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a b s t r a c t 

In a recent study, it was shown that, given only the magnitude of the short-time Fourier transform (STFT) 

of a signal, it is possible to recover the phase information of its STFT under certain conditions. However, 

this is only investigated for the single-source scenario. In this paper, we extend this work and formu- 

late a multi-source phase retrieval problem where multi-channel phaseless STFT measurements are given 

as input. We then present a robust multi-source phase retrieval (RMSPR) algorithm based on a gradient 

descent (GD) algorithm by minimizing a non-convex loss function and independent component analy- 

sis (ICA). An improved least squares (LS) loss function is presented to find the initialization of the GD 

algorithm. Experimental evaluation has been conducted to show that under appropriate conditions the 

proposed algorithm can explicitly recover the phase of the sources, the mixing matrix, and the sources 

simultaneously, from noisy measurements. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Phase retrieval is referred to as the problem of recovering

phase information from its Fourier transform magnitude. It is of

paramount importance in various engineering and scientific appli-

cations, such as speech recognition [1] , blind channel estimation

[2] , X-ray crystallography [3] , optics [4] , and astronomy [5] . Many

studies have been conducted to address this problem, of which the

two main approaches are built upon sparsity prior knowledge [6–

8] and additional measurements [9–11] respectively. Phase retrieval

from the STFT measurement is among the latter approach that has

received increasing interest recently [12,13] and is the focus of this

paper. 

Phase retrieval algorithms are often designed for a single

source, such as the recent work by Bendory and Eldar [13] which

was proposed for extracting the phase information from the phase-

less STFT measurements of a single source. However, in some ap-

plications such as the shaped-beam synthesis of antenna arrays

[14] , CCD cameras and photosensitive films [15] , the measurements

may be a mixture (or mixtures) of multiple sources. This is an in-

herently ill-posed problem due to the lack of the phase and the

mixing information, and the existing single-source based phase re-

trieval algorithms are not explicitly designed for this case. 
∗ Corresponding authors. 
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In this paper, we extend the study in [13] to a multi-source

cenario. Our algorithm differs from [13] in three important as-

ects. First, a new model is formed for multi-source phase retrieval

roblem. Second, we present an algorithm which couples the ICA

ethod with a gradient descent (GD) algorithm by minimizing a

on-convex loss function. Third, the GD algorithm depends heavily

n the initialization method and the geometry of the loss function,

herefore we also present a modified least-square (LS) loss function

o improve the initialization of the GD algorithm. 

This paper is organized as follows. Section 2 describes the

ackground. Section 3 formulates a mathematical model and

n algorithm for the problem of multi-source phase retrieval.

ection 4 shows numerical experiments and results. Section 5 con-

ludes the paper and draws potential future research directions. 

Notation : Boldface small and capital letters denote vectors and

atrices, respectively. The superscript ‘ T ’, ‘ ∗’ and ‘ † ’ denote the

ranspose, Hermitian and Moore-Penrose pseudo-inverse of a ma-

rix. � · � rounds the argument to the smallest integer that is not

ess than the argument. We use ‘ ◦’ for the Hadamard (point-wise)

roduct. tr( ·) takes the trace of a matrix. The l th circular diagonal

lement of a matrix is denoted by diag( ·, l ). k( ·) and Off( ·) repre-

ent the kurtosis and the off-diagonal element of its argument. 

. Background 

This section presents a brief overview of the method in [13] . 

https://doi.org/10.1016/j.sigpro.2017.09.026
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Fig. 1. The proposed model for multi-source phase retrieval. 
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The STFT of a 1D signal x ∈ C 

N is defined as the Fourier trans-

orm of the signal multiplied by a real sliding window g of length

 ≤ W ≤ N . 

 (τ, k ) = 

N−1 ∑ 

n =0 

x (n ) g(τ L − n ) e −2 jπkn/N , (1)

here L is the maximal overlap between adjacent windows, R =
 N/L � denotes the number of short-time sections considered, τ =
 , . . . , R − 1 , and k = 0 , . . . , N − 1 are the time frame and frequency

in indices, respectively. 

Let Z be an N × R measurement matrix corresponding to the

TFT magnitude-square of the underlying signal x . 

