement noise covariance
matrices are commonly selected as fixed nominal values
according to engineering experience. However, the measure-
ment noise covariance matrices may be time-varying, which
cannot be matched by fixed nominal values. For example,
the measurement accuracy of a camera depends heavily on the
distance between the camera and the measured target, and the
greater the distance, the worse the measurement accuracy that
is achieved and vice versa. As a result, the RDCL-EKF will
exhibit poor CL accuracy and estimation consistency when
inaccurate nominal absolute and relative measurement noise
covariance matrices are used. Although some adaptive Kalman
filters [30]–[39] have been proposed to estimate inaccurate
noise covariance matrices, these methods are not suitable
for the DCL of multi-robot systems since they are specially
designed for a single linear system. To the best of the authors’
knowledge, the adaptive DCL methods for multirobot systems
have not been previously reported.

D. Contributions and Organizations of Paper

To improve the performance of the existing RDCL-EKF
method for multirobot systems with time-varying measurement
accuracy, a novel adaptive RDCL-EKF method is proposed
in this article, in which each robot estimates its pose and

3Suppose that �xy is the cross correlation of random variables x and y.
If the cross correlation �xy can be factored as �xy = �xy(� yx )T, then both
�xy and �yx are termed half cross correlations of random variables x and y.
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absolute and relative measurement noise covariance matrices
simultaneously in a decentralized manner. The measurement
noise covariance matrices are modeled as inverse-Wishart
distributed, from which hierarchical Gaussian models for mul-
tirobot systems can be constructed. For each robot, the pos-
terior probability density functions (PDFs) of its pose and
measurement noise covariance matrices are mutually coupled
under the constructed hierarchical Gaussian models, and the
variational Bayesian (VB) approach is therefore employed to
obtain approximate joint estimates. The proposed adaptive
RDCL-EKF method has the same communication mode as
the standard RDCL-EKF method, but only requires slightly
higher communication overhead to transmit additional para-
meters in each cooperation. A large number of simulation and
experimental results demonstrate that the proposed adaptive
RDCL-EKF method has better CL accuracy and estimation
consistency but slightly heavier computational load than the
existing RDCL-EKF method for multirobot systems with
time-varying measurement accuracy.

This article is organized as follows. In Section II, the mul-
tirobot CL model and problem statement are presented.
In Section III, the proposed adaptive RDCL-EKF method
is derived, and its detailed implementations are given. The
simulation and experiment studies are, respectively, provided
in Sections IV and V. Conclusions are drawn in Section VI.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Multirobot CL Models

Consider a cluster of nR homogeneous or heterogeneous
mobile robots moving in a two-dimensional environment with
nL known landmarks. Every mobile robot installs propriocep-
tive sensors (e.g., wheel-encoders) and exteroceptive sensors
(e.g., ultrawide bands (UWB), cameras or laser scanners),
in which the proprioceptive sensors are used to measure
self-motion of every mobile robot, and the exteroceptive
sensors are employed to collect the absolute measurements
from the robot to the landmarks or relative measurements from
the robot to other robots. The nonlinear discrete-time motion
model of robot i can be formulated as follows [7]:⎧⎨⎨⎨⎨
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where x i
k , yi

k and φi
k are, respectively, the east and north

positions and orientation of robot i at time k, and [x i
k, yi

k, φi
k]

denotes the pose of robot i at time k, and V i
k and �i

k are the
measured linear and rotational velocities of robot i at time
k provided by the proprioceptive sensors with measurement
noises wVi

k and w�i
k , respectively, and �t denotes the dis-

cretization time.
In this article, three kinds of absolute and relative measure-

ments are considered, including the relative position, bearing,
and range measurements. For robot i , its three kinds of
measurement models from robot i to landmark l are written

as [7], [8]⎧⎨⎨⎨⎨
⎨⎨⎨⎩

pil
ak = CT

�
φi

k

	
 xl
L − x i

k
yl

L − yi
k

�
+ vil

pak

θ il
ak = atan2

�
yi

k − yl
L , x i

k − xl
L

	− φi
k + v il

θak

r il
ak =

��
x i

k − xl
L

	2 + �yi
k − yl

L

	2 + v il
rak

(2)

where the superscript “T” denotes the transpose operation
of a matrix, and the subscript “ak” denotes the absolute
measurement at time k, and pil

ak , θ il
ak and r il

ak are the relative
position,4 bearing, and range measurements from robot i to
landmark l at time k measured by the exteroceptive sensors
with measurement noises vil

pak
, v il

θak
and v il

rak
, respectively, and

xl
L and yl

L denote the east and north positions of landmark
l with the subscript “L” denoting the landmark, and C(φi

k)
denotes the direction cosine matrix from the local framework
of robot i to the global framework, which is given by
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It is noted that the landmarks are all assumed to be static, and
their positions are accurately known in the models (2).

Similarly, for robot i , its three kinds of relative measurement
models to robot j are given by [7], [8]⎧⎨⎨⎨⎨⎨⎨⎨

⎨⎨⎨⎨⎨⎨⎩

pi j
rk = CT

�
φi

k

	 x j
k − x i

k

y j
k − yi

k

�
+ vi j

prk

θ
i j
rk = atan2

�
yi

k − y j
k , x i

k − x j
k

�
− φi

k + v
i j
θrk

r i j
rk =

��
x i

k − x j
k

�2 +
�

yi
k − y j

k

�2 + v
i j
rrk

(4)

where the subscript “rk” denotes the relative measurement at
time k, and the superscript “i j” means that robot i is relative
to robot j , and pi j

rk , θ
i j
rk and r i j

rk are the relative position,
bearing, and range measurements of robot i to robot j at time
k measured by the exteroceptive sensors with measurement
noises vi j

prk , v
i j
θrk

and v
i j
rrk , respectively, and x j

k and y j
k are,

respectively, the east and north positions of robot j at time k.
Define the pose of robot i as its state vector, i.e., xi

k �
[x i

k, yi
k, φi

k]T. The motion model and absolute and relative
measurement models of robot i can be, respectively, formu-
lated as the following general forms:⎧⎨⎨
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where zil
ak ∈ Rna and zi j

rk ∈ Rnr are, respectively, the absolute
and relative measurement vectors to landmark l and robot j ,
and xl

L � [xl
L, yl

L ]T is the position of landmark l, and f i
k(·),

hil
ak(·) and hi j

rk(·) are, respectively, the state evolution function
and the absolute and relative measurement functions, which
are correspondingly defined according to (1), (2), and (4), and
wi

k � [wVi
k , w�i

k ]T, vil
ak and vi j

rk are, respectively, the state
noise and the absolute and relative measurement noises.
In this article, wi

k , vil
ak and vi j

rk are all assumed to be zero-mean

4Here, the relative position pil
ak is an absolute measurement since it is taken

from robot i to landmark l whose position is accurately known.
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TABLE I

LOCAL MOTION UPDATE FOR ROBOT i [25]

Gaussian white distributed, that is wi
k ∼ N(0, Qi

k), vil
ak ∼

N(0, Ril
ak), and vi j

rk ∼ N(0, Ri j
rk), where Qi

k , Ril
ak , and Ri j

rk are,
respectively, the state noise covariance matrix and the absolute
and relative measurement noise covariance matrices. Further-
more, wi

k , vil
ak and vi j

rk are all assumed to be uncorrelated with
each other.

