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Abstract—In this paper, we consider the problem of re-
covering the phase information of the multiple images from
the multiple mixed phaseless Short-Time Fourier Transform
(STFT) image measurements, which is called the blind mul-
tiple input multiple output image phase retrieval (BMIPR)
problem. It is an inherently ill-posed problem due to the
lack of the phase and mixing information, and the existing
phase retrieval algorithms are not explicitly designed for
this case. To address the BMIPR phase retrieval prob-
lem, an integrated algorithm is presented, which combines
a gradient descent (GD) algorithm by minimizing a non-
convex loss function with an independent component anal-
ysis (ICA) algorithm and a non-local means (NM) algorithm.
Experimental evaluation has been conducted to show that
under appropriate conditions the proposed algorithms can
explicitly recover the images, the phases of the images and
the mixing matrix. In addition, the algorithm is robust to
noise.

Index Terms—Blind multiple input multiple output im-
age phase retrieval (BMIPR), short-time Fourier transform
(STFT), non-convex optimization, independent component
analysis (ICA), non-local means (NM).

I. INTRODUCTION

THE problem of recovering a one-dimensional signal
from its Fourier transform magnitude, known as phase

retrieval, is of paramount importance in various engineering
and scientific applications, such as X-ray crystallography [1],
[2], optics [3], [4], astronomy [5], [6], blind channel estimation
[7], [8], and blind image deblurring [9], [10]. This problem
has a long history and has been studied by many researchers
[3], [11]–[14].

The phase retrieval problem originally arises from detectors
that can sometimes only record the magnitude-square of the
Fourier transform of a signal. Due to the lack of Fourier
phase information, some forms of additional information are
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required to identify the underlying signal efficiently. In this
respect, the phase retrieval methods can be mainly classified
into two categories based either on additional prior information
such as sparsity [3], [11], [12] or additional magnitude-only
measurements, including structured illuminations and masks
[13], [15], [16], and Short-Time Fourier Transform (STFT)
magnitude-square measurements [14], [17], [18]. The key idea
of using additional STFT magnitude-square measurements is
to introduce redundancy in the magnitude-only measurements
by maintaining a substantial overlap between adjacent short-
time windows [17].

These phase retrieval methods have focused on recovering a
single source from its Fourier transform magnitude. However,
in certain cases, the problem of recovering multiple underlying
images from multiple mixed Fourier transform magnitudes
of images, called blind multiple input multiple output image
phase retrieval (BMIPR), is ever-present in CCD cameras and
photosensitive films [19], [20], such as astronomy [11] or
light field images [10], [21]. This problem is ill-posed due to
the lack of the phase property and the mixing information.
Recently, Guo et al. proposed for recovering the multiple
one-dimensional signals from the multiple mixed phaseless
STFT measurements [22]. Bendory et al. consider the problem
of recovering a pair of signals from their blind short-time
Fourier transform [14]. Although these methods extend the
study to a two-source scenario for one-dimensional signals,
the existing phase retrieval methods can not provide a solution
to the problem of recovering the multiple underlying images
from the multiple mixed phaseless STFT image measurements.
Therefore, it is necessary to investigate the BMIPR problem.

Extending the former study of Guo, et al. [22], a closely-
related problem of recovering the multiple underlying images
from the multiple mixed phaseless STFT image measurements
is considered. In this work, our contribution is three-fold:
1) BMIPR model: A new model of the BMIPR problem is

proposed in order to recover multiple underlying images
from multiple mixed STFT image magnitude-square mea-
surements, corrupted by noise.

2) BMIPR algorithms: Due to the absence of Fourier phase
information and mixing information, we explore hybrid
methods by introducing additional STFT magnitude-square
measurements as well as estimating the mixing informa-
tion. In view of the BMIPR model, an integrated algorithm
is proposed, which combines a gradient descent (GD)
algorithm by minimizing a non-convex loss function with
an improved Complex Maximization of Nongaussianity
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Fig. 1. Two shifting examples of the sliding window overlapped with the signal (R = dN/Le = 2) for N = 6,W = 4 and
L = 3.

(CMN) algorithm and a non-local means (NM) algorith-
m. At first, the mixed images can be recovered by the
GD algorithm by minimizing a non-convex loss function.
Then we use a composite algorithm which combined an
improved CMN algorithm and an NM algorithm to estimate
the mixing information and the underlying images from the
mixed images.

