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a b s t r a c t 

Dictionary learning has been extensively studied in sparse representations. However, existing dictionary 

learning algorithms are developed mainly for standard matrices (i.e. matrices with scalar elements), and 

little attention has been paid to polynomial matrices, despite their wide use for describing convolutive 

signals or for modeling acoustic channels in room and underwater acoustics. In this paper, we propose a 

polynomial dictionary learning technique to deal with signals with time delays. We present two types of 

polynomial dictionary learning methods based on the fact that a polynomial matrix can be represented 

either as a polynomial of matrices (i.e. the coefficient in the polynomial corresponding to each time lag 

is a scalar matrix) or equally as a matrix of polynomial elements (i.e. each element of the matrix is a 

polynomial). The first method allows one to extend any state-of-the-art dictionary learning method to 

the polynomial case; and the second method allows one to directly process the polynomial matrix with- 

out having to access its coefficient matrices. A sparse coding method is also presented for reconstructing 

convolutive signals based on a polynomial dictionary. Simulations are provided to demonstrate the per- 

formance of the proposed algorithms, e.g. for polynomial signal reconstruction from noisy measurements. 

© 2017 Published by Elsevier B.V. 
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1. Introduction 

Dictionary learning has been widely used in many applications,

such as signal denoising [1,2] , source separation [3–6] , and im-

age super-resolution [7] . Several algorithms have been proposed

for this problem, such as method of optimal directions (MOD) [8] ,

K-SVD [9] , and simultaneous codeword optimization (SimCO) [10] ,

often with a two-stage process alternating between sparse cod-

ing and dictionary update. The sparse coding step aims to find the

sparse coefficient matrix of a signal for a given dictionary using al-

gorithms, such as matching pursuit (MP) [11] , the least absolute

shrinkage and selection operator (LASSO) [12] , focal underdeter-

mined system solver (FOCUSS) [13] , orthogonal least squares (OLS)

[14–16] , and orthogonal matching pursuit (OMP) [17–28] . The dic-

tionary update step aims to revise the dictionary at the current it-
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ration to better fit the training signals with the sparse coefficient

atrix obtained from the previous iteration. 

Although the conventional dictionary learning methods have

een studied extensively, they cannot be applied directly to deal

ith signals with time delays, such as acoustic impulse responses,

nd reverberant (convolutive) signals. Such signals are often de-

cribed with polynomials or polynomial matrices, and encountered

idely in digital signal processing and communications [29] , e.g.

or convolutive mixing [30] and multiple-input multiple-output

MIMO) channel modeling [31] . For example, an element of a poly-

omial matrix can be used to denote a finite impulse response

FIR) filter, e.g. in a MIMO system [31,32] . 

In this paper, we present a polynomial dictionary learning tech-

ique to deal with signals with time delays, where two types of

olynomial dictionary learning methods are proposed based on

ow a polynomial matrix is represented. A polynomial matrix can

e expressed in terms of the polynomial of matrices model or the

atrix of polynomials model [30,33] . The first method is proposed

ased on the polynomial of matrices model, for which the poly-

omial dictionary learning problem can be converted to a conven-

ional dictionary learning problem by concatenating the coefficient

atrices of the polynomial matrix [34] . This allows the conven-
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ional dictionary learning methods (e.g. K-SVD, MOD, and SimCO)

o be used to solve the polynomial dictionary learning problem.

ven though this method can be used in dictionary learning for

ignals with time delays, it cannot be applied directly to the poly-

omial matrix (i.e. a matrix of polynomial elements). The sec-

nd method, on the other hand, is proposed based on the matrix

f polynomials model, where an idea similar to the conventional

OD algorithm is applied to the polynomial case. It has an advan-

age where dictionary learning can be directly performed on the

olynomial matrices without having to first resort to their coeffi-

ient matrices as in the polynomial of matrices model. In addition,

e present a polynomial OMP method by extending the conven-

ional OMP to the polynomial case as a byproduct to calculate the

epresentation coefficients for signal reconstruction. 

The proposed polynomial dictionary learning technique can be

sed for modeling acoustic impulse responses, thereby having po-

ential applications in e.g. denoising, dereverberation, deconvolu-

ion, and channel shortening of acoustic impulse responses. Each

lement of the polynomial matrix can be seen as an FIR filter, and

he atoms in the learned dictionary also represent FIR filters. As

 result, the polynomial dictionary, which is learned from a set

f acoustic impulse responses, can provide an overall description

f the acoustic environment. In this paper, we demonstrate the

erformance of the proposed polynomial dictionary learning algo-

ithms for acoustic impulse response modeling and denoising. 

The remainder of the paper is organized as follows:

ection 2 briefly introduces the background of conventional

ictionary learning and polynomial matrices; Section 3 presents

he proposed polynomial dictionary learning methods in detail;

ection 4 evaluates the performance of the proposed algorithms,

sing simulations and experiments on acoustic impulse response

odeling and denoising; and Section 5 concludes the paper and

iscusses potential future work. 

. Background 

.1. Dictionary learning 

Dictionary learning aims to learn a dictionary with a set of

raining signals, so that each training signal can be represented by

 small number of atoms chosen from the dictionary. Typically, this

an be modeled as 

 = DX , (1) 

here Y ∈ R 

n ×N is the set of training signals { y i } N i =1 
, D ∈

 

n ×K ( n � K ) is the overcomplete dictionary containing K atoms

 d j } K j=1 
∈ R 

n , and X ∈ R 

K×N is the sparse representation matrix. 

To find the dictionary, the following optimization problem is of-

en considered 

min 

D , X 
‖ Y − DX ‖ 

2 
F 

subject to ∀ i, ‖ x i ‖ 0 ≤ κ, 

(2) 

here x i is the i th column of the matrix X , ‖ . ‖ 0 denotes the num-

er of nonzero entries in the argument, and κ controls the spar-

ity level, i.e. the maximum number of the nonzero entries in

ach column. The Frobenius norm (F-norm) is defined as ‖ M ‖ F =
 ∑ 

i 

∑ 

j 

M 

2 
i j 
, where M ij is the ( i, j )th element of M . 

The above optimization problem is usually solved using a two-

tep iterative process, alternating between sparse coding and dic-

ionary update. In the sparse coding step, given the observation

atrix Y and the dictionary matrix D, X is estimated, subject to

he constraint that each column of X is sparse (in the level of κ).

n the dictionary update step, the dictionary matrix D is calculated

ased on the set of training signals { y i } N i =1 
within Y , and the sparse
oefficient matrix X obtained in the previous step. This process is

terated until a pre-defined stopping criterion is met. Examples of

uch algorithms include MOD [8] , K-SVD [9] , and SimCO [10] . These

lgorithms, however, are designed only for scalar dictionary matri-

es. They are not directly applicable to polynomial matrices that

re widely used for representing signals with time lags, such as

coustic impulse response or convolutive signals, as discussed next.

.2. Polynomial matrices 

Polynomial matrices have been widely used for describing

ransfer functions in MIMO systems [35] , e.g. the collection of

ultiple-path channel impulse responses from the sources to the

ensors. In an acoustic system, the polynomial matrix can be used

o model the acoustic impulse responses, with each element of the

olynomial matrix representing an FIR filter, which can be a seg-

ent of the impulse responses with relative short time lags. 

A polynomial matrix can be represented using either a polyno-

ial of matrices model (a polynomial whose coefficients are ma-

rices), or a matrix of polynomials model (i.e. a matrix whose el-

ments are polynomials). More specifically, for a p × q polynomial

atrix A ( z ), we have 

 (z) = 

L −1 ∑ 

� =0 

A (� ) z −� 

= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

a 11 (z) a 12 (z) · · · a 1 q (z) 

a 21 (z) 
. . . 

. . . 
. . . 