B. Problem Statement

Before presenting the main motivation of this article,
the existing RDCL-EKF algorithm [25] is first reviewed.
In the RDCL-EKF method, the heart is to estimate beliefs
{x̂i

k|k, �i
k|k}{1≤i≤nR} and cross correlations {�i j

k|k}{ j �=i}
{1≤ j≤nR} of

all robots based on a decentralized strategy, where the cross
correlation �

i j
k|k is factored as two half cross correlations, that

is �
i j
k|k = �

i j
k|k(�

j i
k|k)

T, and the half cross correlations �
i j
k|k

and �
j i
k|k are recursively estimated and maintained by robots i

and j , respectively. For robot i , it requires to estimate its own
belief {x̂i

k|k, �i
k|k} and half cross correlations {�i j

k|k}{ j �=i}
{1≤ j≤nR}

with the remaining (nR − 1) robots. The RDCL-EKF algo-
rithm consists of three parts: the local motion update (LMU),
the local absolute measurement update (LAMU), and the
cooperative relative measurement update (CRMU), which are,
respectively, summarized as three functions in Tables I–III.
In Tables II and III, l i∗

k and j i∗
k , respectively, denote the

landmark set and the robot set detected by robot i at time k,
and row{al}l∈� , col{al}l∈� , and diag{al}l∈� denote the block
row matrix, the block column matrix, and the block diagonal
matrix, respectively, which are composed of all matrices in the
set {al |l ∈ �}.

It is seen from Tables II and III that the absolute and
relative measurement noise covariance matrices {Ril

ak}{l∈li∗
k }

and {Ri j
rk}{ j∈ j i∗

k } are, respectively, the inputs of the LAMU

and the CRMU functions. Both the state estimate x̂i
k|k and

estimation error covariance matrix �i
k|k depend on {Ril

ak}{l∈li∗
k }

and {Ri j
rk}{ j∈ j i∗

k }, and then the state estimation accuracy relies

on the accuracies of {Ril
ak}{l∈li∗

k } and {Ri j
rk}{ j∈ j i∗

k }. Meanwhile,

the half cross correlations {�i j
k|k}{ j �=i}

{1≤ j≤nR} depend on {Ril
ak}{l∈li∗

k }
and {Ri j

rk}{ j∈ j i∗
k }, which means that the accuracies of {Ril

ak}{l∈li∗
k }

and {Ri j
rk}{ j∈ j i∗

k } also have effects on the estimation consistency.
In practical multirobot CL applications, the measurement
accuracy of exteroceptive sensors may be time-varying. For
example, the measurement accuracy of a camera depends
heavily on the distance between the camera and the measured
target, and the greater the distance, the worse the measurement
accuracy that is achieved and vice versa. However, the absolute
and relative measurement noise covariance matrices {Ril

ak}{l∈li∗
k }

and {Ri j
rk}{ j∈ j i∗

k } are commonly selected as fixed nominal

values {R̄il
ak}{l∈li∗

k } and {R̄i j
rk}{ j∈ j i∗

k } according to engineering
experience, as shown in Fig. 1. As a result, poor CL accuracy
and serious estimation inconsistency will be induced by the
use of inaccurate nominal values {R̄il

ak}{l∈li∗
k } and {R̄i j

rk}{ j∈ j i∗
k } in

the LAMU and CRMU functions, which represents the main
motivation of this article.

III. NOVEL ADAPTIVE RDCL-EKF METHOD

A. Design Idea of the Proposed Method

In this article, to improve the CL accuracy and estimation
consistency, a novel adaptive RDCL-EKF method is pro-
posed, in which the absolute and relative measurement noise
covariance matrices are adaptively estimated based on the
VB approach. For multirobot systems, any mobile robot i
may detect any landmark l, and the absolute measurement
noise covariance matrix Ril

ak is required in the LAMU if the
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Fig. 1. Diagram of existing RDCL-EKF algorithm for robot i .

TABLE II

LAMU FOR ROBOT i [25]

mobile robot i detects the landmark l, where 1 ≤ i ≤ nR

and 1 ≤ l ≤ nL . Since each mobile robot has different
running statuses and each landmark has different positions,
nR ×nL absolute measurement noise covariance matrices must
be adaptively estimated for the entire system, which are shown
in Fig. 2. It is seen from Fig. 2 that all absolute measurement
noise covariance matrices are mutually independent so that
they can be separately estimated. On the other hand, any
mobile robot i may detect any mobile robot j , and the relative
measurement noise covariance matrix Ri j

rk is required in the
CRMU if the mobile robot i detects the mobile robot j , where

1 ≤ i, j ≤ nR and i �= j . Considering that Ri j
rk and R j i

rk are
identical, then only nR(nR − 1)/2 relative measurement noise
covariance matrices are unknown for the entire system, which
are illustrated in Fig. 3. An intuitive method is that the robots
i and j estimate the relative measurement noise covariance
matrix Ri j

rk (i < j ) together based on the measurements zi j
rk

and z j i
rk . However, a fusion center is required to collect the

relative measurements zi j
rk and z j i

rk for estimating Ri j
rk , which

violates the original intention of recursive DCL (RDCL).
To address the above problem, in this article, a decentralized

estimation strategy is proposed to estimate the relative
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TABLE III

CRMU FOR ROBOT i [25]

measurement noise covariance matrices, in which each pair
of relative measurement noise covariance matrices {Ri j

rk, R j i
rk}

(i < j ) is sequentially estimated and updated. That is to say,
if robot j is first detected by robot i , then Ri j

rk is estimated

based on the relative measurement zi j
rk and the estimation

information of Ri j
rk is sent from robot i to robot j . Next,

if robot i is detected by robot j , then R j i
rk is estimated based

on the relative measurement z j i
rk and the received estimation
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Fig. 2. All absolute measurement noise covariance matrices for the entire
system.

information of Ri j
rk . Finally, the estimation information of

R j i
rk is sent from robot j to robot i to replace the previous

estimation information of Ri j
rk , and the estimate of Ri j

rk is
further refined. The diagram of the proposed decentralized
estimation strategy for {Ri j

rk, R j i
rk} is shown in Fig. 4. It can be

seen from Fig. 4 that the proposed decentralized estimation
strategy can guarantee that the constraint Ri j

rk = R j i
rk holds,

and both the relative measurements zi j
rk and z j i

rk are used to
estimate the relative measurement noise covariance matrices
{Ri j

rk, R j i
rk}.

The diagram of the proposed RDCL-EKF method for robot i
is illustrated in Fig. 5, where {R̂il

ak}{l∈li∗
k } and {R̂i j

rk}{ j∈ j i∗
k } denote

the estimated values of the absolute and relative measurement
noise covariance matrices, respectively. We can observe from
Fig. 5 that, for the proposed method, the absolute and rel-
ative measurement noise covariance matrices are adaptively
estimated in a sequential manner. First, the state vector (pose)
xi

k of robot i and the absolute measurement noise covariance
matrix {Ril

ak}{l∈li∗
k } are jointly estimated based on the previous

measurements z1:k−1 and the current absolute measurement
{zil

ak}{l∈li∗
k } using the VB approach in the LAMU, where

z1:k−1 denotes the set of all available absolute and relative
measurements from time 1 to time k − 1. Then, the state
vector (pose) xi

k of robot i and the relative measurement
noise covariance matrix {Ri j

rk}{ j∈ j i∗
k } are jointly estimated based

on the previous measurements z1:k−1, the current absolute
measurement {zil

ak}{l∈li∗
k }, and the current relative measurement

{zi j
rk}{ j∈ j i∗

k } using the VB approach in the CRMU. As compared
with the existing RDCL-EKF method, the proposed method
can achieve better CL accuracy and estimation consistency via
adaptively estimating the absolute and relative measurement
noise covariance matrices. Next, we will present the statistical
modeling of the state vector and the measurement noise
covariance matrices.

B. Statistical Modeling

In the RDCL-EKF framework, the one-step prediction PDF
of robot i is approximated as Gaussian, that is

p
�
xi

k |z1:k−1
	 = N

�
xi

k; x̂i
k|k−1,�

i
k|k−1

	
(6)

where x̂i
k|k−1 and �i

k|k−1 can be obtained using the LMU
function in Table I.