3) Initialization of the GD algorithm: It is shown in [22] that
the initialization of the GD algorithm can be obtained by
minimizing a non-convex loss function and equivalently
posed as a constrained least squares (LS) solution with
a penalty term (`2). However, this method tends to limit
the value range of model parameters and produce biases.
To address this issue, we propose to use the principle
eigenvector of a designed correlation matrix to initialize
the GD algorithm that minimizes a LS solution with a
penalty term ( `1`2 ). The new loss function may provide
significant benefits in three aspects. First, it is more likely
to get a sparser solution than the use of `p (p ∈ (0, 1))
norm. Second, it has a better analytical structure than `q
(q ∈ (1, 2)). Third, it prevents over-fitting and improves
generalization performance and relaxes the rank restriction
of the regression variables.

The paper is organized as follows. Section II formulates a
mathematical model and gives the assumptions for the BMRP
problem from the multiple mixed STFT image magnitude-
square measurements. Section III discusses the uniqueness of
the BMRP problem and presents the conditions under which
it has a solution by combining a GD algorithm, an ICA
algorithm, and a NM algorithm. This section also explores the
initialization method for the GD algorithm. Section IV shows
numerical experimental results. Section V concludes the paper
and draws potential future research directions.

II. MATHEMATICAL MODEL AND ASSUMPTIONS

Consider a collaborative assessment task that is induced
by blind multi-image phase retrieval from multiple mixed
phaseless STFT image measurements in a noisy environment,
we present a mathematical model and the assumptions for this
task in this section.
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Fig. 2. The proposed BMIPR model.

A. Model for the BMIPR problem

The multiple underlying image signals are denoted as I =
{I1, I2, . . . , IM}, where Ii ∈ CN×N , i = {1, 2, . . . ,M}. The
mixtures of multiple underlying images are defined as X = AI,
with the mixtures X = {X1,X2, . . . ,XM}, Xi ∈ CN×N , i =
{1, 2, . . . ,M}, and the mixing matrix A ∈ RM×M .

Denote F = {F1,F2, . . . ,FM} as the STFT matrices of X =
{X1,X2, . . . ,XM}, where Xi = {xi1, xi2, . . . , xiN}, xij ∈
CN , Fi = {Fi1,Fi2, . . . ,FiN}, Fij ∈ CR×N , i =
{1, 2, . . . ,M}, j = {1, 2, . . . , N}.

The elements of Fi can be defined as

Fi1(τ, k) =

N−1∑
n=0

xi1(n)g(τL− n)e−2jπkn/N ,

...

FiN (τ, k) =

N−1∑
n=0

xiN (n)g(τL− n)e−2jπkn/N ,

(1)

for τ = 0, . . . , R − 1, k = 0, . . . , N − 1, where W is the
window length, L depicts the separation in time between ad-
jacent short-time windows, R = dN/Le denotes the number of
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short-time windows considered, and d e rounds the argument
to the smallest integer that is not less than the argument. Fig.
1 shows an example gτL = {g(τL− n)}N−1n=0 and applying it
to a signal by shifting the sliding window g by τL time units.
x and g are zero-padded over the boundaries of (1), where
i = {1, 2, . . . ,M}, j = {1, 2, . . . , N}. The τ th row of Fij
corresponds to the N -point DFT of xij ◦ gτL.

Denote the STFT magnitude-squared measurements as
|F|2 = {|F1|2, . . . , |FM |2}. We have the following signal
model

Zi = |Fi|2 + Ni, (2)

where i = 1, . . . ,M and Ni is a random N × R ×N tensor
which represents noise. Thus Z = {Z1, . . . ,ZM} and N =
{N1, . . . ,NM}.

The aim of multi-source phase retrieval is to recover the
phases of the underlying sources I from the phaseless STFT
measurements Z corrupted by noise N. The model of the
BMIPR problem is illustrated in Fig. 2.

To address this problem, two assumptions and a two-step
algorithm are proposed as discussed next.

B. Assumptions for the BMIPR problem
To address the BMIPR problem, two assumptions are uti-

lized for constructing the BMIPR model:
1) The mixed images X are linear mixtures of the multiple

underlying image sources I multiplied by the mixing matrix
A.

2) The multiple underlying image sources I are independent
from each other.

III. THE BMIPR ALGORITHM

In this section, we find the conditions for solving the
BMIPR problem and under which we provide a three-step
solution (Fig. 3). The first step is to recover the mixed image
signals X̂ from its mixed phaseless STFT measurements Z
corrupted by noises N. The second step is to estimate multiple
image sources I from the recovered mixed image signals X̂.
The third step is to reduce the noises of Î and obtain multiple
higher-quality underlying image sources Ĩ.

Fig. 3. The schematics diagram of the proposed BMIPR
algorithm.

The fundamental question in BMIPR is whether the under-
lying image sources Ĩ can be determined uniquely from Z.
Based on the study of Guo et al. [22], we propose a BMIPR
algorithm which is effective to solve this problem.