. . . 
. . . 

a p1 (z) · · · · · · a pq (z) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, 

(3) 

here A (� ) ∈ C 

p×q is the coefficient matrix of z −� , which denotes

he impulse response at time lag � , and L is the maximum time

ag of each polynomial. Note that, L is set to be a positive integer

ere, however, the model can be easily extended for a negative L .

n this paper, the polynomial matrix, e.g., A ( z ), is denoted in italic

ont to avoid confusion with its coefficient matrix, e.g., A ( � ), which

e denote in normal font. We can see from (3) that A ( z ) can be

xpressed as a sum of terms with weights z −� and coefficient ma-

rices A ( � ), � = 0 , . . . , L − 1 , or alternatively expressed as a matrix

hose elements are polynomials. The ( i, j )th element of A ( z ), a ij ( z ),

an be expressed as 

 i j (z) = 

L −1 ∑ 

� =0 

a i j (� ) z 
−� , (4)

here the coefficient a ij ( � ) can be seen as the magnitude of the

 i, j )th impulse response at time lag � . The F-norm of A ( z ) can be

efined as follows 

 A (z) ‖ F = 

√ √ √ √ 

p ∑ 

i =1 

q ∑ 

j=1 

L −1 ∑ 

� =0 

| a i j (� ) | 2 . (5) 

Note that, setting the filters in (3) to be the same length is

ainly for the convenience of modeling and algorithmic imple-

entation. In practice, for the FIR filters a ij ( z ) that have different

engths, one can set all the elements a ij ( z ) to be the same length

ith zero padding, i.e. setting the coefficients of the high-order

aps of the shorter filters to be zeros. 

There are several algorithms that have already been proposed

or polynomial matrix decomposition, such as polynomial eigen-

alue decomposition [35,36] and polynomial singular value decom-

osition [30,32,37] . However, no algorithms have yet been pre-

ented for polynomial matrix decomposition in a sparse represen-

ation context, which is our focus in this paper, as discussed next. 
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3. Polynomial dictionary learning 

3.1. Proposed model 

Based on the conventional dictionary learning model (1) , we

propose a polynomial dictionary learning model [34] as follows 

 (z) = D (z) X , (6)

where the polynomial matrix Y (z) ∈ R 

n ×N contains the signals

(e.g. acoustic impulse responses) to be represented, D (z) ∈ R 

n ×K 

is the polynomial dictionary matrix with polynomial atoms, and

X ∈ R 

K×N is the sparse representation coefficient matrix of Y ( z ). 

Similar to conventional dictionary learning, the aim here is to

find a suitable polynomial dictionary D ( z ) for sparse representation

of the “signals” denoted as polynomials Y ( z ), such as 

min 

D (z) , X 
‖ Y (z) − D (z) X ‖ 

2 
F 

subject to ∀ i , ‖ x i ‖ 0 ≤ κ, 

(7)

3.2. Polynomial dictionary learning based on the polynomial of 

matrices model 

In this section, we present a polynomial dictionary learning al-

gorithm based on the optimization of (7) and using the polynomial

of matrices model. To this end, as in our preliminary work [34] ,

we can convert the polynomial model (6) to a conventional dictio-

nary learning model [34] . As a result, any state-of-the-art dictio-

nary learning methods could be used to address the optimization

problem in (7) . 

According to equation (3), (6) can be rewritten as 

L −1 ∑ 

� =0 

Y (� ) z −� = 

L −1 ∑ 

� =0 

D (� ) z −� X , (8)

where Y (� ) ∈ R 

n ×N and D (� ) ∈ R 

n ×K are the coefficient matrices

of the polynomial matrices Y ( z ) and D ( z ) at lag � , respectively.

Y ( � ) can be seen as the impulse responses at lag � . For any � ∈
{ 0 , . . . , L − 1 } , Y ( � ) takes the same linear combination of the atoms

in its corresponding D ( � ), and X is the sparse representation matrix

for all these D ( � )s, i.e. 

Y (� ) = D (� ) X , (9)

which means the coefficient matrices of Y ( z ) at all the time lags

can be represented as the linear combination of the coefficient ma-

trices of D ( z ) at their corresponding lags � with the same sparse

representation matrix X . Therefore, (6) can be further rewritten as

Y = D X , (10)

where Y ∈ R 

nL ×N and D ∈ R 

nL ×K are defined by concatenating the

coefficient matrices of Y ( z ) and D ( z ) at all the time lags, respec-

tively, as 

Y = [ Y (0) ; . . . ; Y (� ) ; . . . ; Y (L − 1) ] , (11)

D = [ D (0) ; . . . ; D (� ) ; . . . ; D (L − 1) ] . (12)

As a result, the polynomial dictionary learning model (6) is

converted to the conventional dictionary learning model (10) .

Therefore, the polynomial dictionary learning optimization prob-

lem (7) can be rewritten as 

min 

D , X 
‖ Y − D X ‖ 

2 
F 

subject to ∀ i , ‖ x i ‖ 0 ≤ κ, 

(13)

where the new dictionary D is overcomplete, and it can be learned

by many state-of-the-art dictionary learning methods. Usually, an
lternating optimization strategy is employed to solve (13) , by it-

ratively updating the dictionary and sparse coefficients. Assum-

ng the dictionary is fixed, the sparse representation matrix X can

e calculated by optimizing the following equation using methods

uch as OMP or FOCUSS [13] 

min 

X 
‖ Y − D X ‖ 

2 
F 

subject to ∀ i , ‖ x i ‖ 0 ≤ κ, 
(14)

In [34] , the K-SVD algorithm is employed to learn the dictio-

ary D . Here, we assume d k is the k th column of D , and x k 
T 

con-

ains its corresponding coefficients from the k th row of X �k 
, and

k is the set of indices indicating which atom d k should be used

or representing Y . Then d k and x k 
T 

can be updated by optimizing

he following cost 

in 

d k , x 
k 
T 

‖ E k − d k x 

k 
T ‖ 

2 
F , (15)

here E k = Y �k 
− ∑ 

j � = k d j X j, �k 
denotes the error matrix in which

he k th atom is removed, and the optimization of (15) can be

een as a rank-1 matrix approximation problem, so that SVD can

e used for the decomposition of E k to minimize (15) . The ex-

ended K-SVD algorithm for polynomial dictionary learning is given

n Algorithm 1 . 

lgorithm 1 Extended K-SVD. 

nput: Signal matrix Y (z) , sparsity κ , the number of iterations I n 
utput: D and X 

Polynomial Matrix Conversion : 

Convert Y (z) = 

L −1 ∑ 

� =0 

Y (� ) z −� to a scalar matrix Y , using (11). 

Initialization : D 

(0) = Y (: , 1 : K) . 

Iterations : 

for n = 1 , . . . , I n 
Sparse Coding : 

Calculate sparse representations by using conventional OMP

to solve (14). 

Dictionary Update : 

for k = 1 , · · · , K 

Define the set of indices �k by finding the relevant ele-

ments in Y which use atom d k . 

Calculate E k = Y �k 
− ∑ 

j � = k 
d j X j, �k 

. 

Update the dictionary atom and its corresponding sparse

representation coefficient by using the SVD decomposition

to minimize (15), as ( d k , x 
k 
T 
) = SVD (E k ) . 

end for 

end for 

Alternatively, D can also be learned by using other methods

uch as MOD [8] . Assuming X 

( n ) is the sparse representation matrix

btained at the n th iteration, the dictionary can then be obtained

y solving the following optimization problem 

 

(n +1) = argmin 

D 

‖ Y − D X 

(n ) ‖ 

2 
F , (16)

here (16) can be seen as a least-squares problem, therefore the

ictionary can be updated in terms of MOD as 

 

(n +1) = Y X 

(n ) T (X 

(n ) X 

(n ) T ) 
−1 

. (17)

he dictionary D can be obtained when the algorithm converges.

he extended MOD algorithm is summarized in Algorithm 2 . 

Finally, D ( z ) can be obtained from D with a reverse operation of

12) , and Y can be reconstructed using X obtained by applying the

MP algorithm, as 

ˆ 
 = 

[
ˆ Y (0) ; . . . ; ˆ Y (� ) ; . . . ; ˆ Y (L − 1) 

]
, (18)
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Algorithm 2 Extended MOD. 

Input: signal matrix Y (z) , sparsity κ , number of iterations I n 
Output: D and X 

Polynomial Matrix Conversion : 

Convert Y (z) = 

L −1 ∑ 

� =0 

Y (� ) z −� to scalar matrix Y , using (11). 

Initialization : D 

(0) = Y (: , 1 : K) . 

Iterations : 

for n = 1 , . . . , I n 
Sparse Coding : 

Calculate sparse representations by using conventional OMP 

to solve (14). 

Polynomial Dictionary Update : 

Update the polynomial dictionary by solving (16), using (17). 

end for 
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here ˆ Y (� ) is the coefficient matrix of the reconstructed polyno-

ial matrix ˆ Y (z) at lag � , where � ∈ { 0 , . . . , L − 1 } . With a reverse

peration to equation (11) , we can obtain the coefficient matrix
ˆ 
 (� ) of the reconstructed polynomial matrix ˆ Y (z) at each time lag

 . Finally, ˆ Y (z) can be obtained by employing (3) and (18) . 