According to the absolute measurement model in (5),
the absolute measurement likelihood PDF of robot i relative
to landmark l can be formulated as

p
�
zil

ak |xi
k, Ril

ak

	 = N
�
zil

ak; hil
ak

�
xi

k, xl
L

	
, Ril

ak

	
, l ∈ l i∗

k (7)

where the absolute measurement noise covariance matrix Ril
ak

is assumed as a random variable. In Bayesian statistics,
the inverse-Wishart distribution is often used as a conjugate
prior distribution of the covariance matrix of a Gaussian
distribution with known mean value, which can guarantee
the conjugate inference under the variational inference frame-
work [40]. Motivated by this fact, the absolute measurement
noise covariance matrix Ril

ak is modeled as inverse-Wishart
distribution

p
�
Ril

ak |z1:k−1
	 = IW

�
Ril

ak; uil
ak|k−1, Uil

ak|k−1

	
, l ∈ l i∗

k (8)

and uil
ak|k−1 and Uil

ak|k−1 denote the degrees of freedom (DoFs)
parameter and scale matrix of p(Ril

ak|z1:k−1), respectively.
In practical DCL for multirobot systems, the working

environment of an exteroceptive sensor is often slowly time-
varying. For example, the distance between the camera and
the measured target is a slowly time-varying quantity because
of the slow robot movement speed. As a result, the absolute
measurement noise covariance matrix Ril

ak , which depends on
the distance between the camera and the measured target,
is also a slowly time-varying parameter. Motivated by this
fact, uil

ak|k−1 and Uil
ak|k−1 can be approximately obtained via

the following linear propagation model [38]:

uil
ak|k−1 = ρuil

ak−1|k−1, Uil
ak|k−1 = ρUil

ak−1|k−1 (9)

where uil
ak−1|k−1 and Uil

ak−1|k−1 denote the DoF parameter and
scale matrix of p(Ril

ak−1|z1:k−1), respectively, and ρ ∈ (0, 1]
denotes the forgetting factor. Such linear propagation guaran-
tees that p(Ril

ak|z1:k−1) has the same mean value but increased
variance (uncertainty) as compared with p(Ril

ak−1|z1:k−1),
which accounts for the slow time-variation and unavailable
evolution model of Ril

ak .
According to the relative measurement model in (5), the rel-

ative measurement likelihood PDF of robots i and j can be
written as

p
�

zi j
rk |xi

k, x j
k , Ri j

rk

�
=N

�
zi j

rk; hi j
rk

�
xi

k, x j
k

�
, Ri j

rk

�
, j ∈ j i∗

k (10)

where the relative measurement noise covariance matrix Ri j
rk is

assumed as a random variable and modeled as inverse-Wishart
distribution

p
�

Ri j
rk |z1:k−1,

�
zil

ak

�
{l∈li∗

k }
�

= IW
�

Ri j
rk; ui j

rk|k−1, Ui j
rk|k−1

�
, j ∈ j i∗

k (11)

and ui j
rk|k−1 and Ui j

rk|k−1 denote the DoF parameter and scale

matrix of p(Ri j
rk |z1:k−1, {zil

ak}{l∈li∗
k }), respectively, which can be

obtained using a similar way to (9) as follows:
ui j

rk|k−1 = ρui j
rk−1|k−1, Ui j

rk|k−1 = ρUi j
rk−1|k−1 (12)
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Fig. 3. All relative measurement noise covariance matrices for the entire system.

Fig. 4. Diagram of the proposed decentralized estimation strategy for
{Ri j

rk , R j i
rk }.

where ui j
rk−1|k−1 and Ui j

rk−1|k−1 denote the DoF parameter and

scale matrix of p(Ri j
rk−1|z1:k−1), respectively. It is noted that

the absolute measurements {zil
ak}{l∈li∗

k } have been obtained when

Ri j
rk is adaptively estimated.
Equations (6)–(12) make up an hierarchical Gaussian model

of robot i whose graphical illustration is shown in Fig. 6.
Using a similar way, nR hierarchical Gaussian models of the
entire multirobot systems can be constructed. Next, we will
present how to jointly estimate the state vector (pose) of robot
i and measurement noise covariance matrices based on these
nR hierarchical Gaussian models using the VB approach.

C. Joint Estimates of xi
k and {Ril

ak}{l∈li∗
k }

To estimate xi
k and {R̂il

ak}{l∈li∗
k } simultaneously,

we require to calculate the joint posterior PDF
p(xi

k, {R̂il
ak}{l∈li∗

k }|z1:k−1, {zil
ak}{l∈li∗

k }). Unfortunately, a recursive
analytical solution of this joint posterior PDF is unavailable
since the Gaussian-inverse-Wishart joint PDF does not have
a closed form under the Bayesian estimation framework.
To solve this problem, the standard VB approach [40], [41]
is employed to obtain a free factored approximation of the
joint posterior PDF as follows:

p
�

xi
k,
�
R̂il

ak

�
{l∈li∗

k }
���z1:k−1,

�
zil

ak

�
{l∈li∗

k }
�

≈ q(a)
�
xi

k

	�
l∈li∗

k

q(a)
�
Ril

ak

	
(13)

where q(a)(xi
k) and {q(a)(Ril

ak)}{l∈li∗
k } are the approximate pos-

terior PDFs of the LAMU, which are given by

log q(a)
�
xi

k

	
= E{R̂il

ak}{l∈li∗k }
�
log p

�
xi

k,
�
R̂il

ak

�
{l∈li∗

k }, z1:k−1,
�
zil

ak

�
{l∈li∗

k }
��

(14)

log q(a)
�
Ril

ak

	
= E�

xi
k ,{R̂is

ak}{s �= j }{s∈li∗k }
��log p

�
xi

k,
�
R̂il

ak

�
{l∈li∗

k }, z1:k−1,
�
zil

ak

�
{l∈li∗

k }
��

(15)

where Ey[·] denotes the expectation operation with respect to
the approximate posterior PDF q(y).

Proposition 1: Exploiting (14), the approximate posterior
PDF q(a)(xi

k) can be updated as Gaussian, that is

q(a)
�
xi

k

	 = N
�

xi
k; x̂i(a)

k|k ,�
i(a)
k|k
�

(16)

where x̂i(a)
k|k and �

i(a)
k|k can be obtained by running the LAMU

function with {zil
ak, R̂il

ak, xl
L}{l∈li∗

k }, and R̂il
ak denotes the esti-

mated absolute measurement noise covariance matrix and is
given by

R̂il
ak =

�
E
��

Ril
ak

	−1
��−1

, l ∈ l i∗
k . (17)

Proposition 2: Using (15), the approximate posterior PDF
q(a)(Ril

ak) can be updated as an inverse-Wishart PDF, that is

q(a)
�
Ril

ak

	 = IW
�
Ril

ak; uil
ak|k, Uil

ak|k
	

(18)

where the posterior DoF parameter uil
ak|k and scale matrix Uil

ak|k
are, respectively, given by�

uil
ak|k = uil

ak|k−1 + 1
Uil

ak|k = Uil
ak|k−1 + Ail

k
(19)

and the auxiliary matrix Ail
k is written as

Ail
k = E

��
zil

ak − hil
ak

�
xi

k, xl
L

	��
zil

ak − hil
ak

�
xi

k, xl
L

	�T�
. (20)

Proof: See Appendix A for the proofs of Proposi-
tions 1 and 2. �

Finally, we calculate the required expectations in (17)
and (20). Since the scale matrix Ril

ak is updated as an
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Fig. 5. Diagram of the proposed RDCL-EKF method for robot i .