A. Recovery of the phases of the mixed image signals X̂
For the purpose of recovering the phases of the mixed

image signals X, we firstly take DFT of the phaseless STFT
measurements Z to simplify the quadratic system of equations

Algorithm 1 BMIPR algorithm

Input: The phaseless STFT measurements Z as given in (2),
a low-pass interpolation filter with bandwidth R as depicted
in (8).

Output: Initialization of x0, recovery of X̂, Ī, and Ĩ.
1. DFT. Compute DFT Yij of the STFT Zij as shown in
(3).
2. Up-sampling. For W ≤ l ≤ (N −W ),

if L = 1, omit this step,
else L > 1, yijl is expanded and interpolated to the up-

sampled version ỹijl by (8).
3. Initialization. Construct an initial matrix Fij0.

min
xij∈CN

a∑
l=−a

‖yijl −Gldiag(Fij0, l)‖2 + λ
‖diag(Fij0, l)‖1
‖diag(Fij0, l)‖2

where a = W − 1, Gl, yijl, and λ are defined as in
(6) and (7). Find the initialization xij0 by the eigenvector
decomposition of Fij0.
4. Recovery of X̂. Recover the mixed image source Xi by
a GD algorithm by minimizing a non-convex function as
given in (5). For each Zi, repeat steps 1-4 until all the mixed
image sources have been recovered, and then normalized as
X̂ = {X̂1, X̂2, . . . , X̂M}.
5. Whitening. Estimate a whitening matrix U and the whiten-
ing mixed signal x̃i = Uxi.
6. Orthogonalization. Search for an orthogonal matrix
W. The optimal weights are determined by wopt =
arg max
‖w‖2=1

E{|G(w∗x̃i)|2}.
7. Normalization. To calculate the optimal weights, a gra-
dient optimization algorithm is used and followed by a
normalization step as in (11).
8. Evaluation of Î. Estimate the mixing matrix A =
U−1W∗ and recover the underlying image sources Î =
{Î1, Î2, . . . , ÎM} by S = A−1X̃ and a conversion from a
vector to a matrix.
9. Estimation of Ĩ. Estimate the higher-quality underlying
image sources Ĩi = {Ĩ1, Ĩ2, . . . , ĨM} by (12).

and obtain required correlation data [23]. We take Zij as
an example, where Zij ∈ CR×N , i = {1, 2, . . . ,M}, j =
{1, 2, . . . , N}. The DFT of the measurement Yij(τ, l) can be
described by

Yij(τ, l) =
1

N

N−1∑
k=0

Zij(τ, k)e−2jπkl/N

=

N−1∑
n=0

xij(n)x∗ij(n+ l)g(τL− n)g(τL− n− l), (3)

where Yij(τ, l) is equal to zero for all τ when W ≤ l ≤
(N−W ) and can be interpreted as a “W bandlimited” function.
For fixed τ , Yij can be seen as the autocorrelation of xij ◦gτL,
where gτL is defined as in (1). The DFT is normalized by 1/N .
Note that the τ th row of Zij and the τ th row of Yij are Fourier
pairs. Hence, for a particular τ , if Zij(τ, l) for 0 ≤ l ≤ N −1
is available, then Yij(τ, l) for 0 ≤ l ≤ N−1 can be calculated
by taking an inverse Fourier transform [17].
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Theorem III.1: Z(τ, k) for 0 ≤ k ≤ 2W − 2 is sufficient to
calculate Y (τ, l) for 0 ≤ l ≤ N − 1.

Proof: See Appendix A.
Let DτL ∈ RN×N be a diagonal matrix composed of

the entries of gτL, the problem of recovering xij from the
measurement Zij can therefore be equivalently posed as a non-
convex loss function derived from

f(xij) =
1

2

R−1∑
τ=0

W−1∑
l=−(W−1)

(x∗ijHτ,lxij − Yij(τ, l))2, (4)

where Hτ,l = P−lDτLDτL−l, x∗ijHτ,lxij = tr(XijHτ,l), P−l =

PTl , and (Plx)(n) = x(n+ l).
A GD algorithm is adopted to recover the ijth mixed image

signal by minimizing (4). The kth iteration is

xijk = xij(k−1) − µ∇f(xij(k−1)),

∇f(b)

=

R−1∑
τ=0

W−1∑
l=−(W−1)

(bTHτ,lb− Yi(j−1)(τ, l))[(Hτ,l + HT
τ,l)b],

(5)

where b = xij(k−1), µ is the gradient step size, and R is
defined as in (1).

According to the above procedures, xij is recovered from
Zij , then we can get Xi. For each Zij , the above procedures
from (3) to (5) are repeated until all the mixed signals X
have been recovered. In order to remove the magnitude effect
of the mixing matrix, the recovered mixed image signals are
normalized as X̂ = {X̂1, X̂2, . . . , X̂M}.