Note that, D can also be learned by using other state-of-the-art

ictionary learning methods based on our proposed model (10) . In

his paper, both K-SVD and MOD are extended to the polynomial

ase, hence they are here named extended K-SVD and extended

OD, respectively. 

.3. Polynomial dictionary learning based on the matrix of 

olynomials model 

In this section, we present another polynomial dictionary learn-

ng method by directly operating on D ( z ) and Y ( z ) based on the

atrix of polynomials model. This (partially) avoids the process for

onverting the polynomial model to a conventional model. 

To demonstrate the concept, we employ the same strategy as

hat in the conventional MOD algorithm. Given X 

( n ) obtained at the

 th iteration, and the “signal” Y ( z ), where X 

( n ) is calculated by us-

ng the same method as in Section 3.2 , then D ( z ) can be updated

y optimizing the following cost function, 

 (z) 
(n +1) = argmin 

D (z) 

‖ Y (z) − D (z) X 

(n ) ‖ 

2 
F . (19) 

imilar to (16), (19) can be solved by extending (17) to the polyno-

ial case, leading to 

 (z) 
(n +1) = Y (z) X 

(n ) T (X 

(n ) X 

(n ) T ) 
−1 

. (20) 

With (20) , the polynomial dictionary is updated directly rather

han operating on the polynomial coefficient matrices as in the

ethods described in Section 3.2 . According to (19) and (20) , the

roposed polynomial MOD (PMOD) algorithm is summarized in

lgorithm 3 . 

lgorithm 3 Polynomial MOD. 

nput: signal matrix Y (z) , sparsity κ , the number of iterations I n 
utput: D (z) and X 

Initialization : D (z) (0) = Y (z)(: , 1 : K) . 

Iterations : 

for n = 1 , . . . , I n 
Sparse Coding : 

Calculate sparse representations by using conventional OMP

to solve (14). 

Polynomial Dictionary Update : 

Update the polynomial dictionary by solving (19), using (20). 

end for 
The dictionary learned by the PMOD algorithm will be com-

ared with the extended MOD in Section 4 . 

.4. Polynomial sparse representation 

In this section, we aim to find the sparse representation X of

olynomial matrix Y ( z ) modeled signals, given the polynomial dic-

ionary D ( z ), based on the polynomial dictionary learning model

6) . Here, D ( z ) can be obtained by using the proposed methods

n Section 3.2 or 3.3 . As a byproduct, we propose a polynomial

parse representation method by extending the OMP algorithm to

he polynomial case. 

Assuming y ( z ) is an arbitrary polynomial “signal” from the set

f polynomial signals Y ( z ), the sparse representation of y ( z ) can be

alculated by optimizing the following cost function 

min 

x 
‖ y(z) − D (z) x ‖ 

2 
F 

subject to ‖ x ‖ 0 ≤ κ. 
(21) 

Similar to the discussions in Sections 3.2 and 3.3 , in order to

ptimize (21) , we can convert the polynomial sparse representa-

ion problem (21) to the conventional sparse coding problem by

oncatenating the coefficient matrices of Y ( z ) and D ( z ) respectively.

herefore, (21) can be converted to 

min 

x 
‖ y − D x ‖ 

2 
2 

subject to ‖ x ‖ 0 ≤ κ, 
(22) 

here y denotes the vector obtained by concatenating all the co-

fficients of y ( z ) at all lags 

 = [ y (0) ; . . . ; y (� ) ; . . . ; y (L − 1) ] . (23) 

any sparse coding algorithms can be used to optimize (22) , such

s the OMP algorithm. The OMP algorithm employs a greedy strat-

gy to calculate the sparse coefficients by iteratively estimating the

-nonzero coefficients to approximate the signal. For each itera-

ion, the residual between the signal and its approximation is up-

ated, where the approximation is calculated by selecting the best-

atched atoms from the dictionary which can maximally reduce

he � 2 -norm residual error between the signal and its approxima-

ion. When the error is reduced to below a specified threshold, the

ptimal sparse representation is obtained. 

However, it is not trivial to find the match between the signal

nd the atoms in the polynomial case, as this involves the simi-

arity measures between two polynomial vectors/matrices. In the

onventional OMP algorithm, the similarity between the atom and

he current residual is measured by their inner product, where the

tom has the maximum inner product with the current residual

eing selected as the best-matched atom. This is not directly ap-

licable for the polynomial case. Here we use the F-norm as the

imilarity measure between the polynomial residual and polyno-

ial atoms, i.e. by calculating their distance using the F-norm. For

ach iteration, we select the polynomial atom (i.e. the column in

he polynomial dictionary), which has the smallest F-norm error

ith the polynomial residual, as the best-matched dictionary atom.

Suppose d k 0 (z) is the k 0 th column of the polynomial dictionary

 ( z ), which is the best-matched polynomial atom at the current

teration j , then d k 0 (z) can be calculated as 

 k 0 (z) = argmin 

d k (z) 

‖ d k (z) − r (z) 
( j−1) ‖ 

2 
F , k = 1 , . . . , K, (24)

here d k ( z ) is the k th column of D ( z ), r (z) ( j−1) 
is the residual r ( z )

t the ( j − 1) th iteration, and r ( z ) is initialized by the signal y ( z ).

he provisional solution x can then be obtained by optimizing the
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following cost 

x 

( j) = argmin 

x 
‖ y(z) − D (z) S ( j) x ‖ 

2 
F 

subject to ‖ x ‖ 0 ≤ κ, 

(25)

where D (z) S ( j) contains the best-matched atoms indexed by the

set S ( j ) . The formulation (25) can be seen as a polynomial least-

squares problem, as the coefficient matrices of y ( z ) at all differ-

ent lags should have the same linear combination of the coefficient

matrices of D (z) S ( j) at their corresponding lags. According to (11) ,

and (12) , we can obtain the solution to (25) as 

x 

( j) = ( D 

T 
S ( j) D S ( j) ) 

−1 
D 

T 
S ( j) y , (26)

where D S ( j) and y are constructed by concatenating the coefficient

matrices of D S ( j) and y ( z ) at all lags, respectively. Then, at the j th

iteration, the residual r ( z ) is updated as 

r ( j) (z) = y(z) − D (z) S ( j) x 

( j) . (27)

The proposed polynomial OMP (POMP) algorithm is given in

Algorithm 4 . 

Algorithm 4 Polynomial OMP. 

Input: signal y(z) , dictionary D (z) , sparsity κ
Output: x opt 

Initialization : residual r(z) (0) = y(z) , solution x = 0 , solution

support S 0 = ∅ , ε = 10 −6 . 

Iteration : 

for j = 1 , . . . , κ
Best-Matching Atom Selection : 

Optimize k 0 = argmin 

k 

‖ d k (z) − r(z) ( j−1) ‖ 2 
F 
, b y calculating the

F-norm error ‖ d k (z) − r(z) ( j−1) ‖ 2 
F 

, where d k (z) ∈ D (z) , k =
1 , · · · , K. 

Update Support Set : S ( j) = S ( j−1) 
⋃ { k 0 } . 

Update Provisional Solution : Calculate x ( j) by solving (25),

using (26). 

Update Residual : r(z) ( j) = y(z) − D S ( j) (z) x ( j) . 

Stopping Criteria : If ‖ r(z) ( j) ‖ 2 
F 

≤ ε, then x opt = x ( j) , and

break, else continue. 

end for 

3.5. Computational complexity 

In this section, we analyse the computational complexity of the

proposed algorithms. For the polynomial dictionary learning meth-

ods, i.e. extended K-SVD, extended MOD and PMOD, the compu-

tational complexities involved in the sparse coding stage in each

iteration are dominated by the calculation of D X , which are the

same, i.e. O ( nLKN ). In the dictionary update stage, however, the

computational complexity of the extended K-SVD is dominated by

the calculation of E k , which is O ( nLKN ) for each E k , and overall

at O ( nLK 

2 N ). For the extended MOD and PMOD, the complexity is

dominated by Y X 

T and Y ( z ) X 

T , as shown in (17) and (20) , which

require O ( nLNK ) and O ( nNK ) respectively, with pre-computed XX 

T . 