Fig. 6. Graphical illustration of the constructed hierarchical Gaussian model
for robot i .

inverse-Wishart PDF according to (18), the estimate of Ril
ak

is calculated as

R̂il
ak =

�
E
��

Ril
ak

	−1
��−1 = Uil

ak|k/uil
ak|k . (21)

Utilizing the first-order Taylor approximation of hil
ak(x

i
k, xl

L)
at xi

k = x̂i
k|k−1, the auxiliary matrix Ail

k can be approximately
calculated as

Ail
k = E

��
zil

ak − hil
ak

�
x̂i

k|k−1, xl
L

	− Hil
ak

�
xi

k − x̂i
k|k−1

	�
�
zil

ak − hil
ak

�
x̂i

k|k−1, xl
L

	
−Hil

ak

�
xi

k − x̂i
k|k−1

	�T�
= Hil

ak�
i(a)
k|k
�
Hil

ak

	T
+
�
zil

ak − hil
ak

�
x̂i

k|k−1, xl
L

	− Hil
ak

�
x̂i(a)

k|k − x̂i
k|k−1

��
×
�
zil

ak − hil
ak

�
x̂i

k|k−1, xl
L

	− Hil
ak

�
x̂i(a)

k|k − x̂i
k|k−1

��T

(22)

where Hil
ak is given in Table II.

Equations (16)–(22) constitute the proposed VB-based
LAMU. It can be seen from (16) to (22) that the calculations of
the approximate posterior PDFs q(a)(xi

k) and {q(a)(Ril
ak)}{l∈li∗

k }
are mutually coupled. As a result, the analytical solutions of
these approximate posterior PDFs are unavailable. To address
this problem, in this article, the fixed-point iteration method
is employed to achieve approximate solutions of these pos-
terior PDFs, in which the posterior PDFs q(a)(xi

k) and

{q(a)(Ril
ak)}{l∈li∗

k } are alternately updated. That is to say, at the
(m + 1)th iteration, the posterior PDF q(a)(xi

k) is first updated
as q(a)(m+1)(xi

k) by fixing {q(a)(Ril
ak) = q(a)(m)(Ril

ak)}{l∈li∗
k },

and then the posterior PDFs {q(a)(Ril
ak)}{l∈li∗

k } are updated
as {q(a)(m+1)(Ril

ak)}{l∈li∗
k } based on the updated posterior

PDF q(a)(m+1)(xi
k). Such fixed-point iterations are performed

until convergence in the proposed VB-based LAMU. The
fixed-point iteration of the proposed VB-based LAMU for
robot i is summarized as the VBLAMU function in Table IV,
where m∗, M and � denote the actual number of iterations,
the maximum number of iterations, and the iterative threshold,
respectively.

D. Joint Estimates of xi
k , {x j

k }{ j∈ j i∗
k } and {Ri j

rk}{ j∈ j i∗
k }

To jointly estimate xi
k , {x j

k }{ j∈ j i∗
k } and {Ri j

rk}{ j∈ j i∗
k },

we need to calculate the joint posterior PDF
p(xi

k, {x j
k }{ j∈ j i∗

k }, {Ri j
rk}{ j∈ j i∗

k }|z1:k−1, {zil
ak}{l∈li∗

k }, {zi j
rk}{ j∈ j i∗

k }).
Similar to Section III-C, we also employ the standard
VB approach [41] to obtain a free-factored approximate
solution of this joint posterior PDF as follows:

p

�
xi

k,
�
x j

k

�
{ j∈ j i∗

k },
�
Ri j

rk

�
{ j∈ j i∗

k }
����z1:k−1,

�
zil

ak

�
{l∈li∗

k },
�
zi j

rk

�
{ j∈ j i∗

k }
�

≈ q

�
xi

k,
�

x j
k

�
{ j∈ j i∗

k }
�

×
�
j∈ j i∗

k

q
�

Ri j
rk

�
(23)

where q(xi
k, {x j

k }{ j∈ j i∗
k }) and {q(Ri j

rk)}{ j∈ j i∗
k } are the approximate

posterior PDFs of the CRMU, which are given by

log q

�
xi

k,
�

x j
k

�
{ j∈ j i∗

k }
�

= E�
Ri j

rk

�
{ j∈ j i∗

k }



log p

�
xi

k,
�

x j
k

�
{ j∈ j i∗

k },
�

Ri j
rk

�
{ j∈ j i∗

k }, z1:k−1,

�
zil

ak

�
{l∈li∗

k },
�

zi j
rk

�
{ j∈ j i∗

k }
��

(24)

log q
�

Ri j
rk

�
= E�

xi
k ,
�

x j
k

�
{ j∈ j i∗

k },{Ris
rk}{s �= j }{s∈ j i∗

k }
�



log p

�
xi

k,
�

x j
k

�
{ j∈ j i∗

k },

�
Ri j

rk

�
{ j∈ j i∗

k }, z1:k−1,
�
zil

ak

�
{l∈li∗

k },
�

zi j
rk

�
{ j∈ j i∗

k }
��

. (25)
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TABLE IV

FIXED-POINT ITERATION OF THE PROPOSED VB-BASED LAMU FOR ROBOT i

Proposition 3: Exploiting (24), the approximate posterior
PDF q(xi

k, {x j
k }{ j∈ j i∗

k }) can be updated as Gaussian, that is

q

�
xi

k,
�

x j
k

�
{ j∈ j i∗

k }
�

= N

⎛
⎝ xi

k

x
j i∗
k

k

�
;


x̂i
k|k

x̂
j i∗
k

k|k

�
,

⎡
⎣ �i

k|k �
i j i∗

k
k|k�

�
i j i∗

k
k|k
�T

�
j i∗
k

k|k

⎤
⎦
⎞
⎠ (26)

where the state estimates x̂i
k|k and x̂

j i∗
k

k|k , the estimation error

covariance matrix �i
k|k and �

i j i∗
k

k|k , and the cross correla-

tion �
j i∗
k

k|k can be obtained using the CRMU function with

{zi j
rk, R̂i j

rk}{ j∈ j i∗
k }, and the estimated relative measurement noise

covariance matrix R̂i j
rk is written as

R̂i j
rk =

�
E


�
Ri j

rk

�−1
��−1

. (27)

Proposition 4: According to (25), the approximate poste-
rior PDF q(Ri j

rk) can be updated as an inverse-Wishart PDF
as follows:

q
�

Ri j
rk

�
= IW

�
Ri j

rk; ui j
rk|k, Ui j

rk|k
�

(28)

where the posterior DoF parameter ui j
rk|k and scale matrix Ui j

rk|k
are, respectively, given by�

ui j
rk|k = ui j

rk|k−1 + 1

Ui j
rk|k = Ui j

rk|k−1 + Bi j
k

(29)

and the auxiliary matrix Bi j
k is formulated as

Bi j
k = E

��
zi j

rk − hi j
rk

�
xi

k, x j
k

���
zi j

rk − hi j
rk

�
xi

k, x j
k

��T
�

(30)

.
Proof: See Appendix B for the proofs of Proposi-

tions 3 and 4. �
Similar to Section III-C, the expectations in (27) and (30)

can be, respectively, calculated as

R̂i j
rk = Ui j

rk|k/ui j
rk|k (31)

Bi j
k = Hi j

rk�
ξ i j ξ i j

k|k
�

Hi j
rk

�T

+
�
zi j

rk − hi j
rk

�
x̂i(a)

k|k , x̂ j(a)
k|k
�

− Hi j
rk

�
ξ

i j
k|k − ξ

i j(a)
k|k
��

×
�
zi j

rk − hi j
rk

�
x̂i(a)

k|k , x̂ j(a)
k|k
�

− Hi j
rk

�
ξ

i j
k|k − ξ

i j(a)
k|k
��T

(32)
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TABLE V

FIXED-POINT ITERATION OF THE PROPOSED VB-BASED CRMU FOR ROBOT i

where the auxiliary parameters are given by⎧⎨⎨⎨⎨⎨⎨
⎨⎨⎨⎨⎨⎩

�
ξ i j ξ i j

k|k =
⎡
⎣ �i

k|k �
i j
k|k�

�
i j
k|k
�T

�
j
k|k

⎤
⎦

ξ
i j
k|k =



x̂i

k|k
x̂ j

k|k

�
, ξ

i j(a)
k|k =


x̂i(a)

k|k
x̂ j(a)

k|k

� (33)

and x̂ j
k|k , x̂ j (a)

k|k , �
i j
k|k and �

j
k|k can be, respectively, extracted

from x̂
j i∗
k

k|k , x̂
j i∗
k (a)

k|k , �
i j i∗

k
k|k and �

j i∗
k

k|k accordingly.
Equations (27)–(33) constitute the proposed VB-based

CRMU. We can observe from (27) to (33) that the calcula-
tions of the approximate posterior PDFs q(xi

k, {x j
k }{ j∈ j i∗

k }) and

{q(Ri j
rk)}{ j∈ j i∗

k } are also mutually coupled so that the analytical
solutions of these posterior PDFs are unavailable. Similar to
the proposed VB-based LAMU, the approximate posterior

PDFs q(xi
k, {x j

k }{ j∈ j i∗
k }) and {q(Ri j

rk)}{ j∈ j i∗
k } are also alternately

updated based on the fixed-point iteration in the CRMU. The
fixed-point iteration of the proposed VB-based CRMU for
robot i is summarized as VBCRMU function in Table V.