 = | X | 2 . (2) 

The aim of the algorithms in [13] is to estimate x from Z . The

ey idea is to introduce redundancy in the magnitude-only mea-

urements by maintaining a substantial overlap between adjacent

hort-time sections [11] . For sufficiently long window length, the

olution can be obtained via a LS method. When these conditions

re not met, a GD algorithm is used to solve the phase retrieval

roblem. Experiments show that the algorithms in [13] can exactly

ecover x from Z . 

The algorithm in [13] begins by taking the DFT of the STFT mea-

urement (2) , as follows 

 (τ, l) = 

1 

N 

N−1 ∑ 

k =0 

Z(τ, k ) e −2 jπkl/N 

= 

N−1 ∑ 

n =0 

x (n ) x ∗(n + l) g(τ L − n ) g(τ L − n − l) , 

(3) 

here Y ( τ , l ) is equal to zero for all τ when W ≤ l ≤ (N − W ) and

an be interpreted as a “W bandlimited” function. The DFT is nor-

alized by 1/ N . For a fixed τ , Y can be seen as the autocorrela-

ion of x ◦ g τ L , where g τ L = { g(τ L − n ) } N−1 
n =0 

. This step simplifies the

tructure of the data and leads almost directly to the uniqueness

esults (see [13] for more details). 

For W ≥ � (N + 1) / 2 � and L = 1 , the problem of recovering x

rom the measurement Z can be posed equivalently as a con-

trained LS problem derived from (3) . 

min 

x ∈ C N 

W −1 ∑ 

l= −(W −1) 

‖ y l − G l diag ( X , l) ‖ 

2 
2 

subject to X = x x 

∗, 

(4) 

here y l = { Y (τ, l) } R −1 
τ=0 

, and the ( τ , n )th entry of the matrix G l ∈
 

R ×N is given by g(τ L − n ) g(τ L − n − l) . The circulant matrix G l can

e factored as G l = F ∗
∑ 

l F , where F is the DFT matrix and �l is a

iagonal matrix (as in [13] ). For long enough windows, Bendory

nd Eldar [13] shows that the LS algorithm is effective for recover-

ng x from Z . 

For 2 ≤ W ≤� N /2 � , let D τ L ∈ R 

N×N be a diagonal matrix com-

osed of the entries of g τ L , then a non-convex loss function

ormed from (3) can be used for recovering x from Z [13] , as fol-

ows 

f ( x ) = 

1 

2 

R −1 ∑ 

τ=0 

W −1 ∑ 

l= −(W −1) 

( x 

∗H τ,l x − Y (τ, l)) 2 , (5)

here H τ,l = P −l D τ L D τ L −l , x 
∗H τ,l x = tr ( X H τ,l ) , P −l = P T 

l 
, (P l x )(n ) =

 (n + l) , and R is defined as in (1) . 

A GD algorithm can be adopted to minimize (5) . It was shown

n [13] that, if g is not long enough, the GD algorithm is effective

or recovering x from Z . 

Initialization : Initialization is important to the GD algorithm. If

 = 1 , the initialization of x is determined by (4) directly. In the
0 
ase of L > 1, y l = { Y (τ, l) } R −1 
τ=0 

has some missing entries. The up-

ampled version ˜ y l is obtained by expansion and interpolation, 

Y (n, l) = 

{
Y (τ, l) , n = τ L, 
0 , otherwise, 

Denote ˆ y l = { Y (n, l) } N−1 
n =0 

for fixed l , wehave 
˜ y l = ( F ∗p F p ) ̂ y l , 

(6) 

here F p is a partial Fourier matrix consisting of the first R rows

f the DFT matrix F defined as in (4) . Then the initialization x 0 can

e obtained by (4) . 

. Proposed model and assumptions 

The aim here is to recover multiple underlying sources from

heir mixed STFT magnitude-square measurements coupled with

oise. In this section, a mathematical model, the assumptions and

n algorithm are presented for the problem of multi-source phase

etrieval. 

.1. The proposed model for multi-source phase retrieval 

As is shown in Fig. 1 , the multiple underlying sources are de-

oted as S = { s 1 , s 2 , . . . , s M 

} ∈ C 

M×N . The mixed signals are defined

s X = A S , where X = { x 1 , x 2 , . . . , x M 

} ∈ C 

M×N and the mixing ma-

rix A ∈ R 

M×M . 