For the POMP algorithm, although the selection of the best-

matching atom is different from that in the conventional OMP

method, it requires the same number of iterations for atom selec-

tion. For each “signal” y ( z ), the computational complexity is domi-

nated by the calculation of D 

T y with pre-computed D 

T D as shown

in (26) , which requires O ( nLK ), and for a set of “signals” Y ( z ), the

computational complexity is O ( nLKN ). 
.6. Recoverability and RIP property 

The restricted isometry property (RIP) of sparse recovery algo-

ithms (e.g. the OMP and OLS algorithms) has been studied in the

ompressed sensing (CS) literature [16,21–28,38–42] , and the dic-

ionary learning context [43–47] . For example, in [26,40,41] , suf-

cient conditions required by the OMP method were established

or the exact κ-sparse signal recovery in the noiseless case or the

xact support set recovery in the noise case, if the sensing matrix

atisfies the RIP. The incoherence property has also been studied,

or example, in [44] for dictionary learning, and in [39] for com-

ressed sensing. 

The proposed dictionary learning methods are the extensions of

he conventional K-SVD and MOD methods to the polynomial case.

lthough the conventional K-SVD and MOD have been successfully

sed in real applications, these methods lack theoretical guaran-

ees. In other words, the dictionaries learned by these methods

annot guarantee to satisfy the RIP [38,39] and incoherence prop-

rty, and theoretical results of these methods have not yet been

ully justified [43–45] . This is because both the K-SVD and MOD

ethods used an alternating minimization strategy to learn the

ictionary in two steps, namely, sparse coding and dictionary up-

ate, by fixing one and updating the other. By using this strategy,

he dictionary needs to be initialized, however, the initial guesses

ay be far from the true dictionary, which leads to the difficulty

or providing provable guarantees for these algorithms [44] . In real

pplications, there is no ground truth dictionary, which makes it is

ven harder to provide such guarantees in practice. In addition, the

lgorithms may converge to a coherent dictionary, which can lead

o unstable estimation for sparse recovery [43,44] . 

The extended K-SVD and extended MOD algorithms are based

n the polynomial of matrices model, where we converted the

olynomial dictionary learning problem to a conventional dictio-

ary learning problem. Thus, similar to conventional K-SVD and

OD methods, the polynomial dictionaries obtained by using the

xtended K-SVD and extended MOD may not satisfy the RIP or in-

oherency property. The PMOD algorithm is based on the matrix

f polynomials model, which is an extension of the MOD method.

he PMOD method used the same strategy and stopping criterion

s the MOD method to train the dictionary, where the polynomial

ictionary is initialized with the “polynomial signals” (i.e. acous-

ic signals modeled with a polynomial matrix), which may also be

ar away from the true dictionary, and the dictionary obtained af-

er convergence may not be incoherent. It is reasonable to deduce

hat the PMOD method may not be able to guarantee the RIP or

ncoherency property. However, further efforts are required to pro-

ide more precise theoretical results. 

The proposed POMP is an extension of the conventional OMP to

he polynomial case, and in the extreme scenario where no time

elay (i.e. zero time lags) is involved, the proposed POMP degen-

rates to the conventional OMP (except the measure of similarity

etween the residual and the atoms in the dictionary). Therefore,

he existing theoretical results established for conventional OMP in

he literature could be extended to the polynomial case. However,

t is not trivial to extend these theoretical results when multiple

ime lags are involved and extra attention need to be given to sev-

ral important issues, such as the definition of the RIP property

nd incoherence measures in the polynomial setting. These are in-

eresting future research directions that are beyond the scope of

ur current work. 

. Experiments and resluts 

In this section, we evaluate the performance of the proposed

ethods using both synthetic and real data. We use a polynomial

atrix to model signals with time lags, and therefore the polyno-
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ial dictionaries are learned from training data consisting of sig-

als with time lags. The learned polynomial dictionaries are used

o recover the noisy signals. The experiments are first conducted

n synthetic polynomial matrices to show how the proposed meth-

ds work on polynomial matrices, where the polynomial matri-

es are generated randomly, and each element of the polynomial

atrices can be assumed as an FIR model represented by poly-

omials. Then, the proposed methods are evaluated for acoustic

mpulse responses denoising, where the polynomial matrices are

sed to model acoustic impulse responses (generated by a room

mage model, and recorded in real rooms). In both cases, white

aussian noise with zero mean and unit variance is added to the

ata. 

.1. Experimental setup and data generation 

.1.1. Synthetically generated polynomial matrices 

First, we show experiments on synthetically generated data as

ollows. We generate a random scalar matrix D with uniformly dis-

ributed entries, which is then used as the coefficient matrix for

he polynomial matrix D ( z ), where each column of D is normal-

zed to unity norm. The size of D generated is 50 × 100. Then, Y is

enerated by the linear combination of different columns in D . Fi-

ally, the polynomial matrices Y ( z ) and D ( z ) are generated by split-

ing their coefficient matrices according to Eqs. (11) and (12) . Here,

he training data we generated are 10 × 20 0 0 polynomial matrices

ith 5 time lags. 

.1.2. Simulated and real acoustic impulse responses 

The second type of data tested contains acoustic impulse re-

ponses, described by polynomial matrices. Two types of acous-

ic impulse responses are tested, respectively, those generated by

 room image model [48] , and the real acoustic impulse responses

aken from [49] . 

By using the image model, the acoustic impulse responses are

enerated in a 20 × 20 × 3 m 

3 room (a simulated large hall). The

everberation time is set to be 900 ms, and the sampling frequency

s 16 kHz, so that the number of time lags for each impulse re-

ponse is 14,400. We generated 1000 acoustic impulse responses

s the training set. Polynomial matrices are used to model the

coustic impulse response signals. Each acoustic impulse response

s split into several segments with the same length, thereby each

egment can be seen as an FIR filter which is modeled by a poly-

omial with a certain number of lags. Note that, once the length

f each polynomial (FIR) is given, the number of polynomials can

e calculated according to the number of acoustic signals and the

ength of each acoustic signal. These polynomial elements can be

sed to construct a polynomial matrix, whose dimensions are de-

ermined according to the length of the signals and the number of

ime lags specified in each polynomial element. 

For the real data, we take 840 real impulse responses from the

atabase [49] as the training signals, where the length of each

mpulse response is 192,0 0 0 samples. Each element of the poly-

omial matrix is designed to have 40 lags. Hence, each impulse

esponse signal can be modeled by 4800 polynomial elements.

herefore, the acoustic signals in the training set are designed as a

0 × 201 , 600 polynomial matrix with 40 lags for each element. 

.1.3. Parameter selection 

Assuming the dimension of the polynomial dictionary D ( z ) is

 × K with L lags, D ( z ) needs to be overcomplete, that is n � K .

oreover, as the proposed dictionary learning model (6) can be

xpressed as the polynomial of matrices model (10) , which means

he new dictionary D ∈ R 

nL ×K also needs to be overcomplete,

hich is nL � K . 
As in conventional dictionary learning methods [1,9,50] , it is

ifficult to find theoretically optimal parameters, therefore the pa-

ameters used in our polynomial algorithms were set empirically,

ccording to extensive experimental tests. We also carried out

ome experiments to understand the impact of some important

arameters on the performance of the proposed methods, such as

he iteration numbers and sparsity in the polynomial dictionary

earning process. In the denoising application, we also evaluated

he performance of the algorithms for modeling the acoustic im-

ulses using polynomial matrices with different lags, and the poly-

omial dictionaries with different sizes, which will be discussed in

etail later. 

.1.4. Performance metrics 

The reconstruction error between the original polynomial ma-

rix Y ( z ) and the reconstructed polynomial matrix ˆ Y (z) is used as

he performance metric, which is defined as 

 err = 

‖ Y (z) − ˆ Y (z) ‖ 

2 

F 

‖ Y (z) ‖ 

2 
F 

. (28) 

.2. Experimental results and analysis 

The proposed methods are tested on different noise levels, dif-

erent sparsity levels, different sizes of dictionaries, and different

ime lags used in the polynomial dictionaries. 

.2.1. Experiments on synthetically generated data 

First, we test the convergence of the proposed polynomial dic-

ionary learning methods during the dictionary training procedure.

he proposed extended K-SVD, extended MOD and PMOD algo-

ithms are used to train the dictionaries. The size of the dictio-

aries is set to be identical, which is 10 × 100 with 5 time lags.

ifferent levels of sparsity are tested (i.e. 3, 5, and 7). The sparse

epresentation coefficients for the reconstruction are found by us-

ng the conventional OMP algorithm. In total, 50 realizations are

arried out, and for each realization, 200 iterations are tested. The

econstruction errors are calculated at each iteration. 

