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Joint Raindrop and Haze Removal
From a Single Image

Yina Guo , Member, IEEE, Jianguo Chen, Xiaowen Ren, Anhong Wang,

and Wenwu Wang , Senior Member, IEEE

Abstract— In a recent study, it was shown that, with adver-
sarial training of an attentive generative network, it is possible
to convert a raindrop degraded image into a relatively clean
one. However, in real world, raindrop appearance is not only
formed by individual raindrops, but also by the distant raindrops
accumulation and the atmospheric veiling, namely haze. Current
methods are limited in extracting accurate features from a
raindrop degraded image with background scene, the blurred
raindrop regions, and the haze. In this paper, we propose a new
model for an image corrupted by the raindrops and the haze,
and introduce an integrated multi-task algorithm to address the
joint raindrop and haze removal (JRHR) problem by combining
an improved estimate of the atmospheric light, a modified
transmission map, a generative adversarial network (GAN) and
an optimized visual attention network. The proposed algorithm
can extract more accurate features for both sky and non-sky
regions. Experimental evaluation has been conducted to show
that the proposed algorithm significantly outperforms state-of-
the-art algorithms on both synthetic and real-world images in
terms of both qualitative and quantitative measures.

Index Terms— Raindrop removal, haze removal, generative
adversarial network, visual attention.

I. INTRODUCTION

RESTORING a windshield or lens image corrupted
by raindrops is beneficial to various computer vision

applications, such as autonomous driving [1] and video
surveillance [2], [3]. Unlike the removal of rain streaks,
the shape of the raindrops is similar to a fish-eye lens, which
leads to the raindrop regions being formed by light reflected
from a wider environment [4]. Thus the images degraded
by raindrops have three types of visibility degradation caused
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by individual raindrops, distant raindrop accumulation and the
atmospheric veiling which are visually similar to the haze, and
the blurred appearance of the raindrop regions due to the focus
of the camera on the background scene, respectively.

Many studies have been conducted to address the problem
of raindrop removal from a single image, of which the two
main approaches are model-based raindrop removal [5]–[8]
and deep learning based raindrop removal [1], [9], [10] respec-
tively. The latter approach has received increasing interest
recently and is the focus of this paper.

A raindrop degraded image is often modeled by the additive
combination of background images and the effect of the
raindrops, such as the recent work in [1]. However, a raindrop
degraded image not only contains a background image and
the effects of the raindrops, but also includes the haze effects.
In addition, an image degraded by the raindrops is often
accompanied by the blurred raindrop regions caused by the
autofocus of the cameras. Therefore, enhancing an image
corrupted by raindrops would require the removal of the haze
effect, along with the removal of raindrops.

Existing methods, however, are designed either only for
raindrop removal, such as the model-based approaches [5]–[7],
and the deep learning based approaches [1], [9], [10],
or only for haze removal, such as the model based
approaches [11]–[13], and the deep learning based approaches
[14], [15].

These methods can achieve relatively good performance in
removing the targeted type of distortion (i.e. raindrop or haze)
from a single image, but are ineffective in removing both types
of distortions. To our knowledge, there is no existing study
for removing the blurred raindrop regions and the haze effect
simultaneously.

The aim of this paper is to convert an image corrupted
by raindrops and haze into a clean one by removing them
simultaneously. A potential approach to this problem is to
cascade a raindrop removal method with a haze removal
method, which, however, may be limited by the following
challenges. For example, blurring artifacts are often introduced
at the edges of the processed image with a typical haze
removal (or raindrop removal) algorithm, which may lead to
inaccurate estimation of the parameters of the model if the
raindrop removal (or the haze removal) step is followed in the
cascaded setting. In addition, existing haze removal methods,
e.g. [11], [14], [15] are ineffective in removing the dense haze
effects of an image corrupted by dense haze and raindrops.
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In order to address these technical challenges, a joint raindrop
and haze removal (JRHR) problem is considered and our
contribution is two-fold:

1) JRHR model: A new model of the JRHR problem is
proposed in order to recover an image corrupted by
raindrops and haze by detecting and removing the effects
of the raindrops and the haze simultaneously.

2) JRHR algorithm: Based on the JRHR model, an inte-
grated multi-task algorithm is proposed by combin-
ing an improved estimate of the atmospheric light,
a modified transmission map, a generative adversar-
ial network GAN) and an optimized visual attention
network.

a) Firstly, an improved estimate of atmospheric light
is presented by considering the medium brightness
case, to mitigate certain artifacts, such as blocking
effects, halo and gradient reversal artifacts, and to
produce a smooth transmission map.

b) Secondly, with the estimated value of the
atmospheric light, the transmission map is
re-derived for the sky and non-sky regions, respec-
tively, to facilitate the removal of haze at different
levels.

c) Thirdly, an attentive GAN is presented by com-
bining a GAN network with an optimized visual
attention network to recover the background image
from an image corrupted by raindrops and haze.
We present a new loss function for the optimized
visual attention network where a penalty term is
introduced to improve the clarity of the raindrop
regions in the attention maps, to improve its gener-
alization performance by preventing it from over-
fitting, and also to relax the value range of the
network parameters in order to reduce potential
biases in their estimates.

