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a b s t r a c t

In a recent study of auditory evoked potential (AEP) based brain–computer interface (BCI), it was
shown that, with an encoder–decoder framework, it is possible to translate human neural activity
to speech (T-CAS). Current encoder–decoder-based methods achieve T-CAS often with a two-step
approach where the information is passed between the encoder and decoder with a shared vector
of reduced dimension, which, however, may result in information loss. In this paper, we propose an
end-to-end model to translate human neural activity to speech (ET-CAS) by introducing a dual–dual
generative adversarial network (Dual-DualGAN) for cross-domain mapping between electroencephalo-
gram (EEG) and speech signals. In this model, we bridge the EEG and speech signals by introducing
transition signals which are obtained by cascading the corresponding EEG and speech signals in a
certain proportion. We then learn the mappings between the speech/EEG signals and the transition
signals. We also develop a new EEG dataset where the attention of the participants is detected before
the EEG signals are recorded to ensure that the participants have good attention in listening to speech
utterances. The proposed method can translate word-length and sentence-length sequences of neural
activity to speech. Experimental results show that the proposed method significantly outperforms
state-of-the-art methods on both words and sentences of auditory stimulus.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

The World Health Organization (WHO) estimated in 2021
hat neurological disorders could affect as many as 25% patients
orldwide, and result in symptoms including confusion, altered

evels of consciousness, and loss of communication. The visual
voked potential (VEP) based brain–computer interface (BCI) may
nhance the quality of life of a patient, e.g. by using eyes to
ontrol a cursor for selecting letters one-by-one to spell out
ords [1–3]. However, the spelling rates of users are far below
he average rate of 150 words per minute in natural speech [4,5],
ince spelling is a sequential concatenation of discrete letters
6–8]. Different from spelling, speech is a highly efficient form
f communication produced from a fluid stream of overlapping
nd multi-articulator vocal tract movements [9–11]. The auditory
voked potential (AEP) based BCI is a promising alternative to
vercome the limitations of current spelling-based methods in
chieving natural communication rates [12–17].
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The AEP based BCI using spelling-based methods, however,
are yet to reach natural communication rates. To address this
problem, studies have been conducted to exploit the conceptual
similarity between the task of decoding speech from human
neural activity and the task of machine translation according to
the sensitivity of organs (such as ears, eyes). The AEP based BCI
methods can be mainly classified into two categories: translation
of human neural activity to text (T-CAT) [18–20] and translation
of human neural activity to speech (T-CAS) [15,21–30]. The T-CAT
method is mainly used by deaf-mutes. However, this method can
be limited in several scenarios. For example, when two words
share the same pronunciation, the translation to the desired word
can be ambiguous. In addition, the spelling rates achieved by T-
CAT can only be close to able-bodied typing rates. In contrast, the
T-CAS method can be used by more users, and an increasing num-
ber of neural network based on this approach have been proposed
[31,32]. It is a more intuitive approach for communication, as
in natural speech [16,17,33–35]. As a result, the T-CAS approach
has received increasing interest recently, and is the focus of this
paper.

In existing AEP based BCIs, the T-CAS is often achieved with
a two-step method, in which the first step is to encode neural
activities to texts or acoustic features, typically for dimension
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Fig. 1. Translation results of a DualGAN and our end-to-end model (Dual-DualGAN). (a) Image-to-image translation by a DualGAN, (b) EEG-to-speech translation by
a DualGAN, (c) Image-to-image translation by a Dual-DualGAN, and (d) EEG-to-speech translation by a Dual-DualGAN.
reduction, followed by a second step on decoding texts or acoustic
features to synthesized speech by a vocoder or a speech synthesis
tool. In the two-step method, a dimension reduced vector is often
used to bridge the decoder and encoder, but dimension reduction
may lead to the information loss and reconstruction error [36,37],
which may result in inaccurate signal reconstruction by using
different decoders, such as [16,17,33,35]. To our knowledge, there
is no existing study for end-to-end decoding of human neural
activity to speech, by using non-invasive electroencephalogram
(EEG) neural recordings, without involving dimension reduction
as in the two-step method.

The aim of this paper is to develop an end-to-end method
for translating human neural activity to speech. To this end, we
leverage the dual generative adversarial network (DualGAN) [38],
which can generate paired images with same features, and does
not involve dimension reduction in the pipeline. This offers ad-
vantages over the cycle-consistent adversarial networks (Cycle-
GAN) [39] or the denoising diffusion probabilistic models (DDPM)
[40]. More specifically, CycleGAN was designed for unpaired
image-to-image translation but not the generation of paired im-
ages with same features, while DDPM is a progressive lossy
decompression scheme trained using variational inference to
produce samples matching the data distribution using multiple
steps with much slower sampling speed than GAN.