E. Proposed Adaptive RDCL-EKF Algorithm

The proposed adaptive RDCL-EKF algorithm is composed
of four parts: the local motion updates of all robots, the local
time updates of measurement noise covariance matrices of all
robots, the VB-based LAMUs of all robots, and the VB-based
CRMUs of all robots. The detailed update process is as
follows.

1) In the local motion update, each robot propagates its
state estimate, estimation error covariance matrix, and
cross correlations independently.
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TABLE VI

IMPLEMENTATIONS OF THE PROPOSED ADAPTIVE RDCL-EKF ALGORITHM

2) In the local time updates of measurement noise covari-
ance matrices, each robot propagates its DoF parameters
and scale matrices of absolute and relative measurement
noise covariance matrices with respect to all landmarks
and all the other robots.

3) In the VB-based LAMU, each robot updates its state
estimate, estimation error covariance matrix, cross cor-
relations, and the DoF parameters and scale matrices
of the absolute measurement noise covariance matrices
relative to all detected landmarks independently, while
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Fig. 7. Diagram of the proposed RDCL-EKF algorithm for robots i and j .

the DoF parameters and scale matrices of absolute and
relative measurement noise covariance matrices relative
to the undetected landmarks all remain unchanged.

4) In the VB-based CRMU, each robot and all the other
robots detected by it jointly update their state estimates,
error covariance matrices, cross correlations, and the
DoF parameters and scale matrices of relative measure-
ment noise covariance matrices.

The diagram of the proposed RDCL-EKF algorithm for
robots i and j is shown in Fig. 7, where LMU, LTUMNCM,
VBLAMU, and VBCRMU are, respectively, the abbreviations
of the above update steps. The detailed implementations of
the proposed adaptive RDCL-EKF algorithm for all robots are
shown in Table VI. It can be observed from Fig. 7 that the
state estimation information and the distribution parameters of
the relative measurement noise covariance matrices of robot i
and robot j require to interact with each other through local
communication in the cooperative process between robot i and
robot j . We can observe from Table VI that the proposed
method does not require a common fusion center, and each
robot plays a role of fusion center, in which each robot
estimates its state vector (pose), absolute measurement noise
covariance matrices with respect to all landmarks, and relative
measurement noise covariance matrices with respect to all the
other robots in a decentralized way.

Remark 1: The proposed RDCL-EKF method has the same
communication mode as the existing RDCL-EKF method,
but requires that the additional distribution parameters of
the relative measurement noise covariance matrices are trans-
mitted, as shown in Fig. 7. Thus, in practical CL appli-
cations, the proposed method has the same communication
frequency with the existing RDCL-EKF method, but only
requires slightly higher communication overhead to transmit
additional parameters in each cooperation. It is worth noting
that we have assumed perfect communications between the
local robots, and the problems with regard to the delays and
dropouts in communication will be further considered in our
future work. Meanwhile, VB learning allows the robot to adap-
tively estimate the measurement noise covariance matrices,
contributing to better performance for the problem of DCL
with time-varying accuracy, but at the expense of slightly
higher computational complexity.

Fig. 8. True trajectories of six mobile robots.

IV. SIMULATION STUDY

A. Simulation Setups and Descriptions

In this section, the performance of the proposed adaptive
RDCL-EKF algorithm is validated using a series of simulation
tests. A team of six homogeneous mobile robots move ran-
domly according to the motion model (1) in a 2-D environment
with five known landmarks, that is nR = 6 and nL = 5, where
the true linear velocity of each robot is Vk = 0.5 (m/s), and the
true rotational velocity �k of each robot is randomly drawn
from [−0.5, 0.5] (rad/s), and the discretization time is set
as �t = 0.5 (s). The true trajectories of six mobile robots
are shown in Fig. 8. The proprioceptive sensor is selected as
the wheel encoder which is used to measure the linear and
rotational velocities. The wheel encoders installed on every
robot have the same measurement accuracy, and the standard
deviation is set as σk = 5%Vk which is proportional to
the true linear velocity. According to the velocity measuring
principle of wheel encoders, the standard deviations of linear
and rotational velocity measurements can be, respectively, set
as σV k = (

√
2/2)σk and σ�k = (

√
2/a)σk , where a denotes

the distance between two drive wheels of every robot [15].
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Fig. 9. RMSEs of position of all the algorithms compared for six mobile robots.

Fig. 10. RMSEs of orientation of all the algorithms compared for six mobile robots.

In this simulation study, the bearing and range measurement
models in (2) and (4) are used to validate the performance of
the proposed method. It is noted that the similar simulation
results and conclusions can be also obtained using the rel-
ative position measurement models in (2) and (4), and they
are omitted for brevity. The standard deviations of absolute
measurements are all proportional to the true distance between
the exteroceptive sensor and the reference landmark, and the
standard deviations of relative measurements are also all pro-
portional to the true distance between the exteroceptive sensor
and the mobile robot. Considering that every exteroceptive
sensor has a limiting measurement accuracy, the standard devi-
ations of absolute and relative measurements all have the mini-
mum values, and the minimum standard deviations of bearing
and range are, respectively, chosen as 1 (deg) and 0.1 (m).

Specifically, for the absolute and relative measurements,
the standard deviations of bearing and range are, respectively,
set as the five percent of the distance between the exteroceptive
sensor and the measured target, that is σθk = 5%dk (deg) and
σrk = 5%dk (m), where σθk ≥1 (deg) and σrk ≥1 (m), and
dk denotes the true distance between the exteroceptive sensor
and the measured target (reference landmark or mobile robot).
Since every mobile robot has limited sensing scope, it can only
detect the landmarks and other mobile robots occasionally.
To be more consistent with the actual situation, it is assumed
that each mobile robot detects every landmark and mobile
robot both with the probability of 20%. To better show the
advantages of the proposed method, four CL-EKF algorithms
are compared in the simulation tests, in which the true state
noise covariance matrix Qk = diag{[σ 2

V k, σ 2
�r ]} of each robot
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Fig. 11. NEESs of all the algorithms compared for six mobile robots.

is used. The detailed descriptions and parameter settings of
the four CL-EKF algorithms are listed as follows.

1) CCL-EKF [8]: The existing CCL-EKF algorithm is
the optimal centralized algorithm employing the true
absolute and relative measurement noise covariance
matrices Rak and Rrk to estimate the poses of all robots,
which is used as the most accurate reference.

2) RDCL-EKF-T [25]: The existing RDCL-EKF algorithm
employs the true absolute and relative measurement
noise covariance matrices Rak and Rrk to estimate the
poses of all robots, which acts as the benchmark for the
proposed adaptive DCL method.

3) RDCL-EKF-N [25]: The existing RDCL-EKF algorithm
utilizes the nominal absolute and relative measurement
noise covariance matrices R̄ak and R̄rk to estimate the
poses of all robots and will be compared with the
proposed algorithm in terms of estimation accuracy and
consistency.