The paper is organized as follows. Section II describes the
related work. Section III formulates a new mathematical model
for the JRHR problem. Section IV presents our proposed algo-
rithm for the problem of JRHR. Section V shows numerical
results. Section VI concludes the paper and draws potential
future research directions.

II. RELATED WORK

In the field of computer vision, there is an increasing interest
in the problem of raindrop removal over the past decades [3],
[16]–[21]. Unlike the image recovery of the rain streaks, there
are relatively few papers in recovering the raindrop degraded
image [1], [9], [22]–[27]. According to the required input
amount of the images, the raindrop removal methods can be
mainly divided into multi-image (or video) based methods and
single image based methods. Multi-image (or video) based
methods are mainly used for dynamic scenes, which include
other moving objects apart from the raindrops coupled with
possible movement of lens. For the video sequences with small
amount of raindrops, the corrupted image can be enhanced
by directly averaging the video frames, if the effect of the
raindrops on the pixel is only in a few frames. Single image
based methods are mainly used for static scenes, where no
lens and other clear movement cases are involved.

A. Multi-Image (or Video) Based Methods

Kurihata et al. [22] proposed a raindrop detecting method
by using video sequences. The shape of raindrops is learned by
using principal component analysis (PCA). However, the num-
ber of raindrops that needs to be learned cannot be determined
automatically for transparent raindrops with various shapes.
Roser and Geiger [23] proposed a raindrop shape model
based on cubic Bezier curves and a method to compare a
synthetic raindrop with a raindrop patch. The raindrops are
assumed to be a sphere section or an inclined sphere section.
Later Roser et al. [24] presented a novel raindrop shape
model for the detection of view-disturbing, adherent raindrops
on inclined surfaces. The synthetic raindrop is assumed to
be an oblique spherical section. Wu et al. [25] presented
a machine learning based approach to detect and remove
raindrops on windshield by analyzing the color, texture and
shape characteristics of raindrops in images. The raindrops are
assumed to be circular in each image frame under light and
moderate rainy conditions. However, these assumptions cannot
handle the situation for covering the windshield completely.
Webster and Breckon [26] proposed two novel extensions
for raindrop detection in video imagery: the use of additional
shape priors in the classification model and the incorporation
of scene context for all features used in the secondary stage
of raindrop verification. You et al. [27] introduced a motion
based method for detecting and removing raindrops in video,
based on the observation that the motion of raindrop pixels
is slower than that of non-raindrop pixels, and the temporal
change of intensity of raindrop pixels is smaller than that of
non-raindrop pixels. These methods can remove raindrops in
multiple images, whereas they cannot be applied directly to a
single image.

B. Single Image Based Methods

Eigen et al. [9] presented a post-capture image processing
solution that can remove localized raindrop and dirt artifacts
from a single image. The key idea is to collect a dataset of
clean/corrupted image pairs to train a convolutional neural
network. The method works for relatively sparse and small
droplets as well as dirt but is not effective for large and dense
raindrops, since it assumes that the raindrops are separate and
opaque small regions. Qian et al. [1] proposed a single-image
based raindrop removal method by using a GAN with an
attention map. The novelty is to insert an attention map
into both generative network and discriminative network. This
method focuses on the raindrop regions of a raindrop degraded
image, but does not consider the haze effects caused by the
distant raindrop accumulation and the atmospheric veiling.

In this paper, we build a new model of an image corrupted
by the raindrops and the haze in view of the mixed effects
of the background scene, the blurred raindrop regions, and
the haze. An integrated multi-task algorithm by combining
an improved haze removal method, a GAN network and
an optimized visual attention network is used to detect and
remove the raindrops and the haze.

III. MATHEMATICAL MODEL

The aim here is to recover an image corrupted by raindrops
and haze by detecting and removing the effects of the raindrops
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Fig. 1. The architecture of our multi-task joint raindrop and haze removal (JRHR) algorithm, including the determination of parameters 1© and the joint
haze and raindrop removal network 2©.

and the haze. In this section, a mathematical model is pre-
sented for the JRHR problem.

Recently, a generalized rain model that depicts rain location
and rain intensity separately [3] is expressed as follows:

O = B + S ◦ R, (1)

where O ∈ N
N×M is the input image corrupted by rain,

B ∈ N
N×M is the background layer, S ∈ N

N×M is the
rain layer, and a region-dependent variable R ∈ N

N×M to
indicate the locations of individually visible rain, where ◦
means element-wise multiplication. Here, elements in R are
binary values, where 1 indicates rain regions and 0 indicates
non-rain regions. The model allows to detect rain regions first,
and then to operate differently on rain and non-rain regions,
preserving background details. However, in (1), R only consid-
ers the locations of rain regions and non-rain regions, without
considering the haze effects [11], [28].

To overcome the drawback, a new model of the JRHR
problem is proposed, where we aim to recover the background
layer B from an image O corrupted by raindrops and haze.