The DualGAN, however, may be limited by the following chal-
lenges. For example, it is an unsupervised dual learning frame-
work originally designed for cross-domain image-to-image trans-
lation, but it cannot achieve a one-to-one translation for different
kind of signal pairs, such as EEG and speech signals, due to
the lack of corresponding features between these modalities.
As shown in Fig. 1(a), a male photo may be translated to the
corresponding male sketch or other similar male sketches by
DualGAN. This is because the image pairs have commonalities,
for example, hat or hair. In Fig. 1(b), an EEG signal may be
translated to different speech signals randomly by a DualGAN, as
the EEG and speech signals have different dimensions, without
corresponding features (e.g. waveform and amplitude) over time.
To address these challenges, we propose an end-to-end model for
the translation of human neural activity to speech (ET-CAS). Our
contributions are three-fold:

1. Model. An end-to-end model is proposed to translate hu-
man neural activity to speech directly.

2. Datasets. A new EEG dataset is created for this study,
where a device (see Fig. 7) is designed to detect the atten-
tion of participants in order to improve the quality of the

EEG data in data collection.

2

3. Network. A dual–dual generative adversarial network
(Dual-DualGAN) is proposed to address the ET-CAS prob-
lem, where two DualGANs are built and trained simulta-
neously by incorporating a transition domain to bridge the
two DualGANs. The transition signals used in the transition
domain are obtained by cascading the corresponding EEG
and speech signals in a certain proportion, where shared
labels are constructed for EEG and speech signals without
aligning their corresponding features.

The remainder of the paper is organized as follows. Section 2
describes the related work. Section 3 introduces the background
for GAN and DualGAN. Section 4 formulates an end-to-end model
for the ET-CAS problem. Section 5 presents our proposed network
for the problem of ET-CAS. Section 6 describes data collection
and pre-processing. Section 7 discusses the experimental set up.
Section 8 shows numerical results. Section 9 concludes the paper
and draws potential future research directions.

2. Related work

In the field of the AEP based BCIs, there is an increasing
interest in the problem of decoding speech from human neu-
ral activity [16,17,33–35]. According to the sensitivity of organs
(e.g. ears, eyes), the AEP based BCI systems can be mainly clas-
sified into two categories, namely, T-CAT and T-CAS. The T-CAT
systems are more suitable for deaf and mute people, and the
spelling rates offered by these systems are close to typing rates.
However, they are prone to errors when two words are translated
with the same pronunciation. In contrast, the T-CAS method does
not have such limitations, and is an intuitive approach for users
to achieve high communication rates as in natural speech.

The AEP based BCIs for T-CAT. Herff et al. [41] showed for the
first time that spoken speech could be decoded into the expressed
words from intracranial electrocorticographic (ECoG) recordings,
and proposed a Brain-To-Text system to transform brain activity
while speaking into the corresponding textual representation.
This system achieved word error rates as low as 25% and phone
error rates below 50%. Makin et al. [19] trained a recurrent neural
network to encode each sentence-long sequence of neural activity
into an abstract representation, and then to decode this represen-
tation, word by word, into an English sentence at natural-speech
rates with high accuracy. This method achieved an average word
error rate across a held-out repeat set as low as 3%. Willett et al.
[20] proposed a BCI which can spell 90 characters per minute at
>99% accuracy with general-purpose auto-correction, and signifi-

cantly close the gap between BCI-enabled typing and able-bodied
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Fig. 2. Architecture and data flow chart of DualGAN for image-to-image translation.
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yping rates. These methods have focused on the translation of
uman neural activity to text and achieved typing rates that are
lose to normal typing rates, which, however, remain lower than
he average rate of 150 words per min in natural speech.

The AEP based BCIs for T-CAS. Brumberg et al. [42] developed
brain–computer interface for the control of an artificial speech
ynthesizer by an individual with near complete paralysis, where
owel formant frequencies are predicted based on neural activity
ecorded from an intra-neural micro-electrode implanted in the
eft hemisphere speech motor cortex. Bocquelet et al. [15] pre-
ented an articulator-based speech synthesizer, which converts
ovements of the main speech articulators (e.g. tongue, jaw,
elum, and lips) into intelligible speech by using a deep neural
etwork (DNN), and can be controlled in real-time, which is
rucial for BCI applications. Akbari et al. [16] investigated the
ependence of reconstruction accuracy on linear and nonlinear
deep neural network) regression methods and the acoustic rep-
esentation. Anumanchipalli et al. [17] designed a neural decoder
hat explicitly leverages kinematic and sound representations
ncoded in human neural activity to synthesize audible speech.
hese methods demonstrated the possibility of translating hu-
an neural activity to speech with encoder–decoder frameworks.
owever, there are two major open challenges for T-CAS. First,
he collection of intracranial ECoG recordings is intrusive and
nconvenient. Second, the encoder–decoder based methods need
ulti-steps to achieve T-CAS. Krishna et al. [34] demonstrated
ynthesizing speech from the non-invasive electroencephalogram
EEG) neural recordings for the first time and proposed a re-
urrent neural network (RNN) regression model to predict mel-
requency cepstral coefficients (MFCC) from EEG features. This
ethod shows that it is possible to decode the human neural
ctivity via non-invasive EEG neural recordings, but does not
onsider speech reconstruction from the EEG features.
The focus of this paper is to address the problem of decod-

ng speech from human neural activity directly with the non-
nvasive EEG signals, and to propose an end-to-end method Dual-
ualGAN.