4) RDCL-EKF-VB: The proposed adaptive RDCL-EKF
algorithm employs the standard VB approach to estimate
the absolute and relative measurement noise covariance
matrices, in which the nominal absolute and relative
measurement noise covariance matrices R̄ak and R̄rk are
used as initial prior values, and the initial dof parameters
and scale matrices are set as: {uil

a0|0 = 5, Uil
a0|0 =

5R̄a0}{1≤l≤nL }
{1≤i≤nR} and {ui j

r0|0 = 5, Ui j
r0|0 = 5R̄r0}{i �= j}

{1≤i, j≤nR},
and the other parameters are selected as ρ = 1 − 10−5,
M = 50, � = 10−4.

Among the above four algorithms, Rak = Rrk =
diag{[σ 2

rk, σ 2
θk]} and R̄ak = R̄rk = diag{[σ̄ 2

r , σ̄ 2
θ ]}, and σ̄r and

σ̄θ denote the nominal standard deviations of range and bearing
measurements, which are, respectively, selected as 0.5 (m) and
5 (deg). The CCL-EKF algorithm can obtain the optimal CL
accuracy, and it is used as the performance benchmark for
all CL-EKF algorithms. On the other hand, the RDCL-EKF-T
algorithm can achieve the best CL accuracy in the RDCL-EKF

framework, and it is used as the accuracy benchmark for the
RDCL-EKF-N and RDCL-EKF-VB algorithms. The codes of
all algorithms are performed on a computer with Intel Core
i7-6500U CPU at 2.50 GHz.

In all comparative algorithms, the initial state estimates
of all robots are set as their initial true states, and the
corresponding estimation error covariance matrices are all set
as 10−10I. Simulation time is set as 200 (s) and 1000 Monte
Carlo run simulation trials are performed. To compare the CL
accuracy, the root mean square errors (RMSEs) of position
and orientation are used as performance metrics, which are
defined as⎧⎨⎨⎨⎨⎨⎨⎨⎨⎨
⎨⎨⎨⎨⎨⎨⎨⎨⎩

RMSEi
p(k)

=
())* 1

Mn

Mn+
s=1


�
x i(s)

k − x̂ i(s)
k|k
�2 +

�
yi(s)

k − ŷi(s)
k|k
�2
�

RMSEi
o(k) =

())* 1

Mn

Mn+
s=1

�
φ

i(s)
k − φ̂

i(s)
k|k
�2

(34)

where RMSEi
p and RMSEi

o denote the RMSEs of position and
orientation of robot i , respectively, and x i(s)

k , yi(s)
k and φ

i(s)
k are,

respectively, the true values of east position, north position
and orientation of robot i at the sth Monte Carlo simulation,
and x̂ i(s)

k|k , ŷi(s)
k|k and φ̂

i(s)
k|k are, respectively, the estimates of east

position, north position and orientation of robot i at the sth
Monte Carlo simulation, and Mn denotes the total numbers of
Monte Carlo simulations.

To compare the estimation consistency, the normalized
estimation error squared (NEES) is selected as the evaluation
index, which is defined as follows:

NEESi(k) = 1

Mn

Mn+
s=1

�
xi(s)

k − x̂i(s)
k|k
�T�

�
i(s)
k|k
�−1�

xi(s)
k − x̂i(s)

k|k
�

(35)
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TABLE VII

ARMSES OF POSITION AND ORIENTATION, ANEESS, AND SINGLE STEP RUN TIMES OF ALL THE ALGORITHMS COMPARED FOR SIX MOBILE ROBOTS

where NEESi denotes the NEES of robot i , and xi(s)
k is the

true state vector of robot i at the sth Monte Carlo simulation,
and x̂i(s)

k|k and �
i(s)
k|k are, respectively, the state estimate and

estimation error covariance matrix of robot i at the sth Monte
Carlo simulation. In theory, if the state estimate is consistent,
then the NEES value is not greater than the state dimension
(i.e., NEES ≤ 3), and the state estimate is strictly consistent
when the NEES value is identical to state dimension (i.e.,
NEES = 3).

To compare the estimation accuracy of absolute and relative
measurement noise covariance matrices, the RMSEs of stan-
dard deviations of range and bearing measurements are used
as evaluation metrics, which are defined as where RMSEσr

and RMSEσθ
denote, respectively, the RMSEs of standard

deviations of range and bearing measurements, and l i∗(s)
k and

j i∗(s)
k denote, respectively, the detected landmark and robot sets

by robot i at time k of the sth Monte Carlo simulation, and
|l i∗(s)

k | denotes the number of landmarks within the set l i∗(s)
k ,

and | j i∗(s)
k | denotes the number of mobile robots within the set

j i∗(s)
k , and σ̂ il(s)

r,ak|k and σ̂ il(s)
θ,ak|k denote the estimates of standard

deviations of absolute range and bearing measurements at
time k of the sth Monte Carlo simulation, respectively, and
σ̂

i j (s)
r,rk|k and σ̂

i j (s)
θ,rk|k denote the estimates of standard deviations

of relative range and bearing measurements at time k of the
sth Monte Carlo simulation, respectively.

B. Simulation Results and Analyses

Figs. 9–11 show the RMSEs of position and orientation
and the NEESs of all the algorithms compared for six
mobile robots, respectively, and Table VII lists the averaged
RMSEs (ARMSEs) of position and orientation, the averaged
NEESs (ANEESs), and the single step run times of all the
algorithms compared for six mobile robots, respectively. It is
seen from Figs. 9 and 10 and Table VII that the proposed
RDCL-EKF-VB method has similar RMSEs and ARMSEs
of position and orientation to the RDCL-EKF-T but smaller
RMSEs and ARMSEs of position and orientation than
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Fig. 12. RMSEs of standard deviations of range and bearing measurements.

Fig. 13. ARMSEs of position and orientation and ANEESs when σ̄θ =
5 (deg) and σ̄r = 0.1 :0.1 :1.0 (m).

the existing RDCL-EKF-N method. It can be seen from
Fig. 11 and Table VII that the NEESs and ANEESs of the
proposed method and the RDCL-EKF-T are almost identical
and all close to the benchmark 3, however, the NEESs and
ANEESs of the existing RDCL-EKF-N method are all far
from the benchmark 3. We can also see from Table VII that
the proposed RDCL-EKF-VB method requires more single
step run times than the existing RDCL-EKF-N method.
Thus, the proposed RDCL-EKF-VB method has similar CL

Fig. 14. ARMSEs of standard deviations of range and bearing measurements
when σ̄θ = 5 (deg) and σ̄r = 0.1 :0.1 :1.0 (m).

Fig. 15. ARMSEs of position and orientation and ANEESs when σ̄r =
0.5 (m) and σ̄θ = 1 :1 :10 (deg).

accuracy and estimation consistency as the RDCL-EKF-T
method but better CL accuracy and estimation consistency
than the existing RDCL-EKF-N method at the cost of the
increased computational complexity.

Fig. 12 illustrates the RMSEs of standard deviations of
range and bearing measurements. We can see from Fig. 12 that
the proposed RDCL-EKF-VB method has smaller RMSEσr

and RMSEσθ
than the existing RDCL-EKF-N method. The

⎧⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨
⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎩

RMSEσr =

())))* 1

Mn

Mn+
s=1

nR+
i=1

⎡
⎢⎣
-

l∈li∗(s)
k

�
σr − σ̂

il(s)
r,ak|k

�2

-nR
i=1 |l i∗(s)

k | +
-

j∈ j i∗(s)
k

�
σr − σ̂

i j(s)
r,rk|k

�2

-nR
i=1 | j i∗(s)

k |

⎤
⎥⎦

RMSEσθ
=

())))* 1

Mn

Mn+
s=1

nR+
i=1

⎡
⎢⎣
-

l∈li∗(s)
k

�
σθ − σ̂

il(s)
θ,ak|k

�2

-nR
i=1 |l i∗(s)

k | +
-

j∈ j i∗(s)
k

�
σθ − σ̂

i j(s)
θ,rk|k

�2

-nR
i=1 | j i∗(s)

k |

⎤
⎥⎦

(36)
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Fig. 16. ARMSEs of standard deviations of range and bearing measurements
when σ̄r = 0.5 (m) and σ̄θ = 1 :1 :10 (deg).