O = (B + (I − L) ◦ R) ◦ t + A(I − t), (2)

where O ∈ N
N×M is the input image corrupted by raindrops

and haze, B ∈ N
N×M is the background layer, A ∈ R indicates

the global atmospheric light, and t ∈ N
N×M denotes the

transmission map. R = ∑r
i=1 R̃i is the rain layer, where

R ∈ N
N×M and each R̃i ∈ N

N×M is a layer of raindrops,
i is the index of the raindrop layers, and r is the maximum
number of raindrop layers. I ∈ N

N×M is an unit matrix
(all-ones matrix), (I−L) indicates the locations of individually
visible raindrops, and ◦ denotes the Hadamard product. Here,
elements in L are binary values, where 0 indicates raindrop
regions and 1 indicates non-raindrop regions.

In model (2), our goal is to recover the background layer B
from an input image O. Thus B can be expressed as

B = (O − A(I − t)) � t − (I − L) ◦
r∑

i=1

R̃i , (3)

where � denotes the Hadamard division.
In real life, the raindrops are transparent and the haze is

semi-transparent, and the camera is usually focused on the
background scene. Moreover, the shape of the raindrops is
similar to a fish-eye lens, and therefore the raindrop regions
of the images are formed by light reflected from a wider

environment. As a result, the imagery inside a raindrop region
is mostly blurred, and transparent parts of the raindrop regions
contain some information about the background. Based on (2),
we can generate synthetic images that resemble natural images
better than those generated by (1). Thus, we can use these
images to train our network, and perform raindrop removal and
haze removal, which provides convenience for model training.

IV. JOINT RAINDROP AND HAZE REMOVAL ALGORITHM

In this section, we present an integrated multi-task algo-
rithm in a two-step solution where joint raindrop and haze
removal (JRHR) is performed to solve the problem in (3),
as shown in Fig. 1. The first step is to determine the parameters
of the global atmospheric light A and the transmission map t.
The second step is to recover the background image B from
the degraded image O.

According to (3), given the input image O, our goal is to
estimate the background layer B. The JRHR problem can be
described by

arg min
B,R,L

‖(O − A(I − t)) � t − B − (I − L) ◦ R‖2
2, (4)

where A is the global atmospheric light parameter, t is the
transmission map, R denotes the raindrop layer, (I − L)
indicates the locations of individually visible raindrops, where
I denotes an unit matrix (all-ones matrix), L denotes the binary
values, ◦ denotes the Hadamard product, and � denotes the
Hadamard division. Here, the elements in L are in binary
values, where 0 indicates raindrop regions and 1 indicates
non-raindrop regions. To reduce algorithmic complexity and
training time, we fix the parameters A and t by estimating
them directly from the input image, but learn the parameters
L and R via a learning algorithm using some training data,
as detailed in our experiments.

A. Determination of Parameters

In real life, pictures are often taken in natural light or
lamplight. For an image, the region with bright illuminations
is called sky region, and the region with low illuminations
is called non-sky region. Even in low-light or blowing sand
environments, such as underground or the driving place of the
mine, an image has both sky and non-sky regions.

As shown in Fig. 1 and Fig. 2, for the purpose of estimating
the background layer B, we need to find the global atmospheric
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Fig. 2. The architecture of the determination of parameters. The global
atmospheric light A and the transmission map t = {t1, t2} need to be
determined according to sky and non-sky regions.

light A ∈ R and the transmission map t = {t1, t2} ∈ N
N×M

according to the sky region and non-sky region, respectively.
The method in [11] is based only on non-sky region.

However, even in low-light environments, the transmission
map estimated by the non-sky region is not smooth, but
containing blocking artifacts. Different from [11], the methods
in [12] and [13] take account of the non-sky region and
the sky region together, which are effective in reducing halo
and gradient reversal artifacts. However, the atmospheric light
A of these methods is determined only with the maximum
values of the light channel image and the minimum values
of the dark channel image, and the transmission map t is
not evaluated according to sky region and non-sky region,
respectively. Therefore, the performance of these methods is
limited with different thickness of haze. In order to solve the
above problems, we take the medium brightness case in full
consideration, as well as present an improved atmospheric
light and the corresponding transmission map.

1) Determination of the Atmospheric Light A: Considering
the medium brightness case, an improved atmospheric light is
presented as follows:

A = pLmed + (1 − p)Ddmax . (5)

Here, p = k
K , K and k are the number of all pixels and

the number of light pixels within the image, respectively.
Lmed = median(Olight (x)) is present to denote the median
of the light channel image constructed by several Olight (x)
with the change of the pixel x . �(x) denotes a patch centered
at the pixel x . c represents one of R, G, B channels and Oc

means a c channel in �(x) of the input image O. Olight (x) =
max

y∈�(x)
[ max
c∈{R,G,B}(Oc(y))] represents a light channel in �(x)

that contains the maximum R, G, B values of each pixel,
namely sky region. Ddmax = max(Odark(x)) represents the
maximum of the dark channel image constructed by sev-
eral Odark(x) with the change of the pixel x . Odark(x) =
min

y∈�(x)
[ min
c∈{R,G,B}(Oc(y))] represents a dark channel that con-

tains the minimum R, G, B values of each pixel, namely
non-sky region.