. Background

A generative adversarial network (GAN) is a class of machine
earning frameworks designed by Goodfellow et al. [43]. The
irst GAN architecture used fully connected neural networks for
oth the generator and discriminator. This was then extended by
eplacing the fully connected network with convolutional neu-
al networks (CNN), which is well suited for image data [44,
5]. Given a training set, a GAN learns to generate new data
ith the same statistics as the training set. For example, a GAN

rained on photos can generate new photos that look at least

3

superficially authentic to human observers, having many realistic
characteristics. However, the original GAN algorithm is not di-
rectly applicable to the translation task, because the goal of the
original GAN is to estimate the distribution of the training data
(such as images) and generate new data from that distribution,
while in translation tasks, this is often not the case.

Motivated by GAN and dual learning, an unsupervised learning
framework DualGAN has been proposed by Yi et al. [38] for image
translation, which was trained with two sets of unlabeled images
from two domains (e.g. sketch and photo).

As illustrated in Fig. 2, given two sets of unlabeled and un-
paired images sampled from domains U and V , respectively, the
rimary task of DualGAN is to learn a generator GA: U → V that
aps an image u ∈ U to an image v ∈ V , while the dual task

s to train an inverse generator GB: V → U . This is achieved
y using two GANs (i.e. the primal GAN and the dual GAN). The
rimal GAN learns the generator GA and a discriminator DA that

discriminates between fake outputs of GA and real members of
domain V . Analogously, the dual GAN learns the generator GB and
a discriminator DB.

The image u ∈ U is translated to domain V using GB. How well
the translation GA(u, z) fits in V is evaluated by DA, where z is
random noise. GA(u, z) is then translated back to domain U using
GA, which outputs GB(GA(u, z), z′) as the reconstructed version
of u, where z′ is also random noise. Similarly, v ∈ V is trans-
lated to U as GB(v, z′) and then reconstructed as GA(GB(v, z′), z).
The discriminator DA is trained with v as positive examples and
GA(u, z) as negative examples, whereas DB takes u as positive and
GB(v, z′) as negative. The generators GA and GB are optimized to
emulate ‘‘fake’’ outputs to fool the corresponding discriminators
DA and DB, as well as to minimize the two reconstruction losses
∥u − GB(GA(u, z), z′)∥ and ∥v − GA(GB(v, z′), z)∥.

The same loss function is used for both the generators GA and
GB as they share the same task, which is defined as

L(U, V )G = λU∥u − GB(GA(u, z), z′)∥
+ λV∥v − GA(GB(v, z′), z)∥
− DA(GA(u, z)) − DB(GB(v, z′)),

(1)

where λU and λV are two constant parameters, which are typi-
cally set to the values within [100, 1000] [38].

The loss functions of DA and DB advocated by Wasserstein GAN
(WGAN) [38] can be described by

LD
A = DA(GA(u, z)) − DA(v), (2)

LD
B = DB(GB(v, z′)) − DB(u), (3)

where DA(·) =
pdata(·)

pdata(·)+pgA(·)
, DB(·) =

pdata(·)
pdata(·)+pgB(·)

pdata(·) is the dis-

tribution of the training data, p (·) and p (·) are the distributions
gA gB
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Fig. 3. Training and testing process of our end-to-end model (Dual-DualGAN) for EEG-to-speech translation.
f the fake outputs from GA(·) and GB(·), respectively. After several
steps of training, if pg (·) = pdata(·), the discriminator is unable to
differentiate between pg (·) and pdata(·), and DA(·) = DB(·) =

1
2 .

By training a DualGAN, a signal can be translated to another
imilar signal with some correspondence in different patterns. For
xample, a male photo may be translated to the corresponding
ale sketch or other similar male sketches by a DualGAN in
ig. 1(a). However, the male photo and the translated male sketch
re not necessarily image pairs. Analogously, an EEG signal may
e translated to some different speech signals by a DualGAN in
ig. 1(b). The correct rates of the one-to-one translation of EEG-
o-speech are even lower than those for image pairs without local
orresponding features.
For the ET-CAS problem, we need to realize one-to-one trans-

ation of an EEG to a speech signal. To address this problem, in
his paper, we build an end-to-end model for decoding speech
rom human neural activities. Based on the end-to-end model, we
ropose a Dual-DualGAN by group labeling the EEG and speech
ignals, and inserting a transition domain into the DualGAN to
rain two DualGANs simultaneously. The transition signals in the
ransition domain can be considered as the shared labels for the
EG and speech signals which are constructed by cascading the
orresponding EEG and speech signals in a certain proportion.

. End-to-end model

In this section, we present an end-to-end model for decoding
peech from human neural activities, as illustrated in Fig. 3.
Training. Fig. 3(a) shows the training process of our

nd-to-end model. In this model, instead of using current enc-
der–decoder frameworks with two-step methods, we design a
ross-domain dual-learning framework Dual-DualGAN to bridge
EG and speech signals without extracting their correspond-
ng features, and realize one-to-one cross-domain EEG-to-speech
ranslation. Two inputs are used in this framework, including the
on-invasive EEG signal recorded as the participants listen to
peech sound, and the corresponding speech signal. We use these
wo inputs to train the proposed Dual-DualGAN, and then obtain
he trained Dual-DualGAN.