Improved loss function for initialization: For L = 1,
the study of Guo et al. [22] shows that the geometry of
the loss function for the initialization heavily affects the
properties of the GD algorithm and the initialization x0 can
be determined by a constrained LS solution with a penalty
term (`2). However, it may limit the value range of the model
parameters and produce biases. To address this issue, a penalty
term is introduced as follows, for L = 1,

min
xij∈CN

W−1∑
l=−(W−1)

‖yijl−Gldiag(Fij , l)‖2+λ
‖diag(Fij , l)‖1
‖diag(Fij , l)‖2

subject to Fij = xijx∗ij , (6)

where yijl = {Yij(τ, l)}R−1τ=0 , λ is a regularization coefficient,
and the (τ, n)th entry of the matrix Gl ∈ RR×N is given
by g(τL − n)g(τL − n − l). Then the first column of Gl

can be given by the non-vanishing matrix g ◦ (P−lg), where
g = {g(n)}N−1n=0 , P−l = PTl , and (Plx)(n) = x(n + l).
Gl as a circulant matrix can be factored as Gl = F∗ΣlF,
where F is the DFT matrix and Σl is a diagonal matrix. The
new loss function may provide significant benefits in three
aspects. First, it is more likely to get a sparser solution than
`p (p ∈ (0, 1)). Second, it has better analytical structure than
`q (q ∈ (1, 2)). Third, it prevents over-fitting and improves
generalization performance and relaxes the rank restriction of
the regression variables [24].

Thus we construct a matrix Fij0 from (6) as follows

min
xij∈CN

W−1∑
l=−(W−1)

‖yijl−Gldiag(Fij0, l)‖2+λ
‖diag(Fij0, l)‖1
‖diag(Fij0, l)‖2

subject to Fij0 = xij0x∗ij0, (7)

where Gl and yijl are represented in (6), and xij0 is a principle
eigenvector of Fij0. Then the initialization xij0 of the proposed
GD algorithm can be constructed by Fij0.

Theorem III.2: Denote z = diag(Fij0, l), and S(z) as the
support of z. z ∈ F is called locally sparse if @y ∈ F \
{z} such that S(y) ⊆ S(z). Denote by F = {z ∈ CN :
z is locally sparse, i = {1, 2, . . . ,M}, j = {1, 2, . . . , N}}
as the set of feasible solutions.

Proof: See Appendix B.
In the case that L > 1, we need to expand yijl =

{Yij(τ, l)}R−1τ=0 to an up-sampled version ỹijl by expansion
and interpolation as

Yij(n, l) =

{
Yij(τ, l), n = τL,

0, otherwise,

Let ŷijl = {Yij(n, l)}N−1n=0 for fixed l,

ỹijl = (F∗pFp)ŷijl, (8)

where Fp is a partial Fourier matrix consisting of the first
R rows of the DFT matrix F defined as in (9). Then the
initialization xij0 can be obtained by (8).

B. Evaluation of multiple image sources Î

All the normalized mixed image signals X are used as the
input for the recovery of the underlying image sources. On
the basis of the independent component analysis idea [25]–
[27], we extend the Complex Maximization of Nongaussianity
(CMN) algorithm presented in [28], [29] for blind image
separation, which is an effective algorithm for both circular
and non-circular sources using complex functions.

We take X̂i as an example, where X̂i is converted from a
matrix to a vector x̂i row by row. The whitening mixed image
signals x̃i = Ux̂i are transformed by a whitening matrix U
[28]. Here E{x̃ix̃∗i } = I.

The use of whitening allows us to search for an orthogonal
matrix W as E{Wx̃i(Wx̃i)∗} = WE{x̃ix̃∗i }W∗ = I.

Each source sk is estimated by finding a vector w such that

sik = w∗kx̃i, (9)

where wk is a column of W∗. Constraining the source to
E{siks∗ik} = 1, the weights to ‖w‖2 = 1, and W unitary
due to the whitening transform [29].

The optimal weights wopt are determined by maximizing
the cost under the unit norm constraint where x̃i has been
whitened and G is any complex analytic function C 7→ C,
such as polynomials or transcendental functions.

wopt = arg max
‖w‖2=1

E{|G(w∗x̃i)|2}. (10)
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To calculate the optimal weights, a gradient optimization
algorithm is used, followed by a normalization step.

w← w + µν
∂J(si)

∂w
,

w← w
‖w‖

, (11)

where J(si) = E{|G(si)|2}, si = w∗x̃i, µ is the learning rate,
and ν ∈ {−1, 1} is the parameter that determines whether we
are maximizing or minimizing the cost function.