ARMSEσr and ARMSEσθ
of the existing RDCL-EKF-N

method and the proposed RDCL-EKF-VB method are, respec-
tively, 1.22 (m), 3.21 (deg), 0.54 (m), and 1.27 (deg). Thus,
the proposed RDCL-EKF-VB method can better estimate the
absolute and relative measurement noise covariance matrices
than the existing RDCL-EKF-N method, which results in
better CL accuracy and estimation consistency.

To better show the advantages of the proposed RDCL-
EKF-VB method, the performances of all methods are further
compared when different nominal standard deviations of range
and bearing measurements are selected. Figs. 13 and 14 show
the ARMSEs of position and orientation, ANEESs, and the
ARMSEs of standard deviations of range and bearing mea-
surements, respectively, when the nominal standard deviation
of bearing measurement is chosen as σ̄θ = 5 (deg) and the
nominal standard deviation of range measurement is set as
σ̄r = 0.1 : 0.1 : 1.0 (m). Figs. 15 and 16 give the ARM-
SEs of position and orientation, ANEESs, and the ARMSEs
of standard deviations of range and bearing measurements,
respectively when the nominal standard deviation of range
measurement is chosen as σ̄r = 0.5 (m) and the nominal
standard deviation of bearing measurement is set as σ̄θ =
1 : 1 : 10 (deg). It is observed from Figs. 13 and 15 that
the proposed RDCL-EKF-VB method always has better CL
accuracy and estimation consistency than the existing RDCL-
EKF-N method when different standard deviations of range
and bearing measurements are selected. It can be also observed
from Figs. 14 and 16 that the proposed RDCL-EKF-VB
method can always estimate the absolute and relative measure-
ment noise covariance matrices better than the existing RDCL-
EKF-N method when different standard deviations of range
and bearing measurements are selected. Consequently, for the
case of time-varying measurement accuracy, the CL accuracy
and estimation consistency of the existing RDCL-EKF method
can be further improved by the proposed method, which is
induced by the recursively adaptive learning of the absolute
and relative measurement noise covariance matrices based
on online pose estimates and measurement data using the
VB approach.

Fig. 17. Experimental field for UTIAS multirobot cooperative localization
and mapping data set [42].

Fig. 18. Experimental platforms for UTIAS multirobot cooperative localiza-
tion and mapping data set [42].

V. EXPERIMENT STUDY

A. Experimental Setups and Descriptions

In this section, the performance of the proposed adaptive
RDCL-EKF algorithm is tested with an open access UTIAS
multirobot cooperative localization and mapping data set that
was provided by Leung et al. [42]. In the experiment, a team
of five identical mobile robots moved on a flat lab with
15 landmarks, where the 15 cylindrical tubes with distin-
guishable barcode identifiers served as landmarks. Each robot
was equipped with a wheel encoder and a monocular camera,
in which the wheel encoder was used to measure the linear
and rotational velocities of each robot with output frequency
67 (Hz), and the monocular camera was employed to obtain
the range and bearing measurements between the robot and
the landmark or the other robot. The reference positions of
landmarks and the reference poses of all mobile robots were
all provided by a 10-camera Vicon motion capture system at
100 (Hz) whose position accuracy is on the order of 1 (mm).
The experimental field and platforms are, respectively, shown
in Figs. 17 and 18.
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TABLE VIII

APES, AOES, ANEESS, AND SINGLE STEP RUN TIMES OF ALL THE ALGORITHMS COMPARED FOR FIVE MOBILE ROBOTS USING THE DATA 1

The motion model of each robot is described by (1), and the
discretization time of the motion model is set as �t = 0.02 (s).
The range and bearing measurements between the robot and
the landmark are described by the absolute measurement mod-
els in (2), and the range and bearing measurements between
the robot and the other robot are modeled by the relative
measurement models in (4). Eight sets of real-world data (i.e.,
data 1 to data 8) are used in this experiment study, which are,
respectively, collected in eight different runs with different
test trajectories, moving velocities, and running times ranging
from 15 to 70 (min). To demonstrate the effectiveness and
superiority of the proposed method, three CL-EKF algorithms
are compared in the experimental tests, including CCL-EKF-
N, RDCL-EKF-N, and RDCL-EKF-VB, where CCL-EKF-N
is the existing CCL-EKF algorithm using the nominal absolute
and relative measurement noise covariance matrices Rak and
Rrk to estimate the poses of all robots as reference, and the
descriptions and parameter settings of the RDCL-EKF-N and
RDCL-EKF-VB in the experiment study are the same as those
in the simulation study. Note that the CCL-EKF-N algorithm
is used as an optimal benchmark for CL. Since the true state
and measurement noise covariance matrices are unknown in
the test, their nominal values are used in the CCL-EKF-
N, RDCL-EKF-N, and RDCL-EKF-VB. In the experimental
comparisons, the nominal state noise covariance matrix is
selected as Q̄k = diag{[σ̄ 2

V , σ̄ 2
�]}, where σ̄V = (

√
2/2)σ̄ and

σ̄� = (2
√

2/σ̄ ) with σ̄ = 0.1, and the nominal absolute and

relative measurement noise covariance matrices are chosen as
R̄ak = R̄rk = diag{[σ̄ 2

r , σ̄ 2
θ ]} with nominal standard deviations

σ̄r = 0.5 (m) and σ̄θ = 3 (deg). The codes of all algorithms
are performed on a computer with Intel Core i7-6500U CPU
at 2.50 GHz.

To compare the CL accuracy, the position error (PE) and
the orientation error (OE) are selected as performance metrics,
which are defined as follows:⎧⎨

⎩PEi (k) =
��

x i
rk − x̂ i

k|k
�2 +

�
yi

rk − ŷi
k|k
�2

OEi(k) = |φi
rk − φ̂i

k|k |
(37)

where PEi and OEi denote the PE and OE of robot i , respec-
tively, and x i

rk , yi
rk , and φi

rk are, respectively, the reference
values of east position, north position, and orientation of robot
i , and x̂ i

k|k , ŷi
k|k , and φ̂i

k|k are, respectively, the estimates of
east position, north position, and orientation of robot i . Like
as in the simulation study, the NEES is used to evaluate the
estimation consistency, but Mn is set as 1 in the experiment
study. To better show the results of experimental comparisons,
the PEs, OEs, and NEESs of all the algorithms compared are
smoothed with a span of 20 (s).

B. Experimental Results and Analyses

First, we compare the PEs, OEs, and NEESs of the CCL-
EKF-N, RDCL-EKF-N, and RDCL-EKF-VB using the data 1.
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Fig. 19. PEs of all the algorithms compared for five mobile robots using the data 1.

Fig. 20. OEs of all the algorithms compared for five mobile robots using the data 1.

It is noted that the similar results can be also obtained using
data 2 to data 8, so they are omitted for brevity. The PEs, OEs,
and NEESs of all the algorithms compared for five mobile
robots are, respectively, shown in Figs. 19–21. The averaged
PEs (APEs), averaged OEs (AOEs), ANEESs, and single step
run times of all the algorithms compared for five mobile robots
are given in Table VIII. It can be seen from Figs. 19 and 20 and
Table VIII that the proposed RDCL-EKF-VB algorithm has
smaller PEs, OEs, APEs, and AOEs than the existing RDCL-
EKF-N algorithm. We can also see from Fig. 21 and Table VIII
that the NEESs and ANEESs of the proposed RDCL-EKF-VB
algorithm are closer to 3 as compared with those of the existing
RDCL-EKF-N algorithm. Meanwhile, as shown in Table VIII,
the proposed RDCL-EKF-VB algorithm has greater single
step run times than the existing RDCL-EKF-N algorithm.
It can be seen that the proposed RDCL-EKF-VB algorithm

has better CL accuracy and estimation consistency but slightly
greater implementation load than the existing RDCL-EKF-N
algorithm for the real-world data 1, which results from
the use of the more accurate measurement noise covariance
matrices.