Testing. Fig. 3(b) demonstrates the testing process of the end-
o-end model. The input of the model is the non-invasive EEG
ignal recorded as the participants listen to speech sound. The
arameters derived from the trained Dual-DualGAN is used to
ynthesize the speech signal in terms of the corresponding EEG
ignal.
4

5. Dual-DualGAN

The fundamental question in ET-CAS is to decode speech from
human neural activity (EEG signals) directly. A potential approach
to this problem is to use a DualGAN which is an unsupervised
dual learning framework that does not need dimensionality re-
duction in cross-modal translation. However, it cannot realize
one-to-one translation for signal pairs without local correspond-
ing features from the signal pairs. The EEG and speech signals are
different types of signals without local corresponding features.
Thus we cannot achieve one-to-one translation of an EEG to a
speech signal by training a DualGAN. To address this problem, we
present a Dual-DualGAN, as shown in Fig. 4.

General ideas. Dual-DualGAN involves a domain U , a domain
V and a transition domain O. The domain O is introduced into a
DualGAN to build a left mini-cycle, a right mini-cycle and a large
cycle, which are trained simultaneously.

The sets of EEG signals u and speech signals v are sampled
from domains U and V , respectively. As illustrated in Fig. 5(b),
a set of transition signals o sampled from O are obtained by
cascading the corresponding EEG and speech signals in a certain
proportion.

The primary task of our Dual-DualGAN is to translate u ∈ U
into v ∈ V . The left mini-cycle aims to learn a mapping between
the EEG signals u ∈ U , while the right mini-cycle learns a
mapping between the speech signals v ∈ V . Different from the
above running mode, the large cycle aims to learn a mapping
between the transition signals o ∈ O and the EEG signals u ∈ U
from O to U , and then to learn a mapping between the transition
signals o ∈ O and the speech signals v ∈ V from O to V . By
training the Dual-DualGAN, the transition signals o ∈ O can be
considered as shared labels for EEG and speech signals without
their corresponding features, with details discussed as follows.

5.1. Training

Left mini-cycle. In Fig. 4(a), for EEG signals, a real EEG signal
u is mapped to domain O using a generator GA: U → O, which
generates an EEG signal GA(u, z). Then GA(u, z) is translated back
to domain U using an inverse generator GB: O → U , which
outputs GB(GA(u, z), z′) as the reconstructed version of u.

Right mini-cycle. For speech signals, a real speech signal v
is mapped to domain O using a generator GC : V → O, which
generates a speech signal G (v, z′). G (v, z′) is then translated
C C
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o

U

Fig. 4. Architecture of our network (a) Dual-DualGAN for training, including two DualGANs trained simultaneously. DualGAN 1 learns the mapping between the EEG
signals u ∈ U and the transition signals o ∈ O, while DualGAN 2 learns the mapping between the speech signals v ∈ U and the generated transition signals o ∈ O.
Thus we can find the mapping between the EEG signals u ∈ U and the speech signals v ∈ V to address the ET-CAS problem. (b) The network used in testing, where
the trained Dual-DualGAN is used to achieve EEG-to-speech translation.
Fig. 5. Proportional cascade of the transition signals (a) Accuracy with respect to different cascading proportions (b) An example of the transition signal formed by
cascading the EEG and speech signal in a ratio of 3:2.
back to domain V using an inverse generator GD: O → V , which
utputs GD(GC (v, z′), z) as the reconstructed version of v.
Large cycle. For transition signals, it needs four steps to form a

large cycle. Firstly, a real transition signal o is mapped to domain
using GB, which generates a transition signal GB(o, z′). Secondly,

GB(o, z′) is translated back to domain O using GA, which out-
puts GA(GB(o, z′), z). Thirdly, GA(GB(o, z′), z) is translated to do-
main V using GD, which generates GD(GA(GB(o, z′), z), z). Fourthly,
GD(GA(GB(o, z′), z), z) is translated back to domain O using GC ,
which outputs GC (GD(GA(GB(o, z′), z), z), z′) as the reconstructed
version of o.

Discriminators. The discriminator DA is learned by discrim-
inating between the real transition signal o of domain O and
the fake outputs of GA, while the discriminator DB is learned
by discriminating between the real EEG signal u of domain U

and the fake outputs of GB. Similarly, the discriminator DD is

5

learned by discriminating between the real speech signal v of
domain V and the fake outputs of GD, while the discriminator
DC is learned by discriminating between the generated transition
signal GA(GB(o, z′), z) of domain O and the fake outputs of GC .

The generators GA, GB, GC and GD are optimized to emulate the
fake outputs to fool the corresponding discriminators DA, DB, DC
and DD as well as to minimize the following reconstruction losses
∥u−GB(GA(u, z), z′)∥, ∥o−GA(GB(o, z′), z)∥, ∥v−GD(GC (v, z′), z)∥,
and ∥GA(GB(o, z′), z) − GC (GD(GA(GB(o, z′), z), z), z′)∥.