Fig. 1 shows the average reconstruction errors changing at each

teration. From Fig. 1 , we can see that both methods can converge

ithin 200 iterations, and the extended K-SVD achieves more ac-

urate polynomial matrix reconstruction results than the extended

OD and PMOD for all levels of sparsity tested. Note that, the

MOD algorithm gives nearly the same average reconstruction ac-

uracy as the extended MOD at each iteration during the dictio-

ary training process. This is reasonable, as both the PMOD and the

xtended MOD use the same method to calculate the sparse coef-

cients in the sparse coding stage, although the PMOD operates on

he polynomial matrix dictionary directly in the dictionary update

tage. Also note that, the proposed methods converge with less it-

rations when using a lower level of sparsity, this is because less

parse representation coefficients need to be found in the sparse

oding stage. 

Then, we perform another experiment to evaluate the perfor-

ance of the proposed methods for recovering a signal (i.e. poly-

omial matrix) corrupted by noise at different levels. In this case,

hite Gaussian noise of zero mean and variance chosen to achieve

ifferent signal-to-noise ratios (SNRs) is added to the coefficient

atrices of the polynomial matrix Y ( z ). Note that both the size of

he input data Y ( z ) and the dictionary are the same as those in

he previous experiments. The numbers of iteration is set to be the

ame, as 200. Here, the proposed extended K-SVD, extended MOD,

nd PMOD algorithms are used to learn the dictionaries, and these

ictionaries are applied to recover the polynomial matrix from the

oise corrupted version. For the extended K-SVD and extended
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Fig. 1. Reconstruction error changes with the iteration number of the proposed methods during the training process for different levels of sparsity. 

Table 1 

Performance comparison in terms of the reconstruction error ( ×10 −2 ) for polyno- 

mial matrix reconstruction at different levels of noise, where different levels of 

sparsity are tested for denoising the noise corrupted polynomial matrix. 

Sparsity Noise level (dB) 

5 10 15 20 25 30 

Extended K-SVD 3 16 .76 10 .29 5 .36 2 .78 1 .47 0 .79 

5 23 .97 15 .59 8 .77 4 .91 2 .83 1 .76 

7 28 .42 18 .88 10 .83 6 .17 3 .73 2 .53 

Extended MOD 3 20 .33 15 .42 12 .65 11 .78 11 .53 11 .46 

5 25 .29 17 .26 11 .26 8 .49 7 .49 7 .16 

7 29 .34 19 .76 11 .97 7 .79 5 .93 5 .27 

PMOD 3 21 .25 16 .57 14 .01 13 .22 13 .00 12 .94 

5 25 .29 17 .26 11 .26 8 .49 7 .49 7 .16 

7 29 .34 19 .76 11 .97 7 .79 5 .93 5 .27 

PMOD + POMP 3 65 .60 64 .11 63 .29 62 .99 62 .90 62 .86 

5 62 .96 60 .58 59 .22 58 .71 58 .55 58 .49 

7 62 .51 59 .57 57 .89 57 .26 57 .04 56 .96 
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MOD, the OMP algorithm is used to calculate the sparse repre-

sentation coefficients in the sparse coding stage. For the PMOD

algorithm, both the OMP and the POMP algorithms are used and

their performance is compared. The PMOD and POMP combination

is denoted as PMOD + POMP. For each method, one dictionary is

learned from the clean “signal” Y ( z ), and 20 realizations are car-

ried out for the signal recovery by using OMP and POMP accord-

ingly, where different levels of sparsity are tested (i.e. 3, 5, and 7)

for training the dictionaries and sparsely representing the polyno-

mial matrix. 

Table 1 shows the results of the proposed methods for the noise

corrupted polynomial matrix reconstruction. We can see that the

extended K-SVD approach can obtain the best recovery accuracy

for all levels of sparsity tested, and the extended MOD is slightly

better than the PMOD method. POMP performs the worst for re-

covering the polynomial matrix with the dictionary learned by

PMOD. It can be observed that, for the extended K-SVD, better

recovery accuracy can be achieved with a lower level of sparsity

enforced in reconstruction; whereas for PMOD + POMP, increasing

the sparsity tends to give smaller reconstruction errors. For the ex-

tended MOD and PMOD, the reconstruction error is increased with

the increase in the level of sparsity, for noise in the range of 5

dB–10 dB. In contrast, the reconstruction error becomes smaller

with the increase of the sparsity level for noise in the range of 20

dB–30 dB. In comparison, the extended K-SVD method combined
ith OMP tends to give better accuracy for the reconstruction of

oise corrupted polynomial matrix, when using a lower level of

parsity. However, for other methods tested, the denoising perfor-

ance varies with the change of sparsity and noise level, and there

s no clear trend on which sparsity level used will give absolutely

etter performance than other sparsity levels. Therefore, we only

hoose one sparsity in our following experiments, where the spar-

ity for both training dictionaries and reconstructing signal is set

s 3. As observed from Fig. 1 , all the proposed methods converge

pproximately after 80 iterations for dictionary training when the

parsity is set as 3, so that we set the maximum iteration number

o be 80 in the following experiments. 

.2.2. Experiments on acoustic impulse responses 

As the aim of our proposed methods is to process signals with

ime delays, we test the proposed methods for acoustic signal de-

oising, where the polynomial matrix is employed to model the

coustic impulse responses. The dictionaries learned by the pro-

osed methods are used for the reconstruction of noise corrupted

coustic signals. In our experiments, the acoustic signals are mod-

led by polynomial matrices with different time lags, and dictio-

aries of different size are trained. 

First, we conduct experiments on impulse response signals gen-

rated by a room image model [48] as mentioned in Section 4.1.2 .

0 0 0 clean impulse responses are used as the training set, and the

oisy test signal is generated by adding noise to the clean acous-

ic impulse response. As the length of each impulse response is

4400, the test signal can be split into 720 segments, with the

ength of each segment as 20, so that the test signal can be mod-

led as a 10 × 72 polynomial matrix with 20 lags. In the same way,

he training signals can be modeled by a 10 × 72 , 0 0 0 polynomial

atrix with 20 lags. The size of the polynomial dictionaries is de-

igned as 10 × 240, 10 × 320, and 10 × 400, respectively. The pro-

osed methods are used to recover the noise corrupted impulse re-

ponse, where different levels of noise are tested. For each method,

ne dictionary is learned from the clean training signals modeled

olynomial matrix, and 20 realizations are carried out for recover-

ng the noise corrupted signal at each noise level. 

Table 2 shows the average reconstruction error of the proposed

ethods for the acoustic signal denoising at different noise lev-

ls. From the table, we can see that the proposed methods achieve

imilar results by using different size of training dictionaries, for

ow SNR levels (e.g., −10 dB and 0 dB). Dictionaries of smaller size

ffer better signal reconstruction performance, in contrast, those of
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Table 2 

Performance comparison in terms of reconstruction error ( ×10 −2 ) for room image 

impulse responses denoising at different noise levels, where dictionaries of different 

size are tested. 

Dictionary size Noise level (dB) 

−10 0 10 20 30 

Extended K-SVD 10 × 240 237 .55 36 .47 17 .34 17 .20 17 .19 

10 × 320 244 .76 37 .03 16 .67 16 .53 16 .52 

10 × 400 249 .71 37 .19 15 .62 15 .45 15 .43 

Extended MOD 10 × 240 237 .18 36 .25 17 .33 17 .20 17 .18 

10 × 320 243 .82 36 .55 16 .13 15 .99 15 .98 

10 × 400 249 .40 36 .98 15 .43 15 .27 15 .26 

PMOD 10 × 240 237 .18 36 .25 17 .33 17 .20 17 .18 

10 × 320 243 .82 36 .55 16 .13 15 .99 15 .98 

10 × 400 248 .92 37 .05 15 .23 15 .07 15 .05 

PMOD + POMP 10 × 240 215 .74 36 .64 22 .03 21 .93 21 .92 

10 × 320 223 .30 38 .24 23 .10 23 .01 23 .00 

10 × 400 228 .63 37 .26 20 .27 20 .16 20 .15 
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Table 3 

Performance comparison in terms of the reconstruction error ( ×10 −2 ) for 

room image impulse responses denoising at different noise levels, where 

acoustic signals are modeled by polynomial matrices with different lags. 