Theorem III.3: Let J = J(si). Suppose w = wR+jwI , and
wR and wI are two real variables. The partial derivative of the
cost function J with respect to the conjugate of the weight
vector w, referred to as the conjugate gradient, is obtained as

∂J

∂w
=

∂J

∂wR
+ j

∂J

∂wI
= E{x̃iG∗(si)g(si)},

where g is the derivation of G.
Proof: See Appendix C.
After each source is estimated, the vectors w are orthogo-

nalized to prevent multiple solutions from converging to the
same maximum since W is unitary due to the prewhitening
step.

The mixed matrix is estimated as A = U−1W∗. We
recover the underlying signals by S = A−1X̃. Given S =
s1, s2, . . . , sM , each recovered source si needs to be convert-
ed from a vector to a matrix Īi, where i = 1, 2, . . . ,M .
The recovered underlying image sources are normalized as
Î = {Î1, Î2, . . . , ÎM}.

C. Estimation of higher-quality image sources Ĩ
For purpose of removing the interferences of the underlying

image sources, we use the Stein’s unbiased risk estimate
(SURE)-based Non-Local Means (NLM) algorithm proposed
in [30].

Let the ith recovered image Îi = {Ii(l) | l ∈ Î} and
i = 1, 2, . . . ,M , the pixel-based NLM algorithm maps the
evaluated image source Îi into Ĩi as follows

Ĩi(l) =
Σk∈Slwi(k, l)Îi(k)

Σk∈Slwi(k, l)
, (12)

where Sl is the search region around the pixel l and wi(k, l)
are the weights that compare the neighborhoods around pixels
l and k, respectively. The weights are defined as

wi(k, l) = e−
Σb∈B(Îi(k+b)−Îi(l+b))2

h2 , (13)

where B defines the neighborhood, B is the total size of B,
and the parameter h acts as a degree of filtering.

Finally, we estimate the higher-quality underlying image
sources Ĩi = {Ĩ1, Ĩ2, . . . , ĨM}.

IV. NUMERICAL EXPERIMENTS

In this section, we carry out numerical simulations on the
astronomy images captured by NASA and the oceanographic
images to demonstrate the performance of the proposed B-
MIPR algorithm depends on the length of the window and the

maximal overlapping between adjacent windows, and how the
algorithm is affected by noise for solving the BMIPR problem.

The relative root mean squared error (RRMSE), the corre-
lation coefficient, and signal to noise ratio (SNR) are used to
evaluate the performance of the proposed algorithms.

For i = 1, 2, RRMSEi is defined as follows

RRMSEi =
RMS(Ii − Ĩi)

RMS(Ii)
, (14)

where Ĩi is the recovered underlying image and Ii is the
original image source.

The correlation coefficient is similar in nature to the con-
volution of two functions. For i = 1, 2, ri can be defined as

ri =

n
∑
i

IiĨi −
∑
i

Ii
∑
i

Ĩi√
n
∑
i

I2i − (
∑
i

Ii)2
√
n
∑
i

Ĩ
2

i − (
∑
i

Ĩi)2
. (15)

A. BMIPR for the astronomy phaseless STFT measure-
ments

The astronomy images are collected normally by the far-
distance measurement methods and rich in phase information.
Sometimes the phases of the astronomy images may be
corrupted by some noises and interferences.

The original astronomy images considered for the first
simulation are captured by NASA (https://www.nasa.gov/
multimedia/imagegallery/index.html). The mixed phaseless
STFT measurements are corrupted by additive Gaussian noises
with zero mean and unit variance with the level of noise from
5dB to 25dB.

In the first set of simulations, we evaluate the estimation
performance of the proposed algorithm described in Algorithm
1. We choose the maximal overlapping between adjacent
windows (L = 2), the window length (W = 7), the image size
(203 × 203), and the noise at SNR = 25dB. The number of
short-time windows is denoted by R = dN/Le. The gradient
step size µ is set to be 0.005, the regularization coefficient λ is
set to be 0.01, the maximal number of iterations for stopping
Algorithm 1 is 5000.

Fig. 4 shows the image sources I = {I1, I2} and the mixed
images X = {X1,X2}.

I1 I2

X1 X2

Fig. 4. The image sources I (size 203 × 203) and the mixed
images X.
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We give four example images of the phaseless STFT images
converted from X in Fig. 5.

Yc1 Yc2

Yc3 Yc4

Fig. 5. The four phaseless STFT images.

Fig. 6 demonstrates the recovered mixed images X̂ =
{X̂1, X̂2} and the mixed images X = {X1,X2}. It shows
that the capability of the proposed algorithm in recovering
the phases of the mixed images.