Second, we aim to test the dependence of the proposed
method on the selections of nominal standard deviations
of range and bearing measurements. To this end, the over-
all APEs (OAPEs), overall AOEs (OAOEs) and overall
ANEESs (OANEESs) among all robots are used to compare
the performance, which are defined as

OAPE = 1

nR

nR+
i=1

APEi , OAOE = 1

nR

nR+
i=1

AOEi ,

OANEES = 1

nR

nR+
i=1

ANEESi (38)
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Fig. 21. NEESs of all the algorithms compared for five mobile robots using the data 1.

TABLE IX

OAPES, OAOES, AND OANEESS OF ALL THE ALGORITHMS COMPARED USING DATA 1–8

where APEi , AOEi , and ANEESi denote, respectively,
the APE, AOE, and ANEES of robot i , and OAPE, OAOE,
and OANEES denote, respectively, the overall APE, AOE, and
ANEES among all robots.

We compare the OAPEs, OAOEs, and OANEESs of the
CCL-EKF-N, RDCL-EKF-N, and RDCL-EKF-VB using the
data 1 when different nominal standard deviations of range
and bearing measurements are selected. Fig. 22 illustrates the
OAPEs, OAOEs, and OANEESs of the CCL-EKF-N, RDCL-
EKF-N, and RDCL-EKF-VB when the nominal standard devi-
ation of bearing measurement is chosen as σ̄θ = 5 (deg) and
the nominal standard deviation of range measurement is set

as σ̄r = 0.1 : 0.1 : 1.0 (m). Fig. 23 exhibits the OAPEs,
OAOEs, and OANEESs of the CCL-EKF-N, RDCL-EKF-N,
and RDCL-EKF-VB when the nominal standard deviation of
range measurement is chosen as σ̄r = 0.5 (m) and the nominal
standard deviation of bearing measurement is set as σ̄θ = 1 :
1 : 10 (deg). It can be observed from Figs. 22 and 23 that
the proposed RDCL-EKF-VB algorithm always has better CL
accuracy and estimation consistency than the existing RDCL-
EKF-N algorithm when σ̄r = 0.1 : 0.1 : 1.0 (m) and
σ̄θ = 1 : 1 : 10 (deg), which exhibits the weak dependence
of the proposed method on the selections of nominal standard
deviations of range and bearing measurements. The underlying
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Fig. 22. OAPEs, OAOEs, and OANEESs when σ̄θ = 5 (deg) and σ̄r = 0.1 :
0.1 :1.0 (m) using the data 1.

Fig. 23. OAPEs, OAOEs, and OANEESs when σ̄r = 0.5 (m) and σ̄θ = 1 :
1 :10 (deg) using the data 1.

cause is that the dependence on the nominal values of the
measurement noise covariance matrices will decrease as the
number of time updates for them increases.

To better exhibit the practicability of the proposed method,
we compare the OAPEs, OAOEs, and OANEESs of the CCL-
EKF-N, RDCL-EKF-N, and RDCL-EKF-VB using data 1–8.
Table IX lists the OAPEs, OAOEs, and OANEESs of all the
algorithms compared using data 1–8. We can observe from
Table IX that the proposed RDCL-EKF-VB algorithm always
has better CL accuracy and estimation consistency than the
existing RDCL-EKF-N algorithm for data 1–8, which demon-
strates the superiority of the proposed method in practical CL
application.

VI. CONCLUSION

In this article, a novel adaptive RDCL-EKF method
was proposed for multirobot systems with time-varying

measurement accuracy, where a novel decentralized estimation
strategy was proposed for estimating the unknown absolute
and relative measurement noise covariance matrices in a
decentralized manner. For each robot, its pose and absolute and
relative measurement noise covariance matrices were jointly
inferred based on the constructed hierarchical Gaussian model
using the VB approach. The proposed adaptive RDCL-EKF
method has the same mode and number of communications
as the standard RDCL-EKF method, but only requires
slightly higher communication capacities to transmit
additional parameters in each cooperation. A large number of
simulations and real-world data sets were used to compare
the proposed adaptive RDCL-EKF method and the existing
RDCL-EKF method. Simulation and experimental results have
demonstrated that the proposed adaptive RDCL-EKF method
has better CL accuracy and estimation consistency but slightly
heavier computational burden than the existing RDCL-EKF
method for multirobot systems with time-varying measurement
accuracy.

APPENDIX

A. Proofs of Propositions 1 and 2

Before solving q(a)(xi
k) and q(a)(Ril

ak), the joint PDF
p(xi

k, {R̂il
ak}{l∈li∗

k }, z1:k−1, {zil
ak}{l∈li∗

k }) in (14) and (15) is first
calculated. According to Bayes’ theorem and using (6)–(8)
yields

p
�

xi
k,
�
R̂il

ak

�
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k }, z1:k−1,
�
zil

ak

�
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k |z1:k−1
	�
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, Ril
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	×IW
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ak; uil
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.

(39)

Next, we solve q(a)(xi
k) and q(a)(Ril

ak). Substituting (39) in
(14), we have

log q(a)
�
xi

k

	 = log N
�
xi

k; x̂i
k|k−1,�

i
k|k−1

	
+
+
l∈li∗

k

log N
�
zil

ak; hil
ak

�
xi

k, xl
L

	
, R̂il

ak

	+ cxi
k
. (40)

By linearizing the absolute measurement functions
{hil

ak(x
i
k, xl

L)}{l∈li∗
k } at xi

k = x̂i
k|k−1 and exploiting (40), q(a)(xi

k)
can be approximately updated as (16).

Substituting (39) in (15) gives

log q(a)
�
Ril

ak

	 = −1

2

�
na + uil

ak|k−1 + 2
	

log
��Ril

ak

��
−1

2
tr
��

Uil
ak|k−1 + Ail

k

	�
Ril

ak

	−1
�

+ cRil
ak

(41)

where tr(·) denotes the trace operation of a matrix.
According to the definition of the inverse-Wishart PDF,

q(a)(Ril
ak) can be updated as (18).
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B. Proofs of Propositions 3 and 4

First, we calculate the joint PDF in (24) and (25) as fol-
lows. According to the conditional independence and Bayes’
theorem, the joint PDF can be factored as
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. (42)

Exploiting the variational approximation to
p(xi

k |z1:k−1, {zil
ak}{l∈li∗

k }) in (13) and (16), the joint posterior

PDF p(xi
k, {x j

k }{ j∈ j i∗
k }|z1:k−1, {zil

ak}{l∈li∗
k }) can be approximated

as Gaussian, that is
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where the augmented state vector is defined as x
j i∗
k

k �
col{x j

k }{ j∈ j i∗
k }, and the state estimates x̂i(a)

k|k and x̂
j i∗
k (a)

k|k , the error

covariance matrices �
i(a)
k|k and �

j i∗
k (a)

k|k , and the cross correlation

�
i j i∗

k (a)

k|k are all defined in Table III, which can be obtained
by running the LAMU function with the estimated absolute
measurement noise covariance matrices.

Using (10), (11), and (43) in (42), we have
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(44)

Secondly, we calculate the approximate posterior PDFs
q(xi

k, {x j
k }{ j∈ j i∗

k }) and {q(Ri j
rk)}{ j∈ j i∗

k }. Substituting (44) in (24)
yields
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By linearizing the relative measurement function hi j
rk(x

i
k, x j

k )

at {xi
k = x̂i(a)

k|k , x j
k = x̂ j (a)

k|k } and exploiting (45),

q(xi
k, {x j

k }{ j∈ j i∗
k }) can be approximately updated as (26).

Substituting (44) in (25) gives
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According to the definition of the inverse-Wishart distribu-
tion, the posterior PDF q(Ri j

rk) is updated as (28).
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