Lags Noise level (dB) 

−10 0 10 20 30 

Extended K-SVD 10 353 .41 50 .06 15 .30 14 .84 14 .83 

20 248 .46 37 .22 15 .70 15 .54 15 .53 

30 204 .23 31 .61 15 .27 15 .18 15 .17 

PMOD 10 352 .48 50 .05 15 .09 14 .64 14 .63 

20 248 .91 37 .19 15 .47 15 .31 15 .34 

30 203 .51 31 .30 15 .20 15 .11 15 .10 

PMOD + POMP 10 324 .93 48 .21 19 .26 18 .94 18 .93 

20 228 .27 37 .40 20 .43 20 .32 20 .34 

30 186 .11 30 .05 16 .25 16 .18 16 .16 
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r  
arger size tend to give higher recovery accuracy for higher SNR

evels (e.g., 10 dB, 20 dB, and 30 dB). 

The extended MOD and PMOD give almost the same average

econstruction error in the case when the size of dictionaries is

0 × 240 and 10 × 320, whereas the average reconstruction errors

re different when the size of dictionaries is 10 × 400, and the

MOD performs better in this case. The reason why the perfor-

ance is different when the dictionaries had size 10 × 400 is that

he learned dictionaries have redundant atoms, which lead to mul-

iple sparse representations for the signal reconstruction. When

he size of the dictionary is larger than a certain number, some

earned atoms may become redundant. The extended MOD can get

lightly better recovery accuracy than the extended K-SVD. Inter-

stingly, although the PMOD + POMP performs worse than the

ther three methods when the noise is added over ranges from

 dB to 30 dB, it gives the best recovery accuracy when the SNR

atio is lower than 0 dB. It is especially worth noting that the per-

ormance of PMOD + POMP for acoustic signal denoising is bet-

er than that for denoising the polynomial matrices generated ran-

omly in our last experiment, while the reconstruction error is

imilar to those obtained by the other three methods. 

An illustration of the polynomial matrix modeled acoustic im-

ulse response denoising is given in Fig. 2 , where a 2 × 2 poly-

omial sub-matrix is randomly selected from the polynomial ma-

rix and used to model the entire test acoustic room impulse re-

ponse. Each element can be seen as a polynomial modeled FIR

lter with 20 lags, which is a segment from the test acoustic sig-

al. Fig. 2 shows the clean FIRs in the subplot (a), the correspond-

ng noise added FIRs in (b) (5 dB noise), the recovered FIRs by the

xtended K-SVD, extended MOD, PMOD, and PMOD+POMP meth-

ds in the subplots (c), (d), (e), and (f), respectively. The size of

he polynomial dictionaries used is the same, which is 10 × 320

ith 20 lags. We can see from Fig. 2 that all the proposed methods

an recover the noise corrupted FIRs in a certain level. Fig. 3 shows

n example of the entire acoustic impulse response denoising by

sing the proposed extended K-SVD method. We can see that the

roposed method can recover the noise corrupted signal very well.

Then, another experiment is carried out by using polynomial

atrices with different lags to model the acoustic impulse re-

ponses. In order to find out how the impulse responses mod-

led polynomial matrix influences the performance of the pro-

osed methods, the lags of the polynomial matrices used to model

he acoustic impulse responses are set to be as 10, 20, and 30, re-

pectively, so that the same 10 0 0 training impulse responses as

sed in the previous experiment can be modeled as 10 × 1440 0 0

ith 10 time lags, 10 × 720 0 0 with 20 lags, and 10 × 480 0 0 with
0 lags polynomial matrices, respectively. The size of the dictio-

aries in training is set to be 10 × 400 with 10, 20, and 30 lags,

espectively. As the previous experiments have shown that the ex-

ended MOD and PMOD methods can obtain nearly the same per-

ormance during the dictionary training process for acoustic im-

ulse response denoising, here, we only compare the performance

f the extended K-SVD, PMOD and PMOD + POMP. For each time

ag tested, one dictionary is trained by each method, and 20 re-

lizations are carried out for each noise level. The average recon-

truction errors are given in Table 3 . 

From Table 3 , we can see that when applying the proposed

ethods, the acoustic signals modeled by polynomial matrices of

reater time lags tend to give better recovery accuracy, for rela-

ively lower SNR levels (i.e. −10 and 0 dB) for both cases. The

est denoising result can be obtained by using the PMOD + POMP

ethod. In contrast, the extended K-SVD and PMOD techniques can

et better performance at higher SNR levels (i.e. 20, and 30 dB) for

coustic signals modeled by polynomial matrices with 10 lags, and

he PMOD has the best denoising performance in this case. 

In the above experiments, the polynomial dictionaries are all

earned from clean signals. Here, we carry out additional experi-

ents to evaluate the performance of the proposed methods for

earning polynomial dictionaries from noise corrupted data. To this

nd, we add white Gaussian noise at different SNR levels (e.g.

0 dB, 20 dB, and 30 dB) to the same 10 0 0 clean impulse re-

ponses used in the previous experiment. The polynomial matrix

containing the training signals) and the polynomial dictionary are

btained in a similar way to the case where the training signals

re clean. More specifically, the noisy training signals are mod-

led by a 10 × 48 , 0 0 0 polynomial matrix with 30 lags, and the

ize of the dictionaries is 10 × 400 with 30 lags. The test signals

re the same as those in the previous experiment. We run 20

ealizations in which we train a dictionary for each noise level.

he performance comparison of the extended K-SVD, PMOD, and

MOD+POMP methods is given in Table 4 . As compared with the

esults in Table 3 , we can see that the extended K-SVD and PMOD

lgorithms perform slightly better when using noise corrupted

raining signals, whereas the PMOD+POMP method performs worse

han in the noise free case. This shows that the extended K-SVD

nd PMOD methods have better noise robustness as compared

ith the PMOD+POMP method. This is probably because the POMP

ses the F-norm distance as the measurement for the selection of

est-matching atoms, and the F-norm distance may not be as reli-

ble as the inner product for similarity measure between the resid-

al and the atoms for atom selection. 

.2.3. Experiments on real acoustic impulse responses 

Finally, an experiment is carried out for real acoustic impulse

esponse signal denoising. The POMP method is used to recover
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Fig. 2. Illustration of the proposed methods for acoustic impulse response denoising, where a polynomial matrix is used to model the test room impulse response, a sub- 

matrix with four polynomials is randomly selected from the polynomial matrices, where each polynomial is an FIR filter denoting a segment of the test room impulse 

response. (a) Clean FIRs; (b) Noisy FIRs; (c) Denoised FIRs by the extended K-SVD; (d) Denoised FIRs by the extended MOD; (e) Denoised FIRs by PMOD; (f) Denoised FIRs 

by PMOD + POMP. 
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Fig. 3. An example of room image impulse response signal denoising, where the extended K-SVD is used. (a) The clean acoustic signal; (b) The noisy acoustic signal; and (c) 

The reconstructed acoustic signal. 

Table 4 

Performance comparison in terms of the reconstruction error ( ×10 −2 ) for room image impulse re- 

sponses denoising at different noise levels, where the dictionaries are learned from training signals 

with different noise levels, and the size of the dictionaries is 10 × 400 with 30 lags. 

Training signal noise level(dB) Test signal noise level (dB) 

−10 0 10 20 30 

Extended K-SVD 10 203 .32 31 .16 15 .09 15 .00 14 .98 

20 202 .63 31 .16 15 .12 15 .03 15 .01 

30 203 .10 31 .28 15 .16 15 .06 15 .05 

PMOD 10 203 .00 31 .39 14 .94 14 .84 14 .83 

20 202 .57 31 .23 15 .01 14 .92 14 .90 

30 202 .61 31 .16 14 .85 14 .75 14 .74 

PMOD + POMP 10 188 .26 33 .89 21 .78 21 .71 21 .70 

20 186 .82 33 .27 20 .83 20 .76 20 .75 

30 186 .44 32 .92 20 .56 20 .49 20 .48 
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p  
he noisy real acoustic impulse response, where the polynomial

ictionary is learned by the PMOD. Here, the OMP is also used

o reconstruct the impulse responses for comparison purpose. The

est signal is corrupted by 5 dB noise. 