Loss functions. The same loss function is used for generators
GA and GB as they perform the same task [38], which is defined
as

L(U,O)G = λU∥u − GB(GA(u, z), z′)∥
+ λO∥o − GA(GB(o, z′), z)∥

′

(4)

− DA(GA(u, z)) − DB(GB(o, z )),
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here λU and λO are two constant parameters, which are typi-
ally set to the values within [100, 1000] [38].
Analogously, the loss function for both generators GC and GD

s defined as follows

(V ,O)G = λV∥v − GD(GC (v, z′), z)∥
+ λO∥GA(GB(o, z′), z) − GC (GD(GA(GB(o, z′), z), z), z′)∥
− DD(GD(GA(GB(o, z′), z), z)) − DC (GC (v, z′)),

(5)

where λV is a constant parameter which can be set typically to
the values within [100, 1000].

The loss functions of DA, DB, DC and DD advocated by Wasser-
stein GAN (WGAN) [38] can be described by

LD
A = DA(GA(u, z)) − DA(o), (6)

LD
B = DB(GB(o, z′)) − DB(u), (7)

LD
C = DC (GC (v, z′)) − DC (GA(GB(o, z′), z)), (8)

LD
D = DD(GD(GA(GB(o, z′), z), z)) − DD(v), (9)

where DA(·), DB(·), DC (·) and DD(·) are defined similarly as in (2)
and (3).

With adversarial training of the proposed Dual-DualGAN, we
find the mapping between the EEG signals u ∈ U and the transi-
tion signals o ∈ O, and the mapping between the speech signals
v ∈ V and the transition signals o ∈ O. Thus, the transition signals
o ∈ O can be considered as shared labels for the EEG signals u ∈ U
and the speech signals v ∈ V without corresponding features,
which facilitates the one-to-one translation from EEG to speech.

5.2. Testing

As shown in Fig. 4(b), with adversarial training of the proposed
Dual-DualGAN, we can obtain the trained parameters of the Dual-
DualGAN. The EEG signals u ∈ U as the inputs can be translated
to the speech signals v ∈ V by using the trained parameters
of the Dual-DualGAN, which realize one-to-one EEG-to-speech
translation.
5.3. Network configuration

Fig. 4(a) includes three domains: the domain U with the
EEG signals u, the domain V with the speech signals v, and
the transition domain O with the transition signals o. By insert-
ing the transition domain O with the transition signals o, the
cross-domain EEG-to-speech translation can be realized.

The transition signals o are obtained by cascading the cor-
responding EEG and speech signals in a certain proportion. As
illustrated in Fig. 5, the EEG and speech signals are cascaded
in different proportions from 1:4 to 4:1 with the step of 1

5 . For
ow values of the proportion 1:4 and 2:3, the accuracy rates are
elatively low (at around 0.63 and 0.82, respectively). When the
alues of the proportion are higher than 1:1, the accuracy can be
ncreased to above 0.88, with the highest value 0.95 achieved for
he proportion of 3:2. Thus, we choose the proportion of 3:2 to
ascade the EEG and speech signals in this paper.
The proposed network is summarized in Algorithm 1.

. Data collection and preprocessing

.1. Participants and speech datasets

Participants for data collection in the study were students and
cademic staff from Taiyuan University of Science and Technol-
gy, all in good health, including 24 male and 26 female, aged
etween 20 and 40. All participants washed their hair before the
xperiment to ensure their scalps were clean. In addition, they
6

were not allowed to wear any jewelry. In the experiments, the
participants were asked to place their forearms and hands in
a place where they feel comfortable without movements, and
to relax as much as possible in order to reduce facial muscle
movements and eye blinking.

Algorithm 1 Dual-DualGAN

Input: EEG signals u ∈ U , speech signals v ∈ V , transition signals
o ∈ O, the number of critic iterations per generator iteration N ,
λU , λU , λO, an initial learning rate, and batch size M , which are
depicted in Section 5.
utput: One-to-one EEG-to-speech translation of u ∈ U to v ∈ V .
1. Loss function of generators GA and GB in DualGAN 1.
L(U,O)G = λU∥u − GB(GA(u, z), z′)∥
+λO∥o − GA(GB(o, z′), z)∥
−DA(GA(u, z)) − DB(GB(o, z′)),
where λU and λO are defined as in (4).
2. Loss function of generators GC and GD in DualGAN 2.
L(V ,O)G = λV∥v − GD(GC (v, z′), z)∥
+λO∥GA(GB(o, z′), z)
−GC (GD(GA(GB(o, z′), z), z), z′)∥
−DD(GD(GA(GB(o, z′), z), z)) − DC (GC (v, z′)),
where λV is defined as in (5).
3. Loss function of discriminators DA, DB, DC and DD.
LD

A = DA(GA(u, z)) − DA(o),
LD

B = DB(GB(o, z′)) − DB(u),
LD

C = DC (GC (v, z′)) − DC (GA(GB(o, z′), z)),
LD

D = DD(GD(GA(GB(o, z′), z), z)) − DD(v),
where DA(·), DB(·), DC (·) and DD(·) are defined similarly as in (2)
and (3).
With adversarial training of the proposed Dual-DualGAN, the
Dual-DualGAN learns the mapping between u ∈ U and v ∈ V .