The new method for estimating the atmospheric light has
an advantage in mitigating certain artifacts, such as blocking
effects and halo and gradient reversal artifacts, and thus
resulting in more smooth estimation of the transmission map,
as compared with the methods in [11], [12] and [13].

2) Determination of the Transmission Map t: According
to (2), the model of the JRHR problem can be transformed
into (6).

O
A

= B + (I − L) ◦ R
A

◦ t + I − t. (6)

Based on the improved estimate of the atmospheric light A,
and the transformation model in (6), the transmission map t
can be re-derived for the sky and non-sky regions, respectively.

For non-sky region (O(x) < A), the two minimum filtering
operations are performed on both sides of (6).

min
y∈�(x)

[ min
c∈{R,G,B}

Oc(y)

A
]

= min
y∈�(x)

[ min
c∈{R,G,B}

Bc(y) + (1 − L(y)) ◦ Rc(y)

A
]

× t (x) + 1 − t (x), (7)

where O(x) means the maximum R, G, B value of the pixel x ,
t (x) means the transmission map of the pixel x and A is the
atmospheric light. Bc(y) represents a color channel in �(x)
of the background layer, Rc(y) represents a color channel in
�(x) of the rain layer, and L(y) is a binary value in �(x)
which indicates the location of the raindrop.

When min
y∈�(x)

[ min
c∈{R,G,B} Bc(y)+ (1 − L(y)) ◦ Rc(y)] is close

to 0, the transmission map t (x) is expressed as

t (x) = 1 − ω

min
y∈�(x)

[ min
c∈{R,G,B} Oc(y)]

A
, (8)

where ω is a constant parameter with a value between [0,1]
to make the image looks more natural.

For sky region (O(x) ≥ A), two maximum filtering opera-
tions are performed on both sides of (6).

max
y∈�(x)

[ max
c∈{R,G,B}

Oc(y)

A
]

= max
y∈�(x)

[ max
c∈{R,G,B}

Bc(y) + (1 − L(y)) ◦ Rc(y)

A
]

× t (x) + 1 − t (x). (9)

When max
y∈�(x)

[ max
c∈{R,G,B} Bc(y)+ (1− M(y))◦ Rc(y)] is close

to 1, the transmission map t (x) is expressed as

t (x) = 1 − ω

1 − max
y∈�(x)

[ max
c∈{R,G,B} Oc(y)]
1 − A

. (10)

So, a modified transmission map t is presented as follows:

t (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − ω

min
y∈�(x)

[ min
c∈{R,G,B} Oc(y)]

A
, O(x) < A

1 − ω

1 − max
y∈�(x)

[ max
c∈{R,G,B} Oc(y)]
1 − A

. O(x) ≥ A

(11)

The new transmission map may provide significant benefits
in two aspects. First, it defines the transmission map according
to the ranges of the new atmospheric light more clearly.
Second, it offers better chances in removing haze at different
levels, as compared with [11], [12] and [13].
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Fig. 3. The architecture of the joint haze and raindrop removal network. G represents the generative network which includes an optimized visual attention
network 1© and an autoencoder network 2©. D represents the discriminative network. A1, A2, and AJ are the initial attention map, the second attention map
and the J th attention map produced by 1©, respectively.

B. Recovery of the Background Image B

In order to reconstruct B, the maximum posteriori estima-
tion is considered as

arg min
B,R,L

‖(O − A(I − t)) � t − B − (I − L) ◦ R‖2
2. (12)

The global atmospheric light A and the transmission map t
obtained from (5) and (11) are combined in (12) to remove the
haze effects of the degraded image O. An attentive GAN is
established to detect and remove the raindrops of the degraded
image O by combining a GAN network and an optimized
visual attention network.

1) Generative Network: As shown in Fig. 3, the generative
network consists of two sub-networks: an optimized visual
attention network and an autoencoder network. Pairs of images
with raindrops and without raindrops in the same background
scene are used to train the generative network.

a) Optimized visual attention network: The purpose of
the optimized visual attention network is to find the raindrop
regions of the degraded image O, which needs to get attention
from the autoencoder network.

Each recurrent block at each iteration comprises of five
layers of ResNet for extracting features from the input image
and the previous block, as well as a convolutional long
short-term memory (Cov-LSTM) unit with the convolutional
layers for generating the attention maps [1].

In [1], the visual attention network can help to find rain-
drop regions of the input image that need to be attended.
However, it may have potential negative effects in two
aspects. First, in haze removal, typically, blurring artifacts
may be introduced at the edges of the processed image which
may lead to inaccurate estimation of the parameters of the
model if the raindrop removal step is followed in the joint
haze and raindrop removal setting. Second, it is prone to
over-fitting with less data, and may limit the value range of
the network parameters and introduce potential biases in their
estimates.