As mentioned in Section 4.1.2 , 840 real impulse responses are

sed as the training signals, which are modeled by a 20 × 201 , 600

olynomial matrix with 40 lags. The size of dictionary is set to be

0 × 1200 with 40 lags. Fig. 4 shows the clean signal in the sub-

lot (a), its corresponding noisy signal in the subplot (b), and the

econstructed signals by OMP and POMP methods in the subplots

c) and (d), respectively. It can be observed that both reconstructed

ignals are similar to the clean test signal. The experiments show

hat our proposed methods can obtain fairly good performance for

enoising real acoustic signals. 
. Conclusions 

We introduced a polynomial dictionary learning technique to

eal with signals with time lags, where the polynomial matrix was

mployed to model the signals. This provided a way for learning

 dictionary for signals with time lags, such as acoustic impulse

esponses. Two types of polynomial dictionary learning methods

ere proposed based respectively on the polynomial of matrices

odel and the matrices of polynomial model. By using the poly-

omial of matrices model based dictionary learning method, any

onventional dictionary learning methods can be used to represent

he signals with time lags; whereas the matrices of polynomial dic-

ionary learning model provided a potential way to deal with the

olynomial dictionary matrix directly without having to explicitly



502 J. Guan et al. / Signal Processing 142 (2018) 492–503 

0 5 10 15
Lags 104

-0.1

-0.05

0

0.05

0.1

0.15

M
ag

ni
tu

de

5000 6000 7000 8000
-0.05

0
0.05

(a)

0 5 10 15
Lags 104

-0.1

-0.05

0

0.05

0.1

0.15

M
ag

ni
tu

de

5000 6000 7000 8000
-0.05

0
0.05

(b)

0 5 10 15
Lags 104

-0.1

-0.05

0

0.05

0.1

0.15

M
ag

ni
tu

de

5000 6000 7000 8000
-0.05

0
0.05

(c)

0 5 10 15
Lags 104

-0.1

-0.05

0

0.05

0.1

0.15

M
ag

ni
tu

de

5000 6000 7000 8000
-0.05

0
0.05

(d)
Fig. 4. Denoising of noisy real acoustic impulse response signal. (a) The clean acoustic signal; (b) The noisy acoustic signal (c) The reconstructed acoustic signal by the 

PMOD; (d) The reconstructed acoustic signal by PMOD + POMP. 
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access the polynomial coefficient matrices, where the sparse coef-

ficient matrix was still a scalar matrix, rather than a polynomial

matrix. As a byproduct, a polynomial OMP algorithm was also pro-

posed. The experiments show that our proposed methods can be

used to model signals with time lags, such as acoustic impulse re-

sponses, and to reconstruct such signals from noise corrupted sam-

ples. Moreover, the experiments also show that we can obtain bet-

ter performance by carefully designing the polynomial matrix and

choosing the size of dictionary according to the tasks at hand. 

Acknowledgments 

This work was conducted when J. Guan was visiting the Cen-

tre for Vision, Speech and Signal Processing (CVSSP) of the Uni-

versity of Surrey, UK, and partially supported by International Ex-

change and Cooperation Foundation of Shenzhen City, China (No.

GJHZ20150312114149569). W. Wang and J. Chambers were sup-
orted in part by the Engineering and Physical Sciences Research

ouncil ( EPSRC ) Grant Number EP/K014307 and the MOD Univer-

ity Defence Research Collaboration in Signal Processing. The au-

hors thank the anonymous reviewers for their helpful suggestions.

eferences 

[1] M. Elad , M. Aharon , Image denoising via sparse and redundant representations

over learned dictionaries, IEEE Trans. Image Process. 15 (12) (2006) 3736–3745 .
[2] M.G. Jafari , M.D. Plumbley , Fast dictionary learning for sparse representations

of speech signals, IEEE J. Sel. Topics Signal Process. 5 (5) (2011) 1025–1031 . 
[3] M. Zibulevsky , B.A. Pearlmutter , Blind source separation by sparse de-

composition in a signal dictionary, Neural Comput. 13 (4) (2001) 863–
882 . 

[4] R. Gribonval , Sparse decomposition of stereo signals with matching pursuit

and application to blind separation of more than two sources from a stereo
mixture, in: Proceedings of IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP), 3, IEEE, 2002, pp. III–3057 . 
[5] O. Yilmaz , S. Rickard , Blind separation of speech mixtures via time-frequency

masking, IEEE Trans. Signal Process. 52 (7) (2004) 1830–1847 . 

http://dx.doi.org/10.13039/501100000266
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0001
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0001
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0001
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0002
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0002
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0002
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0003
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0003
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0003
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0004
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0004
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0005
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0005
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0005


J. Guan et al. / Signal Processing 142 (2018) 492–503 503 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

[  

 

[  

 

 

[  

 

[  

 

 

[  

[  

[  

 

 

 

[  

 

 

 

 

[  

 

 

 

 

[  

 

 

 

 

[  

[  

[  

 

[  

 

[  

 

[  

 

[  

[  

 

 

[  

[  

 

[  

 

[6] T. Xu , W. Wang , Methods for learning adaptive dictionary in underdetermined
speech separation, in: Proceedings of IEEE International Workshop on Machine

Learning for Signal Processing (MLSP), IEEE, 2011, pp. 1–6 . 
[7] S. Wang , L. Zhang , Y. Liang , Q. Pan , Semi-coupled dictionary learning with ap-

plications to image super-resolution and photo-sketch synthesis, in: Proceed-
ings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

IEEE, 2012, pp. 2216–2223 . 
[8] K. Engan , S.O. Aase , J.H. Husoy , Method of optimal directions for frame design,

in: Proceedings of IEEE International Conference on Acoustics, Speech, and Sig-

nal Processing (ICASSP), 5, IEEE, 1999, pp. 2443–2446 . 
[9] M. Aharon , M. Elad , A. Bruckstein , K-SVD: an algorithm for designing overcom-

plete dictionaries for sparse representation, IEEE Trans. Signal Process. 54 (11)
(2006) 4311–4322 . 

[10] W. Dai , T. Xu , W. Wang , Simultaneous codeword optimization (SimCO) for
dictionary update and learning, IEEE Trans. Signal Process. 60 (12) (2012)

6340–6353 . 

[11] S.G. Mallat , Z. Zhang , Matching pursuits with time-frequency dictionaries, IEEE
Trans. Signal Process. 41 (12) (1993) 3397–3415 . 

[12] R. Tibshirani , Regression shrinkage and selection via the LASSO, J. R. Stat. Soc.
Ser. B (Methodological) (1996) 267–288 . 

[13] I.F. Gorodnitsky , B.D. Rao , Sparse signal reconstruction from limited data using
focuss: a re-weighted minimum norm algorithm, IEEE Trans. Signal Process. 45

(3) (1997) 600–616 . 

[14] S. Chen , S.A. Billings , W. Luo , Orthogonal least squares methods and their
application to non-linear system identification, Int. J. Control 50 (5) (1989)

1873–1896 . 
[15] B.K. Natarajan , Sparse approximate solutions to linear systems, SIAM J. Com-

put. 24 (2) (1995) 227–234 . 
[16] J. Wang , P. Li , Recovery of sparse signals using multiple orthogonal least

squares, IEEE Trans. Signal Process. 65 (8) (2017) 2049–2062 . 

[17] Y.C. Pati , R. Rezaiifar , P. Krishnaprasad , Orthogonal matching pursuit: recursive
function approximation with applications to wavelet decomposition, in: Pro-

ceedings of the 27th Asilomar Conference on Signals, Systems and Computers,
IEEE, 1993, pp. 40–44 . 

[18] A.M. Bruckstein , D.L. Donoho , M. Elad , From sparse solutions of systems of
equations to sparse modeling of signals and images, SIAM Rev. 51 (1) (2009)

34–81 . 

[19] D.L. Donoho , Y. Tsaig , I. Drori , J.-L. Starck , Sparse solution of underdetermined
systems of linear equations by stagewise orthogonal matching pursuit, IEEE

Trans. Inf. Theory 58 (2) (2012) 1094–1121 . 
20] D. Needell , R. Vershynin , Uniform uncertainty principle and signal recovery via

regularized orthogonal matching pursuit, Found. Comput. Math. 9 (3) (2009)
317–334 . 

[21] T.T. Cai , L. Wang , Orthogonal matching pursuit for sparse signal recovery with

noise, IEEE Trans. Inf.Theory 57 (7) (2011) 46 80–46 88 . 
22] S.K. Sahoo , A. Makur , Signal recovery from random measurements via ex-

tended orthogonal matching pursuit., IEEE Trans. Signal Process. 63 (10) (2015)
2572–2581 . 

23] N.B. Karahanoglu , H. Erdogan , Improving A ∗OMP: theoretical and empirical
analyses with a novel dynamic cost model, Signal Process. 118 (2016) 62–74 . 

[24] J. Wen , Z. Zhou , J. Wang , X. Tang , Q. Mo , A sharp condition for exact support
recovery of sparse signals with orthogonal matching pursuit, IEEE Trans. Signal

Process. 65 (6) (2016) 1370–1382 . 