The non-invasive EEG signals measuring human neural activity
were collected as the participants listen to continuous speech
audio with a dedicated earphone. The speech signals were taken
from the TIMIT2 dataset which contains 6300 sentences, spoken
by 630 speakers (438 male and 192 female, sampled at 16 kHz).
We consider the sentences of the above dataset for training and
testing.

6.2. Experimental paradigm with supervision

To improve the efficiency of auditory speech stimuli, an ex-
perimental paradigm with supervision based on the traditional
experimental paradigm is proposed by considering participant’s
attention detected with a threshold, as illustrated in Fig. 6(a). The
temporal events in each experiment for data capture are shown
in Fig. 6(b).

To ensure the quality of the EEG signals recorded, we design
a device for measuring the attention of participants in response
to the stimuli played using the TGAM (ThinkGearTM Asic Mod-
ule) produced by NeuroSky (see Fig. 7). We start recording the
EEG signal only when the attention is higher than a pre-defined
threshold. The attention P can be described as follows based on
the eSenseTM algorithm.

P =
lβ + mβ

θ
, (10)

here mβ is middle beta waves (frequency 16–20 Hz), lβ is
ow beta waves (frequency 12–15 Hz), and θ is theta waves

2 https://catalog.ldc.upenn.edu/docs/LDC93S1/TIMIT.html.

https://catalog.ldc.upenn.edu/docs/LDC93S1/TIMIT.html
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Fig. 6. Design of the experimental paradigm for EEG data collection, (a)
experimental paradigm with supervision, and (b) temporal events in each
experiment.

Fig. 7. Device for detecting participants’ attention.

frequency 4–7 Hz). The attention with a value greater than a pre-
efined threshold e.g. P > 60 indicates that the participants are

concentrating on the auditory stimuli, and the EEG signals can be
recorded from this moment.

In Fig. 6, at the beginning of an experiment, the experimenter
1 plays a beep to remind the participant concentrating on the
experiment, and observes the participant’s attention P for 3 s.
or P ≤ 60, the experimenter 1 repeats the above procedure. For

P > 60, the experimenter 1 starts to play a continuous speech
file and reminds the experimenter 2 recording the EEG signals,
and each speech file is repeated at least five times. At the end of
the experiment, the experimenter 1 plays a beep to remind the
experimenter 2 stopping the recording, and the participants can
open their eyes, blink and relax. After relaxing for 30 s, they can
start the next experiment.

6.3. Data collection and EEG datasets

In the experiments, a data collection platform is set up for
the non-invasive EEG neural recordings. The EEG signals are
7

Fig. 8. Data collection platform for EEG signals.

Fig. 9. Placement of twenty-four EEG electrodes, and four of which are selected
according to the temporal lobe and highlighted with red boxes.

Table 1
The parameters of NCERP.
Parameter Value

Calibration voltage 100 µV, error ≤ ±5%
Sensitivity 5 µV/cm, error ≤ ±5%
Time constants 0.1 s, 0.2 s, 0.3 s, and error ≤ ±10%
Noise level <0.3 µV (RMS)
Rejection ratio ≥110 dB
Amplitude frequency 1 Hz∼60 Hz,
characteristic and error +3% ∼−15%
Polarization ±300 mV DC polarization voltage,
resistance voltage sensitive change ±5%
Input impedance ≥10 M�

recorded from 24 electrodes placed around the scalp according to
international 10–20 system by using Electroencephalogram and
evoked potentiometer NCERP produced by Shanghai Nuocheng
Electric Co., Ltd (NCC). By connecting the electrode cap to the
physiological amplifier, analog EEG signals are collected and am-
plified. By using the optical fibers for transmitting the data to the
EEG master control box, the amplified EEG signals are digitized
at about 8 kHz and 32 bit, filtered with the cut off frequencies
of 1 Hz and 50 Hz, the channels with visible artifact or excessive
noise are removed, and then transmitted to the computer by USB
interface. The platform for the collection of EEG signals is shown
in Fig. 8, and the parameters of NCERP are listed in Table 1.

We choose four-channel EEG signals according to the EEG
electrode position of the temporal lobe (see Fig. 9 with red boxes).
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he selected EEG signals are normalized and transformed into
multi-dimensional matrix to build a new EEG dataset for the
articipants with good attention, which will be the input of the
roposed Dual-DualGAN.

. Experimental setup

.1. Setup for the proposed method

In our Dual-DualGAN, the generators are the U-shaped net as
n [46] configured with equal number of down-sampling (pool-
ng) and up-sampling layers. The down-sampling (pooling) layers
re constructed by eight convolution layers with the kernel of (3,
), each neuron with a LeakyReLU activation function, the step
f convolution is 1, and the step of pooling is 2. The up-sampling
ayers are constructed by eight deconvolution layers with the ker-
el of (3, 3), each neuron with a LeakyReLU activation function,
nd the step of convolution is 1. The skip connections between
irrored down-sampling and up-sampling layers are used to
nable the low-level information to be shared between the input
nd output and to avoid loss of information. The discriminators
re the Markovian Patch-GAN as in [47], which are constructed
y five convolution layers with the kernel of (3, 3), and has no
onstraints over the size of the input signal. The number of critic
terations per generator iteration N can be set to 5, λU , λU and λO
re all set to 500, an initial learning rate is set at 0.0002, and the
atch size M is assigned with 1.