Denote F = { X 1 , X 2 , . . . , X M 

} as the STFT matrices of X =
 x 1 , x 2 , . . . , x M 

} , where X i ∈ C 

R ×N . The elements of F can be de-

ned as 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X 1 (τ, k ) = 

N−1 ∑ 

n =0 

x 1 (n ) g(τ L − n ) e −2 jπkn/N , 

. . . 

X M 

(τ, k ) = 

N−1 ∑ 

n =0 

x M 

(n ) g(τ L − n ) e −2 jπkn/N , 

here g , τ, k, L, R and STFT X i are similar to those in (1) . 

Denote the STFT magnitude-squared measurements as | F | 2 =
| X 1 | 2 , . . . , | X M 

| 2 } . We have the following signal model 

 i = | X i | 2 + N i , (7) 

here i = 1 , . . . , M and N i is a random R × N matrix which repre-

ents noise. Thus Z = { Z 1 , . . . , Z M 

} and N = { N 1 , . . . , N M 

} . 
The aim of multi-source phase retrieval is to recover the phases

f the underlying sources S from the phaseless STFT measurements

 corrupted by noise N . To address this problem, two assumptions

nd a two-step algorithm are proposed as discussed next. 

.2. Assumptions for multi-source phase retrieval 

Two assumptions are utilized for constructing the multi-source

hase retrieval model: 
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Algorithm 1 Robust multi-source phase retrieval (RMSPR). 

Input: The phaseless STFT measurements Z as given in (7), a low- 

pass interpolation filter with bandwidth R as depicted in (6). 

Output: Initialization of x 0 , recovery of ˆ X and 

ˆ S . 

1. DFT . Compute DFT Y i of the i th STFT Z i as shown in (8). 

2. Up-sampling . For W ≤ l ≤ (N − W ) , 

if L = 1 , omit this step, 

else L > 1 , y il is expanded and interpolated to the up-sampled 

version ˜ y il by (6). 

3. Initialization . Construct an initial matrix X i 0 . 

diag ( X i 0 , l) = 

{
( G 

T 
l G l + λI) −1 G 

T 
l y il , l = −a, . . . , a, 

0 , otherwise, 

where a , G l , y il and λ are defined as in (12) and (13). Find the 

initialization x i 0 by the eigenvector decomposition of X i 0 . 

4. Recovery of ˆ X . Recover the i th mixed signal x i by a GD algo- 

rithm by minimizing a non-convex function as given in (9). For 

each Z i , repeat steps 1–4 until all the mixed signals have been 

recovered, and then normalized as ˆ X = { ̂ x 1 , ̂  x 2 , . . . , ̂  x M 

} . 
5. Whitening . Estimate a whitening matrix U and 

˜ X = U ̂

 X . 

6. Maximizing . Form a set of cumulant matrices { Q 

˜ X 
i } as depicted 

in (10). 

7. Orthogonalization . Compute an orthonormal estimate ˆ V . 

ˆ V = argmin 

∑ 

i Off ( V 

† Q 

˜ X 
i V ) 

8. Recovery of ˆ S . Estimate the mixing matrix A = 

ˆ V U 

−1 and re- 

cover the underlying sources by S = A 

−1 ̃  ˆ X , which are then nor- 

malized as ˆ S = { ̂ s 1 , ̂  s 2 , . . . , ̂  s M 

} . 
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1) The mixed signals X are linear mixtures of the multiple under-

lying source signals S multiplied by the mixing matrix A . 

2) The multiple underlying sources S are statistically independent.

4. Proposed RMSPR algorithm for multi-source phase retrieval 

The proposed method is composed of two steps. The first step

is to recover the mixed signals X from their mixed phaseless STFT

measurements Z . The second step is to recover the underlying

source signals S from the mixed signals X . 

In order to obtain acquired data, we take DFT for each Z . Take

Z i as an example, the DFT of the i th measurement Y i ( τ , l ) can be

described by 

 i (τ, l) = 

1 

N 

N−1 ∑ 

k =0 

Z i (τ, k ) e −2 jπkl/N 

= 

N−1 ∑ 

n =0 

x i (n ) x ∗i (n + l) g(τ L − n ) g(τ L − n − l) , 

(8)

where g τ L and Y i ( τ , l ) are defined as in (3) . 

