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ABSTRACT

Although deep learning is the mainstream method in un-
supervised anomalous sound detection, Gaussian Mixture
Model (GMM) with statistical audio frequency representa-
tion as input can achieve comparable results with much lower
model complexity and fewer parameters. Existing statistical
frequency representations, e.g. the log-Mel spectrogram’s
average or maximum over time, do not always work well
for different machines. This paper presents Time-Weighted
Frequency Domain Representation (TWFR) with the GMM
method (TWFR-GMM) for anomalous sound detection. The
TWFR is a generalized statistical frequency domain repre-
sentation that can adapt to different machine types, using
the global weighted ranking pooling over time-domain. This
allows GMM estimator to recognize anomalies, even under
domain-shift conditions, as visualized with a Mahalanobis
distance-based metric. Experiments on DCASE 2022 Chal-
lenge Task2 dataset show that our method has better detection
performance than recent deep learning methods. TWFR-
GMM is the core of our submission that achieved the 3rd
place in DCASE 2022 Challenge Task2.

Index Terms— Anomalous sound detection, audio repre-
sentation, Gaussian mixture model, Mahalanobis distance

1. INTRODUCTION

Anomalous sound detection (ASD) identifies whether a tar-
get machine is anomalous from its emitted sound. In unsu-
pervised ASD, the detector is often trained with only normal
sounds, due to the fact that anomalous sounds can be rare and
diverse, and thus hard to capture in practice. Unsupervised
ASD for machine condition monitoring has been Task2 of the
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Detection and Classification of Acoustic Scenes and Events
(DCASE) Challenge since 2020 [1]. Different from Task2
of DCASE 2020, Task2 of DCASE 2021 and DCASE 2022
focuses on the domain shift problem, where the acoustic char-
acteristics of the training and test data are different [2, 3].

Deep learning methods are the mainstream methods for
anomalous sound detection. Autoencoder (AE) based method
is the baseline in DCASE Task2 for unsupervised ASD [1–
3]. It uses the AE model to learn the distribution of nor-
mal sounds by reconstructing the log-Mel spectrograms of
normal sounds and using the reconstruction errors to derive
anomaly scores. This method is then improved by incorporat-
ing device information to learn better feature representation
of normal sounds [4, 5]. For example, MobileNetV2 [6] uses
a self-supervised machine identity (ID) classifier to learn a
better representation of normal sounds, and uses the negative
log-likelihood (NLL) of the corresponding ID as the anomaly
score [4]. Instead of calculating the anomaly score from the
output probability of ID classification, another method, i.e.,
ResNet-GMM [7] uses the Gaussian Mixture Model (GMM)
as the anomaly estimator, following a self-supervised ID clas-
sifier constructed by ResNet [8]. Here, GMM is used to clus-
ter the audio features of normal sound by fitting the distri-
bution of normal sounds as a mixture of a finite number of
Gaussian distributions.

Non-deep learning method for ASD was initially at-
tempted by using the GMM estimator with inputs from
the average or maximum pooling on the log-Mel spectro-
gram over time dimension [7], namely Mean-GMM and
Max-GMM. Their inputs are frequency domain audio rep-
resentations considering simple statistical features (mean or
maximum) over time, rather than extracted from a neural
network, e.g. ResNet. These models often involve fewer
parameters and lower complexity than deep learning mod-
els [4, 9, 10], but offer a comparable detection performance.
However, the simple average or max pooling representation
does not always perform well on different machine types.
For example, Mean-GMM performs better than Max-GMM
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Fig. 1: Proposed Time-Weighted Frequency Domain Representation with Gaussian Mixture Model (TWFR-GMM) method.
TWFR is extracted from descending ranking the log-Mel spectrogram at time frames per frequency band and multiplying with
a weighting vector from global weighted ranking pooling P(r) to form a dimension-reduced audio representation R(X).

for ToyCar, Fan, Gearbox, while Max-GMM performs much
better than Mean-GMM for ToyTrain and Valve, when tested
on the DCASE 2022 Task2 dataset.

Due to the varying time-frequency distribution of audio
amongst different machines, it is desirable to develop an adap-
tive statistical model for time-frequency representation of au-
dio signals to suit different machines. In addition, it is desir-
able to maintain the advantage of low model complexity over
the deep learning approaches, while applying proper trade-
offs between the stationary and non-stationary parts of the
audio signals.