.2. Baseline methods

We compare several versions of our Dual-DualGAN algorithm:
1 (removing two convolution layers of the generative net-
ork), M2 (increasing two convolution layers of the generative
etwork), M3 (removing two convolution layers of the discrim-
native network), M4 (increasing two convolution layers of the
iscriminative network), M5 (setting the step of convolution to
), M6 (setting the convolution layers with the kernel of (5, 5)),
7 (changing activation function to ReLU), Dual-DualGAN (full
ersion of our Dual-DualGAN algorithm) with the state-of-the-art
lgorithms: Deep Neural Network (DNN)-based encoder–decoder
lgorithm3 [16], bidirectional Long and Short Term Memory Net-
ork (bLSTM)-based encoder–decoder algorithm4 [17], Recurrent
eural Network (RNN)-based encoder–decoder algorithm [34],
nd DualGAN5 [38].
All the algorithms are trained from scratch by using cross

validation, by randomly picking 80% data of the EEG dataset for
training, the remaining 20% data for testing. The facilities used to
perform the experiments include Intel I9-10900X 13.7 GHz CPU,
2*NVIDIA RTX 8000 Graphics Card and 6 ∗ 32 GB memory.

.3. Performance metrics

For performance evaluation, we use the accuracy rate [48],
earson correlation coefficient (PCC) [49] and Mel-cepstral dis-
ortion (MCD) [50] as the performance metrics.

The accuracy metric is defined as the proportion of correct
redictions among the total number of cases examined.

Accuracy =
T

T + F
, (11)

here T means the correct predictions and F means the false
redictions.

3 http://naplab.ee.columbia.edu/naplib.html.
4 https://doi.org/10.1038/s41586-019-1119-1.
5 https://github.com/duxingren14/DualGAN.
8

Table 2
The performance and time complexity of the Dual-DualGAN as compared with
state-of-the-art algorithms.
Algorithm Accuracy rate PCC MCD

(%) (dB)

Encoder–decoder framework
DNN 74.87 0.771 4.154
bLSTM 70.04 0.729 4.437
RNN 71.10 0.747 4.352

DualGAN 56.82 0.624 5.015

M1 74.24 0.792 3.947
M2 77.92 0.829 3.808
M3 73.86 0.788 3.971
M4 78.18 0.834 3.798
M5 77.03 0.821 3.815
M6 77.48 0.828 3.811
M7 75.83 0.796 3.941
Dual-DualGAN 78.53 0.838 3.793

The PCC is a measure of linear correlation between the original
and the synthesized speech signal, defined as

PCC =
cov(vv′)
σvσv′

, (12)

where cov(vv′) is the covariance of the original speech signal
v and the synthesized speech signal v′, and σv and σv′ are the
standard deviation of v and v′, respectively.

The metric MCD(k) evaluates objective speech quality, defined
as

MCD(k) =
10

ln 10
1
T

T−1∑
i=0

√ K∑
k=1

(mc(i, k) − mc ′(i, k))2, (13)

where mc(i, k) and mc ′(i, k) are the ith mel-cepstral coefficient of
the kth frame of the original and the synthesized speech signal,
respectively.

8. Results

In this section, we carry out experiments to demonstrate the
performance of the proposed Dual-DualGAN, and how the algo-
rithm is affected for solving the ET-CAS problem.

To evaluate the performance of our Dual-DualGAN, we con-
duct three listening tasks that involve word-level, short-sentence-
level (no more than six words) and long-sentence-level (more
than six words) transcription, respectively. The word-level speech
signals are separated from the sentence-level speech signals.

In Table 2, we compare several versions of our Dual-DualGAN
algorithm with the state-of-the-art algorithms. The results show
that the proposed Dual-DualGAN has better performance in av-
erage accuracy rate, PCC and MCD than the RNN-based, bLSTM-
based, DNN-based encoder–decoder algorithms, and DualGAN.
The accuracy rates and PCCs of the RNN-based, bLSTM-based,
DNN-based encoder–decoder algorithms, and DualGAN are less
than 74.9% and 0.78, and the MCDs of the RNN-based, bLSTM-
based, DNN-based encoder–decoder algorithms, and DualGAN are
more than 4.1 dB.

Fig. 10 shows the spectrograms of the speech signals from the
original word, short sentence and long sentence, respectively, and
those decoded from human neural activity. All the synthesized
spectrograms retain salient energy patterns that are present in
the original spectrograms.

As listed in Table 3, we found that for word-level translation, if
the mapping is correct, the accuracy can reach 100%. For the short
and long sentences, which are composed of several words and are
relatively complex, there is a decrease in the translation accuracy
due to the incorrect mapping of some words. Therefore, for some

http://naplab.ee.columbia.edu/naplib.html
https://doi.org/10.1038/s41586-019-1119-1
https://github.com/duxingren14/DualGAN


Y. Guo, T. Liu, X. Zhang et al. Knowledge-Based Systems 277 (2023) 110837

s
a
o
s
v
b
s
s
r
p

C
d

t
c

n
s
w
b
c
s
m

g
s
c
a
t
r

Fig. 10. Spectrograms of the synthesized speech and the original speech signals,
(a) the original spectrogram of the speech signal for a word, (b) the synthesized
spectrogram of the speech signal for a word, (c) the original spectrogram of
the speech signal for a short sentence, (d) the synthesized spectrogram of the
speech signal for a short sentence, (e) the original spectrogram of the speech
signal for a long sentence, and (f) the synthesized spectrogram of the speech
signal for a long sentence.