For 2 ≤ W ≤� N /2 � , a GD algorithm is adopted to recover the i th

mixed signal by minimizing the non-convex loss function [13] , 

f ( x i ) = 

1 

2 

R −1 ∑ 

τ=0 

W −1 ∑ 

l= −(W −1) 

( x 

∗
i H τ,l x i − Y i (τ, l)) 2 , (9)

where H τ,l and x ∗
i 
H τ,l x i are defined as in (5) . 

For each Z i , the above procedures from (8) to (9) are repeated

until all the mixed signals X have been recovered. To remove the

magnitude effect of the mixing matrix, the recovered mixed signals

are normalized as ˆ X = { ̂ x 1 , ̂  x 2 , . . . , ̂  x M 

} . 
All the normalized mixed signals ˆ X are used as inputs to an

independent component analysis algorithm [16] , such as the Joint

Approximative Diagonalization of Eigenmatrix (JADE) algorithm for

complex-valued signals [17] . 

More specifically, the mixed signals are whitened as ˜ X = U ̂

 X us-

ing a whitening matrix U [17] . 

A maximal set of cumulant matrices { Q 

˜ X 
i } is formed 

Q 

˜ X 
i = W G ( M i ) W 

† 

G ( M i ) = diag [k( s 1 ) w 

† 
1 
M i w 1 , . . . , k( s M 

) w 

† 
M 

M i w M 

] , 
(10)

where w k denotes the k th column of W , which diagonalizes G ( M i )

for any matrix M i , and k( s i ) means the kurtosis of s i [17] . 

A rotation matrix ˆ V is obtained by enforcing the off-diagonal

elements of the cumulant matrices as close to zero as possible [16] .

ˆ V = argmin 

∑ 

i 

Off ( V 

† Q 

˜ X 
i V ) . (11)

The mixing matrix is then estimated as A = 

ˆ V U 

−1 . The un-

derlying sources are recovered as S = A 

−1 ˆ X , and then normalized

as ˆ S = { ̂ s 1 , ̂  s 2 , . . . , ̂  s M 

} . The proposed algorithm is summarized in

Algorithm 1 . 

Improved loss function for initialization: It is shown in [13] that

(3) can be posed equivalently as a constrained LS problem as (4) .

With (4) , it is prone to over-fitting with less data, and requires the

rank restriction of G l . To address this issue, a penalty term is in-

troduced as follows, for L = 1 , 

min x i ∈ C N 
W −1 ∑ 

l= −(W −1) 

‖ y il − G l diag ( X i , l) ‖ 

2 
2 + λ‖ diag ( X i , l) ‖ 

2 
2 

subject to X i = x i x 

∗
i 
, 

(12)

where G l and y il are defined as in (4) , and λ is a regularization co-

efficient. The modification of (4) may provide significant benefits
n two aspects. First, it prevents over-fitting and improves general-

zation performance. Second, it relaxes the rank restriction of G l . 

The initialization of the GD algorithm is obtained by the prin-

ipal eigenvector of a designed matrix which is constructed as the

olution to (12) . The designed matrix is given as 

iag ( X i 0 , l) = 

{
( G 

T 
l G l + λI ) −1 G 

T 
l y il , l = −a, . . . , a, 

0 , otherwise. 
(13)

Then the initialization x i 0 of the proposed GD algorithm can be

onstructed by X i 0 . 

For L > 1, the up-sampled version ˜ y il is obtained from y il =
 Y i (τ, l) } R −1 

τ=0 
by (6) . Then the initialization x i 0 is estimated by (13) . 

. Numerical experiments 

In this section, we conduct numerical simulations to demon-

trate the competitive performance of the proposed RMSPR algo-

ithm. 

We consider the case of M = 2 . The underlying sources are

rawn randomly and statistically independent. The elements of the

ixing matrix are drawn randomly with zero mean and unit vari-

nce. The mixed measurements are corrupted by additive Gaussian

oise with zero mean and unit variance, at the level from 5 dB

o 25 dB. The performance of the proposed algorithm can be eval-

ated by the relative root mean squared error (RRMSE) and the

ignal to noise ratio (SNR), where RRMSE is defined as follows 

RMSE = 

RMS ( s i − ˆ s i ) 

RMS ( s i ) 
, i = 1 , . . . , M. 