X1 X2

X̂1 X̂2

Fig. 6. The recovered mixed images X̂ and the mixed images
X.

In Fig. 7, we can see that the evaluated underlying images
Î = {Î1, Î2} and the estimated higher-quality underlying
images Ĩ = {Ĩ1, Ĩ2} are similar to the image sources.

Î1 Î2

Ĩ1 Ĩ2

Fig. 7. The evaluated underlying images Î and the estimated
higher-quality underlying images Ĩ.

As shown in Fig. 8, the final RRMSEs of the recovered
underlying images Ĩ = {Ĩ1, Ĩ2} are less than 0.13. The cor-
relation coefficients of the image sources and the underlying
images are 0.7874 and 0.8102 whereas the those of the image
sources and the higher-quality underlying images are 0.9203

and 0.9422, respectively. These demonstrate the effectiveness
of the proposed algorithm in recovering the phases of multiple
underlying astronomy images.
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Fig. 8. RRMSE and the normalized objective function values
of the recovered underlying images Ĩ1 and Ĩ2.

(a)

(b)

(c)

Fig. 9. The average final RRMSE for 50 experiments of the
evaluated underlying images Î and the estimated higher-quality
underlying images Ĩ for different types of noise at different
SNRs: (a) Gaussian noise (b) Laplacian noise (c) Poisson noise

We also estimated the performance of the proposed BMIPR
algorithm with respect to different types of noise and levels
of noise (in terms of SNRs). Fig. 9 demonstrates the average
RRMSE for 50 experiments of the evaluated underlying im-
ages Î and the estimated higher-quality underlying images Ĩ for
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Gaussian noise, Laplacian noise and Poisson noise at different
SNR when L = 2 and W = 7. With the increase in SNR, the
RRMSEs of Î and Ĩ drop rapidly. For SNR = 20dB, 25dB,
the RRMSEs of Ĩ are relatively low and less than 0.15. The
results mean that the proposed algorithm has better anti-noise
performance in Ĩ than Î especially for high values of SNR.

Fig. 10 presents the average RRMSE for 50 experiments of
of the evaluated underlying images Î and the estimated higher-
quality underlying images Ĩ for different L when SNR = 25dB
and W = 7. For low values of 1 ≤ L ≤ 3, the RRMSEs of Î
and Ĩ are relatively low (at around 0.2 and 0.15 respectively),
and in this case, the underlying images are well recovered.
For high values of L = 4, 5, the RRMSE of Î is smaller than
that of Ĩ and the values are mostly above 0.5. The proposed
algorithm has better performance in recovering Ĩ than Î only
for low values of L.

Fig. 10. The average final RRMSE for 50 experiments of the
evaluated underlying images Î and the estimated higher-quality
underlying images Ĩ for different L.

Fig. 11 presents the average RRMSE for 50 experiments of
the evaluated underlying images Î and the estimated higher-
quality underlying images Ĩ for different W when L = 2, and
SNR = 25dB. For W ≤ 6 and W ≥ 25, the RRMSEs of Î
and Ĩ are relatively high and the values are mostly above 0.16.
For middle values of 6 < W < 25, the RRMSE of Î and Ĩ are
about 0.1. The proposed algorithm has better performance in
recovering Ĩ than Î for 6 < W < 25.
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Fig. 11. The average final RRMSE for 50 experiments of the
evaluated underlying images Î and the estimated higher-quality
underlying images Ĩ for different W.

B. RGB BMIPR for the oceanographic phaseless STFT
measurements

In the marine photogrammetric survey, many sea animals,
boats and rocks are filmed by the aerial photoing or other
photography from a great distance. The oceanographic images
should contain abundant phase information. However, the

phases of these images may be corrupted by some interfer-
ences.

In the second set of simulations, we choose the image size
(290 × 290 × 3), the maximal overlapping between adjacent
windows (L = 2), the window length (W = 7), and the
noise at SNR = 25dB. The number of short-time windows
is denoted by R = dN/Le. The gradient step size µ is set to
be 0.005, the regularization coefficient λ is set to be 0.01, and
the maximal number of iterations for stopping Algorithm 1 is
5000.

Fig. 12 shows the image sources I = {I1, I2, I3} and the
mixed images X = {X1,X2,X3}.

I1 I2 I3

x1 x2 x3

Fig. 12. The oceanographic image sources I and the mixed
images X.

Six example images of the phaseless STFT images convert-
ed from X are shown in Fig. 13.

Yc1 Yc2 Yc3

Yc4 Yc5 Yc6

Fig. 13. The six phaseless STFT images.

Fig. 14 demonstrates the phase retrieval capability of the
proposed algorithm.