25] J. Wang , S. Kwon , P. Li , B. Shim , Recovery of sparse signals via generalized
orthogonal matching pursuit: a new analysis, IEEE Trans. Signal Process. 64 (4)

(2016) 1076–1089 . 
26] J. Wang , Support recovery with orthogonal matching pursuit in the presence

of noise, IEEE Trans. Signal Process. 63 (21) (2015) 5868–5877 . 
[27] C. Herzet , A. Drémeau , C. Soussen , Relaxed recovery conditions for OMP/OLS

by exploiting both coherence and decay, IEEE Trans. Inf. Theory 62 (1) (2016)

459–470 . 
28] A. Cohen , W. Dahmen , R. DeVore , Orthogonal matching pursuit under the re-

stricted isometry property, Constr. Approx. 45 (1) (2017) 113–127 . 
29] T. Saramäki , R. Bregovic , Multirate systems and filter banks, in: Multirate Sys-
tems: Design and Applications, 2, 2001, pp. 27–85 . 

30] J.A. Foster , J.G. McWhirter , M.R. Davies , J.A. Chambers , An algorithm for calcu-
lating the QR and singular value decompositions of polynomial matrices, IEEE

Trans. Signal Process. 58 (3) (2010) 1263–1274 . 
[31] L. Rota , P. Comon , S. Icart , Blind MIMO paraunitary equalizer, in: Proceedings

of IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 4, IEEE, 2003, pp. 285–288 . 

32] R. Brandt , M. Bengtsson , Wideband mimo channel diagonalization in the time

domain, in: Proceedings of IEEE International Symposium on Personal, Indoor
and Mobile Radio Communications, IEEE, 2011, pp. 1958–1962 . 

[33] J. Foster , J. McWhirter , S. Lambotharan , I. Proudler , M. Davies , J. Chambers ,
Polynomial matrix QR decomposition for the decoding of frequency selective

multiple-input multiple-output communication channels, IET Signal Process. 6
(7) (2012) 704–712 . 

34] J. Guan , J. Dong , X. Wang , W. Wang , A polynomial dictionary learning method

for acoustic impulse response modeling, in: Latent Variable Analysis and Sig-
nal Separation, in: Lecture Notes in Computer Science, 9237, Springer, 2015,

pp. 211–218 . 
[35] J.G. McWhirter, P.D. Baxter, T. Cooper, S. Redif, J. Foster, An EVD algorithm for

para-Hermitian polynomial matrices, IEEE Trans. Signal Process. 55 (5) (2007)
2158–2169, doi: 10.1109/TSP.2007.893222 . 

36] Z. Wang, J.G. McWhirter, S. Weiss, Multichannel spectral factorization algo-

rithm using polynomial matrix eigenvalue decomposition, in: Proceedings of
49th Asilomar Conference on Signals, Systems and Computers, 2015, pp. 1714–

1718, doi: 10.1109/ACSSC.2015.7421442 . 
[37] A . Ahrens, A . Sandmann, S. Lochmann, Z. Wang, Decomposition of optical

MIMO systems using polynomial matrix factorization, in: Proceedings of 2nd
IET International Conference on Intelligent Signal Processing 2015 (ISP), 2015,

pp. 1–6, doi: 10.1049/cp.2015.1758 . 

38] E.J. Candes , T. Tao , Decoding by linear programming, IEEE Trans. Inf. Theory 51
(12) (2005) 4203–4215 . 

39] E.J. Candès , M.B. Wakin , An introduction to compressive sampling, IEEE Signal
Process. Mag. 25 (2) (2008) 21–30 . 

40] M.A. Davenport , M.B. Wakin , Analysis of orthogonal matching pursuit using the
restricted isometry property, IEEE Trans. Inf. Theory 56 (9) (2010) 4395–4401 . 

[41] J. Wang , B. Shim , On the recovery limit of sparse signals using orthogonal

matching pursuit, IEEE Trans. Signal Process. 60 (9) (2012) 4 973–4 976 . 
42] M.M. Abo-Zahhad , A.I. Hussein , A.M. Mohamed , Compressive sensing algo-

rithms for signal processing applications: a survey, Int. J. Commun., Netw. Syst.
Sci. 8 (06) (2015) 197–216 . 

43] A . Agarwal , A . Anandkumar , P. Jain , P. Netrapalli , R. Tandon , Learning sparsely
used overcomplete dictionaries, in: Proceedings of Conference on Learning

Theory, 2014, pp. 123–137 . 

44] S. Arora , R. Ge , A. Moitra , New algorithms for learning incoherent and over-
complete dictionaries, in: Proceedings of Conference on Learning Theory, 2014,

pp. 779–806 . 
45] S. Barman, A. Bhattacharyya, S. Ghoshal, The dictionary testing problem, arXiv

preprint arXiv:1608.01275 (2016). 
46] A . Agarwal , A . Anandkumar , P. Netrapalli , Exact recovery of sparsely used over-

complete dictionaries, Stat 1050 (2013) 8–39 . 
[47] A . Agarwal , A . Anandkumar , P. Jain , P. Netrapalli , Learning sparsely used over-

complete dictionaries via alternating minimization, SIAM J. Optim. 26 (2016)

2775–2799 . 
48] J.B. Allen , D.A. Berkley , Image method for efficiently simulating small-room

acoustics, J. Acoust. Soc. Am. 65 (4) (1979) 943–950 . 
49] R. Stewart , M.B. Sandler , Database of omnidirectional and b-format impulse re-

sponses, in: Proceedings of IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), 2010, pp. 165–168 . 

50] J. Dong , W. Wang , W. Dai , M.D. Plumbley , Z.-F. Han , J. Chambers , Analysis

SimCO algorithms for sparse analysis model based dictionary learning, IEEE
Tran. Signal Process. 64 (2) (2016) 417–431 . 

http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0006
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0006
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0006
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0007
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0007
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0007
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0007
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0007
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0008
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0008
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0008
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0008
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0009
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0009
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0009
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0009
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0010
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0010
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0010
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0010
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0011
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0011
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0011
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0012
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0012
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0013
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0013
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0013
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0014
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0014
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0014
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0014
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0015
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0015
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0016
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0016
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0016
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0017
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0017
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0017
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0017
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0018
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0018
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0018
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0018
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0019
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0019
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0019
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0019
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0019
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0020
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0020
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0020
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0021
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0021
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0021
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0022
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0022
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0022
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0023
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0023
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0023
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0024
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0024
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0024
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0024
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0024
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0024
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0025
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0025
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0025
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0025
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0025
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0026
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0026
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0027
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0027
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0027
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0027
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0028
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0028
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0028
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0028
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0029
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0029
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0029
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0030
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0030
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0030
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0030
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0030
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0031
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0031
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0031
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0031
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0032
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0032
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0032
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0033
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0033
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0033
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0033
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0033
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0033
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0033
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0034
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0034
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0034
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0034
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0034
http://dx.doi.org/10.1109/TSP.2007.893222
http://dx.doi.org/10.1109/ACSSC.2015.7421442
http://dx.doi.org/10.1049/cp.2015.1758
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0038
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0038
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0038
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0039
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0039
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0039
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0040
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0040
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0040
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0041
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0041
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0041
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0042
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0042
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0042
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0042
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0043
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0043
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0043
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0043
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0043
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0043
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0044
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0044
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0044
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0044
http://arxiv.org/abs/1608.01275
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0045
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0045
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0045
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0045
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0046
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0046
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0046
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0046
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0046
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0047
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0047
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0047
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0048
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0048
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0048
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0049
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0049
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0049
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0049
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0049
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0049
http://refhub.elsevier.com/S0165-1684(17)30293-1/sbref0049

	Polynomial dictionary learning algorithms in sparse representations
	1 Introduction
	2 Background
	2.1 Dictionary learning
	2.2 Polynomial matrices

	3 Polynomial dictionary learning
	3.1 Proposed model
	3.2 Polynomial dictionary learning based on the polynomial of matrices model
	3.3 Polynomial dictionary learning based on the matrix of polynomials model
	3.4 Polynomial sparse representation
	3.5 Computational complexity
	3.6 Recoverability and RIP property

	4 Experiments and resluts
	4.1 Experimental setup and data generation
	4.1.1 Synthetically generated polynomial matrices
	4.1.2 Simulated and real acoustic impulse responses
	4.1.3 Parameter selection
	4.1.4 Performance metrics

	4.2 Experimental results and analysis
	4.2.1 Experiments on synthetically generated data
	4.2.2 Experiments on acoustic impulse responses
	4.2.3 Experiments on real acoustic impulse responses


	5 Conclusions
	 Acknowledgments
	 References