To address these issues, a penalty term is introduced to the
loss function of each recurrent block as follows:

LAT T ({Aat t}, L) =
J∑

j=1

[θ J− jLM S E(A j , L) + λ‖A j ‖2
2], (13)

where j is the time step and L is defined in (2), A j =
AT Tj (F j−1, H j−1, C j−1) represents the output attention map
produced by the optimized visual attention network at time
step j . The values of A j become larger with the increase of
iterations until the J th iteration, which indicates the increase
in confidence. AT Tj represents the optimized visual attention
network at j . λ is a constant and set to 0.001. F j−1 is
the concatenation of the input image and the attention map
from the previous iteration. θ is a calibration factor. C j =
f j ◦C j−1 + i j ◦ tanh(Wxc ∗X j +Whc ∗H j−1 +bc) encodes the
cell state for the next LSTM unit. H j = o j ◦tanh(C j ) describes
the output features of the LSTM unit. Here i j = σ [(Wxi ∗X j +
Whi∗H j−1+bi )], f j = σ [(Wx f ∗X j +Wh f ∗H j−1+b f )], o j =
σ [(Wxo ∗ X j + Who ∗ H j−1 + bo)] are an input gate, a forget
gate and an output gate of the convolutional LSTM unit,
respectively. σ is the activation function of sigmoid. Operator
∗ and ◦ are used for the convolution and Hadamard product.
Wx , Wh and b are the weights and the biases of the linear
relationship.

The new loss function may provide significant benefits in
three aspects. First, it improves the clarity of the raindrop
regions in the attention maps. Second, the generalization
performance is improved by preventing it from over-fitting.
Third, it relaxes the value range of the network parameters and
reduces the potential biases in the estimates of the parameters.

b) Autoencoder network: The autoencoder network is
used here to generate an image without raindrops. The input
of the autoencoder network is the concatenation between the
input image and the J th attention map from the optimized
visual attention network.

The architecture of the autoencoder network is shown
in Fig. 3, which has sixteen conv-leakyrelu blocks and skip
connections to prevent blurred outputs. In order to alleviate the
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neuron death, we use several conv-leakyrelu blocks instead of
the conv-relu blocks.

The loss function of the autoencoder network includes two
loss functions: the multi-scale loss and the perceptual loss. The
multi-scale loss function of the autoencoder network is defined
as (14), which can extract features with different scales [1].

LM ({S}, {T}) =
M∑

i=1

φiLM S E(Si , Ti ), (14)

where Si and Ti represent the ith output of the decoder layers
and the ground truth which have the same scale. φi represents
the ith weight. The value of φ increases with the scales and is
set typically between [0,1]. The outputs of the last first, third
and fifth layers are used whereas smaller layers are not used
since the information is insignificant.

Based on the VGG, the perceptual loss function of the
autoencoder network is defined as (15), that measures the
global discrepancy between the features of the autoencoders
output and the corresponding ground-truth image can be
learned from the training data [1].

LP (B, T) =
M∑

i=1

LM S E (V GG(B), V GG(T)), (15)

where V GG is a pretrained CNN, and produces features from
a given input image. B = G(Or ) indicates the output image
of the whole generative network. T is the ground-truth image
without raindrops.

Therefore, the loss function of the generative network can
be written as [1]:

LG = LG AN (B) + LM ({S}, {T})
+LP(B, T) + LAT T ({Aat t}, L), (16)

where LG AN (B) = η log(1 − D(B)), D represent the process
of producing an image by the discriminative network, and η
is a constant and set to 0.01.

2) Discriminative Network: As shown in Fig. 3, to differ-
entiate candidates produced by the generator network from
the true data distribution, the discriminative network aims to
distinguish the regions degraded by the raindrops, which is
constructed by seven convolution layers with the kernel of
(3, 3), a fully connected layer of 1024 and each neuron with
a sigmoid activation function [1].

The loss function of the discriminator network can be
expressed as [1]:

LD = − log(D(C)) − log(1 − D(B)) + γLM AP (B, C, AJ ).

(17)

Here, C is a sample image drawn from a pool of real and
clean images, AJ denotes the J th attention map, γ is the
calibration factor. LM AP (B, C, AJ ) = LM S E (Dmap(B), AJ )+
LM S E (Dmap(C), 0) describes the loss between the features
extracted from interior layers of the discriminator and the
J th attention map, where Dmap represents the process of pro-
ducing a 2D map by the discriminative network. 0 represents
an attention map containing only 0 values and implies that no
specific region needs to be attended.

The proposed algorithm is summarized in Algorithm 1.

Algorithm 1 Joint Raindrop and Haze Removal Algorithm

Fig. 4. Samples of the dataset. Top: The images corrupted by raindrops and
haze. Bottom: The corresponding ground-truth images.

V. NUMERICAL EXPERIMENTS

In this section, we conduct numerical simulations to demon-
strate the competitive performance of the proposed multi-task
JRHR algorithm.