The first experiment examines the recovery quality of the pro-

osed RMSPR algorithm for the maximal overlapping between ad-

acent windows ( L = 2 ). If L is very large, y l will have many missing

ntries and the underlying signals cannot be recovered correctly

see (6) for more details). The window length ( W = 10 ), the signal

ength ( N = 23 ), the noise level at 25 dB , and the number of short-

ime windows is R = � N/L � . The algorithm is prone to over-fitting
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Fig. 2. Recovery of the underlying sources (length N = 23 ) using a rectangular window (with the level of noise at SNR = 25 dB ). 

Fig. 3. The average RRMSE for 45 experiments of the recovered mixed signals ˆ X 

and the recovered underlying sources ˆ S for different L . 

w  

a  

f  

1  

o  

e  

t

 

R  

l  

A  

p  

t  

l  

t  

s  

e  

t  

r  

m  

r  

v

 

o  

n  

v  

e  

r  

t  

Fig. 4. The average RRMSE for 45 experiments of the recovered mixed signals ˆ X 

and the recovered underlying sources ˆ S for different SNRs. 

t  

R  

t  

t

6

 

m  

m  

c  

w  

s  

e  

e  

t  

1  

a

 

d  

b  

a

A

 

m  

w  
ith a large regularization coefficient λ, and converges slowly with

 small step size μ. Therefore, λ, μ, and the statistical threshold

or stopping joint diagonalization, are set to be 0.01, 0.005, and

 / 100 
√ 

N [17] , respectively. As shown in Fig. 2 , the final RRMSEs

f the recovered signals are less than 0.1 which demonstrate the

ffectiveness of the proposed algorithm for phase recovery of mul-

iple sources. 

The second experiment is to evaluate the performance of the

MSPR algorithm for the signal length ( N = 43 ) with respect to the

ength of the maximal overlapping between adjacent windows L .

ll the other parameters were set identical to those in the first ex-

eriment. Fig. 3 presents the average RRMSE for 45 experiments of

he recovered mixed signals ˆ X = { ̂ x 1 , ̂  x 2 } and the recovered under-

ying sources ˆ S = { ̂ s 1 , ̂  s 2 } for different L . For low values of L = 1 , 2 ,

he RRMSEs of ˆ X and 

ˆ S are relatively low (at around 0.2 and 0.1 re-

pectively), and in this case, the underlying sources are well recov-

red. For high values of L = 3 , 4 , 5 , the RRMSE of ˆ X is smaller than

hat of ˆ S and the values are mostly above 0.4. These experimental

esults indicate that the interpolation is effective in up-sampling

easurements especially for low values of L . The proposed algo-

ithm has better performance in recovering ˆ S than 

ˆ X only for low

alues of L . 

The third experiment conducted is to evaluate the performance

f the RMSPR algorithm with respect to different SNRs for the sig-

al length ( N = 43 ), with other parameters set as those in the pre-

ious experiments. Fig. 4 demonstrates the average RRMSE for 45

xperiments of the recovered mixed signals ˆ X = { ̂ x 1 , ̂  x 2 } and the

ecovered underlying sources ˆ S = { ̂ s 1 , ̂  s 2 } for different SNRs. With

he increase in SNR, the RRMSE of ˆ X decreases slightly whereas
he RRMSE of ˆ S drops rapidly. For SNR = 15 dB , 20 dB , 25 dB , the

RMSEs of ˆ S are relatively low and less than 0.15. The results mean

hat the RMSPR algorithm has better anti-noise performance in 

ˆ S

han 

ˆ X especially for high values of SNR. 

. Conclusion 

We have presented a new model and algorithm for recovering

ultiple underlying sources from their mixed multi-channel STFT

agnitude-square measurements. The proposed RMSPR algorithm

ouples a GD algorithm by minimizing a non-convex loss function

ith an ICA algorithm. An improved LS loss function is also pre-

ented to find the initialization of the GD algorithm. Numerical

xperiments show that the proposed algorithm performs well in

stimating the phase of multiple sources and the mixing informa-

ion. For low values of L (e.g. L = 1 , 2 ) and high values of SNR (e.g.

5 dB, 20 dB, and 25 dB), the final RRMSEs of the recovered signals

re relatively low and less than 0.15. 

In future, it is interesting to investigate how to incorporate con-

itions such as window length, mix-mode, or maximal overlapping

etween adjacent windows into the multi-source phase retrieval

lgorithm. 
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