As shown in Fig. 12 and Fig. 15, the evaluated underlying
images Î = {Î1, Î2, Î3} and the estimated higher-quality
underlying images Ĩ = {Ĩ1, Ĩ2, Ĩ3} resemble the oceanographic
image sources I = {I1, I2, I3}.

The final RRMSEs of Ĩ1, Ĩ2, and Ĩ3 are 0.1502, 0.1791 and
0.1377 respectively. The correlation coefficients of the image
sources and the higher-quality underlying images are 0.9251,
0.9076 and 0.9679. This demonstrates the efficiency of the
proposed BMIPR algorithm in recovering the phases of the
oceanographic images.
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x1 x2 x3

x̂1 x̂2 x̂3

Fig. 14. The recovered mixed images X̂ = {X̂1, X̂2, X̂3} and
the mixed images X = {X1,X2,X3}.

Î1 Î2 Î3

Ĩ1 Ĩ2 Ĩ3

Fig. 15. The evaluated underlying images Î and the estimated
higher-quality underlying images Ĩ.

TABLE I: Comparison of the performance for the BMIPR al-
gorithm, the PhaseLamp algorithm and the PhaseLift algorithm
for SNR = 25dB.

Image Algorithm RRMSE PSNR(dB) Correlation Time(s)

Boat BMIPR 0.1502 35.69 0.9251 619
PhaseLamp 0.1747 22.97 0.8554 622
PhaseLift 0.2334 21.01 0.7926 947

Whale BMIPR 0.1791 25.03 0.9076 679
PhaseLamp 0.1811 25.04 0.9027 771
PhaseLift 0.2232 21.53 0.8111 1211

Stone BMIPR 0.1377 35.74 0.9679 563
PhaseLamp 0.1536 28.88 0.921 576
PhaseLift 0.2082 22.52 0.8263 875

In Table I, the phase retrieval performance of the proposed
BMIPR algorithm, the PhaseLamp algorithm [16] and the
PhaseLift algorithm [31] are compared for SNR = 25dB by
three different images. The codes of the PhaseLamp algorithm
and the PhaseLift algorithm are obtained from a phase retrieval
library PhasePack [32]. It shows clearly that the phase retrieval
performance of the proposed BMIPR algorithm outperforms

the other two algorithms for SNR = 25dB in terms of RRMSE,
PSNR, and correlation.

Table II gives a phase retrieval performance comparison
of the proposed BMIPR algorithm, the PhaseLamp algorithm
[16] and the PhaseLift algorithm [31] for SNR = 20dB
by three different images. Again, we observe the similar
advantages using the proposed BMIPR algorithm over the two
baseline algorithms. In terms of computational complexity,
the proposed BMIPR algorithm is more efficient than the
PhaseLift and PhaseLamp algorithms.

TABLE II: Comparison of the performance for the BMIPR
algorithm, the PhaseLamp algorithm and the PhaseLift algo-
rithm for SNR = 20dB.

Image Algorithm RRMSE PSNR(dB) Correlation Time(s)

Boat BMIPR 0.205 22.43 0.8789 741
PhaseLamp 0.3273 15.86 0.6618 744
PhaseLift 0.3812 11.52 0.6152 1053

Whale BMIPR 0.2917 18.43 0.8553 875
PhaseLamp 0.4136 10.41 0.5264 901
PhaseLift 0.4088 11.28 0.582 1342

Stone BMIPR 0.1822 24.93 0.9012 815
PhaseLamp 0.2966 18.21 0.6827 818
PhaseLift 0.3284 15.34 0.6513 952

V. CONCLUSION

The model and the algorithm for the problem of blind multi-
image phase retrieval from multiple mixed phaseless STFT
image measurements have been investigated in this paper. Our
contributions to this challenging problem are as follows:

Model: We form a new model for the problem of blind
multi-image phase retrieval from multiple mixed phaseless
STFT image measurements.

Algorithm: Due to the absence of Fourier phase informa-
tion and mixed information, a BMIPR algorithm which com-
bines a gradient descent (GD) algorithm by minimizing a non-
convex loss function with an improved Complex Maximization
of Nongaussianity (CMN) algorithm and a non-local means
(NM) algorithm is presented as a solution to BMIPR problem.

Initialization: We show the significance of the initialization
method to the GD-ICA algorithm and demonstrate the initial-
ization method can be constructed by an improved LS loss
function with a penalty term ( `1`2 ).