Experimental Data. We use the following two kinds of
images for the experiment:

[Synthetic images] A dataset RH of 1619 images is
composed of two parts, including the dataset captured by
Qian et al. [1] and 500 clean/corrupted pairs of images
captured by us. We use Nikon D5300 to capture various
background scenes which include the raindrops and the haze.
The thickness of the glass slabs is 3 mm. In order to minimize
the reflective effect of the glass, the distance between the glass
slabs and the camera lens has been set between 2 to 8 cm
to generate the diverse raindrop images. Fig. 4 shows some
examples of the dataset RH.

[Real-world images] Different from the synthetic images,
the real-world images without ground truth are selected from
Google and Baidu search engines, and captured from several
surveillance cameras without movement of lens.

Our algorithm is compared with the state-of-the-art algo-
rithms on these two kinds of images. The dataset for training
our network is the dataset RH of 1619 images. The testing
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images considered for the synthetic image simulations are
randomly picked from the dataset RH. The testing images
considered for the real-world image simulations are selected
from Google and Baidu search engines, and captured from
several surveillance cameras without movement of lens.

Baseline methods. We compare some versions of our JRHR
algorithm: A1 (removing two layers of ResNet), A2 (increas-
ing two layers of ResNet), B1 (removing two convolution
layers of the generative network), B2 (increasing two con-
volution layers of the generative network), C1 (removing
two attention maps), C2 (increasing two attention maps),
D (changing loss function to MSE), JRHR (full version of
our JRHR algorithm) with the state-of-the-art algorithms:
Feature Fusion Attention Network (FFA)1 [14], All-in-One
Dehazing Network (AOD)2 [15], Single Image Haze Removal
Using Dark Channel Prior (DCP)3 [11], CNN-based raindrop
removal method (CNN)4 [9], conditional adversarial networks
(Pix2Pix)5 [29], and attentive generative adversarial network
(AGAN)6 [1].

All our algorithms are trained from scratch. Other methods
come from online available resources kindly provided by the
authors. For evaluations on synthesized images, we train the
model with the corresponding training data from scratch, with-
out any fine-tuning. CNN-based raindrop removal method [9]
is implemented in MATLAB. The facilities that were used
to perform the experiments include AMD Ryzen 7 2700
3.2 GHz CPU, NVIDIA GeForce RTX 2080Ti Graphics Card
and 14.9 GB memory. The results are given in Table I. The
results show that the proposed JRHR algorithm has better
performance in mean values of SSIM and PSNR than the DCP,
AOD, FFA, CNN, Pix2Pix and AGAN algorithms. The SSIMs
and PSNRs of the DCP, AOD, FFA, CNN, Pix2Pix and AGAN
algorithms are less than 0.87 and 26 dB. The computational
complexity of both methods in terms of run time was also
approximately calculated. Our proposed algorithms in GPU
are capable of dealing with a 480 × 640 image corrupted by
raindrops and haze in less than 3s.

For the experiments on synthetic images, the performance
of the proposed algorithm can be evaluated by Structure
Similarity Index (SSIM) [30] and Peak Signal-to-Noise Ratio
(PSNR) [31], [32]. For the experiments on real-world images,
the performance of the proposed algorithm can be evaluated by
blind image quality index (BIQI) [33] and Blind referenceless
image spatial quality evaluator (BRISQUE) [34].

Image quality assessment (IQA) can be achieved using
subjective or objective methods. The real-world images used
in our experiments do not have the ground truth that we
can compare with. For subjective IQA, we can only use
single-stimulus methods, which depend mainly on the way in
which the viewers rate their opinions based on their percep-
tions of image quality. One way to ensure the reliability of the
results is to get experienced personnel to rate their opinions

1https://github.com/zhilin007/FFA-Net
2https://github.com/weber0522bb/AODnet-by-pytorch
3https://github.com/He-Zhang/image_dehaze
4https://cs.nyu.edu/∼deigen/rain/
5https://github.com/phillipi/pix2pix
6https://github.com/MaybeShewill-CV/attentive-gan-derainnet

TABLE I

THE PERFORMANCE AND TIME COMPLEXITY OF OUR JRHR ALGORITHM
COMPARED WITH STATE-OF-THE-ART METHODS

based on their perceptions, and the other way is to recruit a
large number of viewers to rate their opinions based on their
perceptions of image quality. These opinions are afterwards
mapped onto numerical values. This method is costly and
time consuming. Therefore, we consider objective IQA, which
is a no-reference (NR) method for assessing the quality of
the enhanced image obtained from the real-world images
without ground truth. Blind image quality index (BIQI) and
blind/referenceless image spatial quality evaluator (BRISQUE)
are commonly used NR methods which are based on natural
scene statistic (NSS), and evaluated on the LIVE IQA data-
base [35]. Once trained, the BIQI and BRISQUE methods do
not require any knowledge of the distortions introduced, and
can be extended to any number of distortions. Therefore, it is
economically cheaper and more efficient to obtain the per-
ceptual scores [33], [34]. In addition, such metrics have been
shown to be highly correlated with the subjective IQA [33]
and therefore they can be used as an alternative to subjective
IQA when the resources for performing perceptual tests are
limited.

