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Abstract. Blind speech deconvolution aims to estimate both the origi-
nal speech source and the impulse response of the acoustic channel from
the convolutive signal observed by an acoustic sensor. It is an ill-posed
and underdetermined problem, since the number of unknown variables
is greater than the number of observations. To address this problem,
prior information or extra assumption is required to limit the range of
possible solutions. In this paper, we consider a sparse acoustic system,
where the impulse response of the acoustic channel from the source to
the sensor is assumed to be sparse. The blind deconvolution problem
is then addressed as an optimisation problem where the cost function
to be optimised is defined as a combination of a data fidelity term and
a regularisation term. The data fidelity term is used to control the fit-
ting error between the observed signal and the signal reconstructed from
the estimated acoustic channel and the estimated speech source. The
regularisation term is formed as the L1-norm constraint of the acoustic
impulse response which enforces the sparsity of the acoustic channel. The
cost function is optimised with a two-stage alternating process iterating
between the stage of estimating the acoustic channel with an L1-norm
constrained least squares method and the stage of estimating the speech
source with a least squares based optimisation method. The performance
of the proposed algorithm is demonstrated with an application example
of blind dereverberation of early reverberant speech.
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1 Introduction

Blind deconvolution aims to estimate the unknown source signal and unknown
channel given only the information about their convolution. It is an ill-posed
problem [1], which often requires prior information, such as sparsity of the signals
[2] [6] in order to limit the possible solution set.

In our recent work, we have focused on the blind deconvolution for the single-
input and single-output (SISO) acoustic system, where both the speech signal
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and room impulse response (RIR) are estimated from the reverberant speech.
In order to solve the problem, we take into account of the prior informations
provided by the RIR of an acoustic system. In some scenarios, RIR may be
considered as sparse when the acoustic system has a relatively low reflection level,
which is our focus here. By exploiting the sparsity of RIR, a blind deconvolution
method is proposed by imposing L1-norm constraint on the RIR of the sparse
acoustic system. An alternating minimisation method is proposed to solve the
blind deconvolution problem, with two steps: x − step and h − step, where the
speech signal x and RIR h are estimated in an alternating manner.

2 Proposed Blind Deconvolution Method

2.1 Problem Formulation

The observation y ∈ R
N+L−1 is the reverberant speech obtained by convolving

the source speech signal x ∈ R
N with RIR h ∈ R

L as

y = x ∗ h, (1)

where * denotes the convolution operation. Here y is given as input for the esti-
mation of unknown h and x. However, we usually need some prior information
to reduce the solution space for this blind deconvolution problem.

In this work, we assume h is sparse, and impose a sparse constraint on h.
Hence our proposed blind deconvolution model is formulated as follows

F (x,h) = ‖x ∗ h− y‖22 + λ‖h‖1 + r(x) (2)

where the L2-norm is the data fidelity term, the regularisation r(x) is an indica-
tor function accounts for the dynamic range of x, and λ is the penalty parameter
of the L1-norm based sparse constraint.

In matrix form, the proposed model can be reformulated as

F (x,h) = ‖y −Xh‖22 + λ‖h‖1 + r(x)

= ‖y −Hx‖22 + λ‖h‖1 + r(x) (3)

where X ∈ R
(N+L−1)×L and H ∈ R

(N+L−1)×N are the linear convolution ma-
trices constructed from x and h respectively.

2.2 Proposed Method

An alternating minimisation method is proposed to optimise (3), which includes
two steps: h − step and x − step, where h and x are estimated iteratively, by
fixing one, and updating the other.
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Fig. 1: Results illustration of the proposed method for blind dereverberation.

h− step In this step, we suppose x is known, h can be updated by optimising
the following problem

h(k+1) = argmin
h

‖y −X(k)h‖22 + λ‖h‖1 (4)

Here we use the CVX toolbox [5] to update h at each iteration, once we
obtain h(k+1), the convolution matrix H(k+1) can then be constructed, and
used to update x at this iteration.

x − step In this step, x can be updated by minimising the following function

x(k+1) = argmin
x

‖y −H(k+1)x‖22 + r(x), (5)

where a variable metric forward-backward method [3, 4] is applied to optimise
Equation (5).

3 Experiments and Results

In this section, we carry out an experiment to illustrate the performance of our
proposed method for blind deconvolution of the acoustic system. The observation
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y is the convolution of source speech signal x and RIR h, where h is generated
by room image model, we selected the early reflections and remove the late
reverberations of the generated RIR. The length x is 500 samples, and the length
of h is 600 samples. Here x is initialised with the source signal added with 0 dB
white Gaussian noise.

As can be seen from Figure 1, the proposed method can converge at a small
number of iterations, and the estimated signal is similar to the original signal.
The estimated RIR resembles most impulses of the original RIR. Our future work
will consider the modelling of both the early reflections and late reverberations
of RIR.

4 Conclusion

In this paper, we proposed a blind deconvolution method for sparse acoustic
system, where the sparsity of RIR is used as the additional prior information.
Experiment shows that our method can recover both the signal and RIR.
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