Numerical experiments show that the proposed algorithms
perform well in estimating the phases of multiple image
sources and the mixing information. In terms of future research
directions, it is interesting to investigate how to incorporate
conditions such as window length, additional magnitude-only
measurement, mix-mode, or maximal overlapping between
adjacent windows into the BMIPR algorithm. It is also
tempting to consider different mix-mode and extending fast
algorithm for recovering multiple underlying image sources
from multiple mixed phaseless STFT image measurements.
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APPENDIX

A. Proof of Theorem III.1

The problem of STFT phase retrieval is equivalent to the
short-time autocorrelation Y by taking an N point DFT of the
phaseless STFT measurement Z.

Y (τ, l) =
1

N

N−1∑
k=0

Z(τ, k)e−2jπkl/N

=

N−1∑
n=0

x(n)x∗(n+ l)g(τL− n)g(τL− n− l),

where 0 ≤ l ≤ N − 1 and 0 ≤ τ ≤ R− 1.
If the window length is W , the values of Y are non-zero

only in the interval 0 ≤ l ≤W−1 and N−W+1 ≤ l ≤ N−1.
By circularly shifting Y by W −1 rows, a signal H which has
non-zero values only in the interval 0 ≤ l ≤ 2(W − 1) is
obtained.

Let b be the sub-matrix of the DFT matrix Y acquired
by considering the first 2W − 1 rows and 2W − 1 columns
(the Vandermonde structure is retained). Since b is invertible,
Z(τ, k) for 0 ≤ k ≤ 2(W − 1) and H(τ, l) for 0 ≤ l ≤
2(W−1) are related by an invertible matrix. Note that Z(τ, k)
for 0 ≤ k ≤ N − 1 can be trivially calculated from H(τ, l)
for 0 ≤ l ≤ 2(W − 1).

The proof gives evidence that Z is sufficient to calculate Y
[17].

B. Proof of Theorem III.2

The Lemma 1 means that any locally sparse solution is the
sparsest solution in essence locally.

Lemma 1: ∀z ∈ FL,∃δ > 0 such that ∀y ∈ F , if 0 <
‖y− z‖2 < δ, we have S(z) ⊂ S(y).

Let y = z + v and select δ = mini∈S(z){zi}, then

‖v‖∞ ≤ ‖v‖2 < min
i∈S(z)

{zi}.

Hence,

yi ≥ zi − ‖v‖∞ > zi − min
i∈S(z)

{zi ≥ 0,∀i ∈ S(z).

The above equations mean

S(z) ⊆ S(y).

However, S(z) 6= S(y) for z ∈ FL. Then minz≥0
‖z‖1
‖z‖2

which subjects to yijl = Glz must be locally sparse, thereby
being at least locally the sparsest feasible solution.

C. Proof of Theorem III.3

The derivative of the function J = J(si) is calculated based
on real-valued functions because J is not analytic. Let si =
w∗x̃i, G(si) is expanded in terms of two real-valued functions
u(y) and v(y).

J = |G(si)|2 = |G(w∗x̃i)|2 = |u(w∗x̃i) + jv(w∗x̃i)|2

≡ u2(a, b) + v2(a, b)

where a, b are the real part and the imaginary part of w∗x̃i
respectively. The partial derivative of J with respect to the real
weight wRi is obtained by use of the chain rule and results in

∂J

∂wRi
= 2u(

∂u(a, b) ∂a

∂a ∂wRi
+
∂u(a, b) ∂b

∂b ∂wRi
)

+ 2v(
∂u(a, b) ∂a

∂a ∂wRi
+
∂u(a, b) ∂b

∂b ∂wRi
).

The above expression is rearranged as follows

∂J

∂wRi
= 2u(uax̃

R
ij + ubx̃

I
ij) + 2v(vax̃

R
ij + vbx̃

I
ij)

= 2[x̃Iij(uua + vva) + x̃Rij(uub + vvb)].

where ua ≡ ∂u(a,b)
∂a , ub ≡ ∂u(a,b)

∂b , va ≡ ∂v(a,b)
∂a , and vb ≡

∂v(a,b)
∂b .
The derivative of J with respect to the imaginary weight

wIi is calculated as

∂J

∂wIi
= 2[x̃Iij(uua + vva)− x̃Rij(uub + vvb)].

It is advantageous to utilize complex operators for a more
compact notation. Noticing that

(uua + vva) + j(uub + vvb) = g∗(w∗x̃i)G(w∗x̃i),

where g is the derivative of G. According to the Cauchy-
Riemann equations: gR = ua = vb and gI = va = −ub, the
derivative of J with respect to the complex weight vector w
is shown as:
∂J

∂w
= 2(g∗(w∗x̃i)G(w∗x̃i))∗x̃i = 2x̃iG∗(w∗x̃i)g(w∗x̃i),

which is equivalent to

∂J(w)

∂w
=

1

2
(
∂J(w)

∂wR
+ j

∂J(w)

∂wI
).
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