Table 3
Listener transcriptions of neurally synthesized speech for different words and
sentences.
Type Accuracy Original words or sentences and

rate transcriptions of synthesized speech

Word 100% O: weekend
T: weekend

Short sentence
80% O: I love you so much.

T: I laugh you so much.

60% O: Eat more fish, less meat.
T: Beat more fish, less meet.

Long sentence

75%

O: A good beginning makes for a
good ending.
T: A good beginning made for a
great ending.

60%

O: What makes the desert beautiful
is that somewhere it hides a well.
T: What made the desert beautiful
was that flower it his a dog.

sentences, the accuracy drops to less than 80%, as their similarity
to the original sentences has reduced. However, the synthesized
spectrograms for the short and long sentences retain most of the
salient energy patterns of the original spectrograms.

In Fig. 11(a), we compare the average accuracy rates of the
ynthesized speech signals for word-level, short-sentence-level
nd long-sentence-level transcription. The average accuracy rate
f the word-level transcription is higher than those of the short-
entence-level and long-sentence-level transcription, and all the
alues of the accuracy rate are around 78.5%. The average PCCs
etween the synthesized speech signals and the original speech
ignals are shown in Fig. 11(b). The PCCs of the word-level,
hort-sentence-level and long-sentence-level transcription are
elatively high and the values are above 0.83. We also com-
are the average MCD of the synthesized speech signals (see
9

Fig. 11(c)). The MCDs of the synthesized speech signals for word-
level, short-sentence-level and long-sentence-level transcription
are relatively small, and the values of MCDs are about 3.9. This
demonstrates the efficiency of the proposed Dual-DualGAN in
decoding speech from human neural activity.

The gender effects are considered on listener transcriptions
of the neurally synthesized speech. The data of 20 male and 20
female are randomly selected from the EEG datasets. The average
accuracy rates of the synthesized speech signals for the word-
level, short-sentence-level and long-sentence-level transcription
by gender are illustrated in Fig. 12. The average accuracy rates
of male for word-level, short-sentence-level and long-sentence-
level transcription are 78.5%, 78.3%, and 77.9%, and the average
accuracy rates of female are 79.1%, 78.9%, and 78.6%. It shows
the efficiency and adaptability of the proposed Dual-DualGAN,
regardless of gender.

The age effects are also considered on listener transcriptions
of the neurally synthesized speech. The data of four age groups
(20–25, 25–30, 30–35, and 35–40 years old) of the participants
are randomly picked from the EEG datasets. The average accuracy
rates of the synthesized speech signals for word-level, short-
sentence-level and long-sentence-level transcription for these age
groups are illustrated in Fig. 13. The average accuracy rates for
word-level, short-sentence-level and long-sentence-level tran-
scription of the participants in age between 25 to 30 and 30 to
35 years old are mostly above 78.5%. The average accuracy rates
of the participants in age between 20 to 25 and 35 to 40 years
old are slightly low, and the values are about 78%. The results
demonstrate the proposed Dual-DualGAN can translate an EEG to
a speech signal with a good generalization ability for different age
groups.

9. Conclusion

We have presented a new method for the problem of end-to-
end translation from human neural activity to speech (ET-CAS).
Our contributions to this challenging problem are as follows:

Model. We have formulated an end-to-end model for the ET-
AS problem, i.e. translating human neural activity to speech
irectly.
Datasets. We developed a new EEG dataset where the at-

ention of the participants is detected and used to guide the
ollection of the EEG signals in each experiment.
Network. We proposed a dual–dual generative adversarial

etwork (Dual-DualGAN) to address the ET-CAS problem. In this
ystem, two DualGANs are created and trained simultaneously,
here a transition domain is introduced into the DualGAN to
ridge the two DualGANs. The EEG and speech signals are cas-
aded proportionally to generate the transition signals i.e. con-
tructing shared labels for EEG and speech signals without
apping their features.
Numerical experiments show that the proposed ET-CAS al-

orithm performs well in translating human neural activity to
peech. In the future, it is interesting to investigate how to in-
orporate acoustic and emotional features into the ET-CAS model
nd algorithm, which may improve the performance of the sys-
em in decoding speech signals that consist of sentences with
epetitive words.
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Fig. 11. Performance evaluations of the neurally synthesized speech for the word-level, short-sentence-level and long-sentence-level transcription, (a) average accuracy
rate of the synthesized speech signals, (b) average PCC between the synthesized speech signals and the original speech signals, and (c) average MCD of the synthesized
speech signals in comparison with the original speech signals.
Fig. 12. Average accuracy rates of the synthesized speech signals for word-level,
short-sentence-level and long-sentence-level transcription by gender.

Fig. 13. Average accuracy rates of the synthesized speech signals for word-level,
short-sentence-level and long-sentence-level transcription by age.
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