The analysis of variance (ANOVA) based statistical sig-
nificance evaluation [36] of the proposed JRHR algorithm
as compared with the baseline methods is also given in
Section V. ANOVA is a statistical hypothesis testing heavily
used in the analysis of experimental data (e.g., in image and
speech processing), which is a relatively robust procedure with
respect to violations of the normality assumption, and has
lower probability of introducing Type I errors (false positives)
compared to T-Tests. According to the number of factors
considered in the tests, ANOVA includes one-way ANOVA,
two-way ANOVA, and multi-way ANOVA.

In this paper, considering the single-factor results
(e.g. SSIM, PSNR, BIQI, or BRISQUE), we use one-way
ANOVA based statistical significance evaluation (using the
F distribution) [36] on the means results obtained by the
proposed method as compared with the baseline methods, for
both the synthetic images and the real-world images.
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Fig. 5. The restoration results of the JRHR algorithm: (a) Ground-truth
images (b) Input images corrupted by raindrops and haze (c) De-hazed images
(d) Restored background images.

A. JRHR for the Synthetic Images

In the first set of simulations, we evaluate the restoration
performance of the proposed JRHR algorithm described in
Algorithm 1. The synthetic images considered for the first
simulation are randomly picked from an image dataset RH.

For the improved haze removal method, the parameter
ω in the transmission map is a value between [0,1]. For
the optimized visual attention network, the total number of
iterations J of the attention maps, the calibration factor θ
and the parameter λ in the penalty term are set to be 4,
0.8 and 0.001, respectively. F0 is the input image concatenated
with the initial attention map A1 with the values of 0.5.
For the autoencoder network, in the multi-scale loss function,
the output sizes of the last first, third, and fifth layers are
1/4, 1/2 and 1 of the original size, and φ are set to 0.6,
0.8, 1.0, respectively. In the loss function of the generative
network, η is a constant and set to 0.01. In the loss function
of the discriminative network, γ is a calibration factor and
set to 0.05.

Fig. 5 shows the restoration results of the JRHR algorithm
on the images corrupted by raindrops and haze. According
to the density of the raindrops and haze, the proposed JRHR
algorithm is successful in removing the majority of haze and
raindrops, and recovering background images.

We compare the proposed JRHR algorithm with six state-
of-the-art algorithms as shown in Fig. 6. As observed, the pro-
posed JRHR algorithm significantly outperforms DCP, AOD,
FFA, CNN, Pix2Pix and AGAN algorithms with respect to the
density of the raindrops and haze in removing raindrops and
haze, enhancing the visibility and preserving details.

Table II shows the results of different algorithms.
As observed, the SSIMs of the proposed JRHR algorithm are
closer to 1 than the DCP, AOD, FFA, CNN, Pix2Pix, AGAN
algorithms, and the PSNRs of the proposed algorithm are

TABLE II

PERFORMANCE COMPARISON OF THE DCP, AOD, FFA, CNN, PIX2PIX
AND AGAN ALGORITHMS FOR THE SYNTHETIC IMAGES

TABLE III

ANOVA BASED STATISTICAL SIGNIFICANCE EVALUATION OF THE PSNR
AND SSIM FOR THE DCP, AOD, FFA, CNN, PIX2PIX, AGAN

AND PROPOSED JRHR ALGORITHMS

better than those of the baseline algorithms. The proposed
JRHR algorithm achieves better results than the baseline
algorithms in terms of both SSIM and PSNR.

To evaluate the statistical significance of the performance,
we perform one-way ANOVA based F-test [36] for the SSIM
and PSNR of the DCP, AOD, FFA, CNN, Pix2Pix, AGAN
and the proposed JRHR algorithms in Table III. The average
results of SSIM and PSNR for 800 synthetic images are also
given in Table III. The p-value stands for the probability
of a more extreme (positive or negative) result than what
we actually achieved, given that the null hypothesis is true.
F-value can be defined as the ratio of the variance of the
group means to the mean of the within group variances. All the
F-tests in this work have been carried out at 5 % significance
level. If p-value is greater than 0.05 (5 % significance level),
then the given results are statistically insignificant. It can be
observed that the p-values of all the algorithms in Table III are
smaller than 0.05, suggesting that the improvement given by
the proposed JRHR algorithm as compared with the baseline
methods is statistically significant.

In Fig. 7, the learned features with the raindrop region
detection by the proposed JRHR algorithm are visualized in
the testing stage. As observed, the learned features is mostly
correlated to the raindrop regions and relevant structures,
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Fig. 6. The restoration results of different algorithms on synthesized images (a) Ground-truth images (b) Input images corrupted by raindrops and haze
(c) DCP (d) AOD (e) FFA (f) CNN (g) Pix2Pix (h) AGAN (i) Proposed JRHR.

Fig. 7. The learned features with the raindrop region detection with respect to the density of the raindrops and haze. Top: Input images corrupted by raindrops
and haze. Bottom: Detected raindrop regions.

Fig. 8. The restoration results of different haze removal algorithms on synthesized images (a) Ground-truth images (b) Input images corrupted by haze
(c) DCP (d) AOD (e) FFA (f) Proposed JRHR.

which demonstrates the necessity of employing raindrop
region detection in the JRHR algorithm.

The proposed JRHR algorithm is compared with the haze
removal algorithms (DCP, AOD and FFA) and the raindrop
removal algorithms (CNN, Pix2Pix and AGAN) as shown
in Fig. 8 and Fig. 9, respectively. It is observed that the pro-
posed JRHR algorithm outperforms DCP, AOD, FFA, CNN,
Pix2Pix and AGAN algorithms in removing the effects of the
haze and the raindrops respectively.

In Table IV and V, the statistical significance evaluation of
the performance achieved by the haze and raindrop removal
algorithms, respectively. The average results of SSIM and
PSNR of the haze removal algorithms are given in Table IV,

and the average results of SSIM and PSNR of the raindrop
removal algorithms are given in Table V. All the p-values
of the haze removal algorithms (DCP, AOD and FFA) and
the raindrop removal algorithms (CNN, Pix2Pix and AGAN)
are smaller than 0.05. This indicates that the proposed JRHR
algorithm outperforms these compared algorithms in removing
the effects of the raindrops and the haze, respectively.

B. JRHR for the Real-World Images

In the second set of simulations, we evaluate the restora-
tion performance of the proposed JRHR algorithm for the
real-world images without ground truth.
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Fig. 9. The restoration results of different raindrop removal algorithms on synthesized images (a) Ground-truth images (b) Input images corrupted by
raindrops (c) CNN (d) Pix2Pix (e) AGAN (f) Proposed JRHR.

TABLE IV

ANOVA BASED HAZE REMOVAL STATISTICAL SIGNIFICANCE

EVALUATION OF THE PSNR AND SSIM FOR THE DCP,
AOD, FFA AND PROPOSED JRHR ALGORITHMS

TABLE V

ANOVA BASED RAINDROP REMOVAL STATISTICAL SIGNIFICANCE

EVALUATION OF THE PSNR AND SSIM FOR THE CNN,
PIX2PIX, AGAN AND PROPOSED JRHR ALGORITHMS

Fig. 10. The restoration results of the JRHR algorithm: (a) Input images
corrupted by raindrops and haze (b) De-hazed images (c) Detected raindrop
regions (d) Restored background images.

Fig. 10 demonstrates the restoration results of the JRHR
algorithm on the real-world images corrupted by raindrops and
haze, which shows the effectiveness of the JRHR algorithm in
recovering background images.

TABLE VI

PERFORMANCE COMPARISON OF THE DCP, AOD, FFA, CNN, PIX2PIX

AND AGAN ALGORITHMS FOR THE REAL-WORLD IMAGES

TABLE VII

ANOVA BASED STATISTICAL SIGNIFICANCE EVALUATION OF THE

BIQI AND BRISQUE FOR THE REAL-WORLD IMAGES

Considering no ground-truth images, we use BIQI and
BRISQUE to evaluate the restoration performance on the
basis of the blind image quality assessment [37]. Table VI
shows that the BIQIs and BRISQUEs of the proposed JRHR
algorithm are smaller than those of DCP, AOD, FFA, CNN,
Pix2Pix and AGAN algorithms. As observed, the proposed
JRHR algorithm outperforms these algorithms in terms of both
BIQI and BRISQUE.

Table VII illustrates the statistical significance evaluation
of the performance by performing one-way ANOVA based
F-test [36] for the BIQI and BRISQUE of the DCP, AOD, FFA,
CNN, Pix2Pix, AGAN and the proposed JRHR algorithms.
All the F-tests in this work have been carried out at 5 %
significance level and all the p-values in Table VII are smaller
than 0.05, suggesting that the improvement by the proposed
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JRHR algorithm over the baseline algorithms is statistically
significant for the real-world images.

VI. CONCLUSION

The model and the algorithm for the problem of joint
raindrop and haze removal (JRHR) have been investigated in
this paper. Our contributions to this challenging problem are
as follows:

Model: We form a new model of the JRHR problem to
recover an image corrupted by raindrops and haze by detecting
and removing the effects of the raindrops and the haze.

Algorithm: Based on the JRHR model, an integrated
algorithm which combines an improved estimate of the
atmospheric light, a modified transmission map, a GAN net-
work and an optimized visual attention network is presented
as a solution to the JRHR problem.

Numerical experiments show that the proposed JRHR algo-
rithm performs well in restoring the images corrupted by
raindrops and haze. In the future, it is interesting to investigate
how to incorporate an end to end optimization method into the
JRHR algorithm. In the future, it is interesting to investigate
how to incorporate an end to end optimization method into the
JRHR algorithm. It is also tempting to consider blind source
separation idea for restoring the images corrupted by raindrops
and haze.
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