As a solution, we propose a Time-Weighted Frequency
Domain Representation (TWFR) with Gaussian Mixture
Mode (TWFR-GMM) method for unsupervised ASD in this
paper. The TWFR is extracted from global weighted ranking
pooling (GWRP) [11] on log-Mel spectrogram over time di-
mension, which considers the whole time range and applies
more weight to the time frames with higher sound energy.
To investigate the effectiveness of the proposed method, we
design a Mahalanobis Distance based metric for t-distributed
stochastic neighbour embedding (t-SNE) [12] visualization
of TWFR-GMM. The t-SNE visualization shows the clus-
tering effect of GMM on the training and test sounds. It
verifies that the TWFR directly derived from the normal
machine sound can be used to distinguish anomalies well,
even under domain-shift conditions. Experiments on DCASE
2022 Challenge Task2 dataset show that our method has bet-
ter detection performance than state-of-the-art deep learning
methods. TWFR-GMM is the core of our submission that
achieved the top 3 in DCASE 2022 Challenge Task2. We
release the source code for the reproducibility of our work at
https://github.com/liuyoude/TWFR-GMM.

2. PROPOSED METHOD

The proposed TWFR-GMM method for unsupervised ASD is
illustrated in Figure 1, with details of the audio representation
module, Time-Weighted Frequency Domain Representation
(TWFR) in Section 2.1 and GMM estimator in Section 2.2.

2.1. Time-Weighted Frequency Domain Representation

Existing statistical frequency representation is simply the av-
erage or maximum of the log-Mel spectrogram over time, and
not always work well for different machines. Specifically,
Max-GMM only considers the time frame with the maximum
sound energy, while ignoring all the other time frames. As a
result, the stationary feature, one of the critical features of
normal machine sounds, is not counted. On the contrary,
mean-GMM evenly accounts for every time frame over the
whole time span, which captures the stationary feature well,
but may not be able to capture transient features for short-
term signals, due to the averaging operation. However, the
transient features can differ significantly between the normal
and abnormal sound.

The proposed TWFR-GMM maintains the advantage in
low model complexity over the deep learning approaches
by applying simple time-domain weighting pre-selected to
adapt to each machine type. This weighting is used for trad-
ing off the stationary and non-stationary audio signals to
form a simple statistical frequency domain representation of
the audio signal. In detail, we apply the global weighted
ranking pooling (GWRP) [11] on the log-Mel spectrogram
over time dimension to give more weight to the time frames
with higher sound energy. Consider the log-Mel spectrogram
X ∈ RM×N of an audio signal with M Mel frequency bins
and N time frames. We sort elements in its i-th row vector
Xi ∈ R1×N (i = 1, 2, · · · ,M) (i.e., i-th frequency bin over
time frames) by descending ranking as X̂i. It re-arranges
the values over time frames at each frequency bin by energy-
decreasing sequence and ignores the time sequence. The
resulting sequence X̂ = [X̂1, X̂2, ..., X̂M ] is derived from X
in a descending order of time. The TWFR extracted from the
GWRP of X is

R(X) = X̂P(r), (1)

where R(X) ∈ RM and the pooling vector

P(r) = [
r0

z(r)
,
r1

z(r)
, ...,

rN−1

z(r)
]T, (2)

https://github.com/liuyoude/TWFR-GMM


Table 1: Performance comparison in terms of AUC (%) and pAUC (%) on the development dataset of DCASE 2022 Task2.
Average: the average of the AUC and pAUC values for all machine types.

Methods ToyCar ToyTrain Fan Gearbox Bearing Slider Valve Average

AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC

Deep Learning based methods:

MobileNetV2 [3] 55.54 52.27 51.57 51.51 59.48 56.89 62.70 56.03 60.25 57.14 51.69 54.67 62.14 62.41 57.62 55.85
AE [3] 62.61 52.74 49.83 50.48 62.89 57.52 65.78 58.49 56.40 51.98 62.81 55.78 50.73 50.36 58.72 53.91
STgram-MFN [5] 48.62 49.91 52.10 49.62 64.42 60.95 75.97 64.21 78.58 64.28 79.46 63.22 70.80 63.32 67.14 59.36

Non-Deep Learning based methods:

Mean-GMM [7] 79.33 58.93 58.74 52.74 71.44 62.13 79.62 65.37 69.41 54.74 78.57 63.62 52.39 50.54 69.93 58.30
Max-GMM [7] 60.21 51.19 67.34 55.28 62.51 52.71 71.40 54.68 64.15 52.29 82.65 66.49 91.87 69.86 71.45 57.50
TWFR-GMM 80.65 58.12 67.81 59.07 71.44 62.13 80.23 64.69 69.41 54.74 87.96 73.33 92.61 70.23 78.59 63.19
SMOTE-TWFR-GMM 84.70 60.55 68.02 59.69 71.44 62.13 82.22 65.85 70.80 54.22 89.91 76.74 92.61 70.23 79.96 64.20

with z(r) =
∑N

n=1 r
n−1 for normalization. The superscript

T denotes the transpose operation.
The average pooling and maximum pooling are two spe-

cial cases of GWRP. When r = 0, GWRP degenerates to
maximum pooling, and when r = 1, GWRP becomes aver-
age pooling. Our method finds a suitable r from 0 to 1 for the
best detection performance of each machine type in the train-
ing stage. As a result, TWFR can be adapted for different
machine types to achieve more robust audio feature represen-
tation for anomalous sound detection.

2.2. Gaussian Mixture Model (GMM) Estimator

TWFR-GMM: GMM is used to fit the distribution of nor-
mal sounds as a mixture of a finite number of Gaussian dis-
tributions. The GMM is trained on normal sounds and de-
tects anomalies for test sounds in terms of the negative log-
likelihood defined as

A(X̄) = − max
k∈[1,K]

logN (R(X̄)|µk,Σk), (3)

where N (R(X̄)|µk,Σk) is the k-th Gaussian distributions of
the trained GMM, with mean vector µk ∈ RM and covariance
matrix Σk ∈ RM×M , and X̄ is the log-Mel spectrogram of
the test sound.
SMOTE-TWFR-GMM: For DCASE 2022 Challenge Task2
focusing on domain shift problem, we train GMM respec-
tively for each section of each machine type, where different
sections relate to different domain shift conditions. In addi-
tion, SMOTE [13] is employed to deal with sample insuffi-
ciency by over-sampling the samples in the target domain for
some machine types.

3. EXPERIMENTS AND RESULTS

3.1. Experimental Setup

Dataset: We conduct experiments on the development dataset
of DCASE 2022 Challenge Task2 [3], which includes seven
machine types (ToyCar, ToyTrain, Fan, Gearbox, Bearing,

Slider and Valve). The dataset has three sections for each ma-
chine type (Sections 00, 01 and 02), and different sections in-
dicate different domain shift conditions. Each audio file is 10
seconds with 16k Hz sampling rate, including machine sound
and environmental noises.
Evaluation Metrics: Following DCASE 2022 Challenge
Task2 [3], we use the area under the receiver operating char-
acteristic (ROC) curve (AUC) and the partial-AUC (pAUC)
over all the machine types, sections, and domains as the per-
formance metrics. In addition, the number of parameters and
floating point operations (Flops) are employed for model size
and complexity evaluation respectively.
Implementation: The log-Mel spectrogram is extracted from
audio with the window size of 1024 samples with 50% over-
lap and the Mel-filter with 128 banks. The GMM and t-SNE
visualization are implemented by scikit-learn library [14],
and the number of mixture components of GMM is 1 or 2 ac-
cording to the machine type. The SMOTE is implemented by
imbalanced-learn library [15] and applied on part of machine
types. The weighting parameter r in Equation (1) is 0.99,
0.81, 1.00, 0.99, 1.00, 0.88 and 0.45 for Toycar, ToyTrain,
Fan, Gearbox, Bearing Slider and Valve, respectively.

3.2. Performance Comparison

Table 1 compares the proposed TWFR-GMM and SMOTE-
TWFR-GMM with Mean-GMM, Max-GMM and deep learn-
ing based methods (AE [3], MobileNetV2 [3] and STgram-
MFN [5]) on the development dataset of DCASE 2022 Task2,
where AE and MobileNetV2 are the baseline methods of Task
2. TWFR-GMM significantly improved the average AUC
and pAUC performance, compared with the deep learning
based methods and the non-deep learning GMM methods. In
addition, SMOTE-TWFR-GMM further improved the per-
formance by using an over-sampling strategy in the target
domain, demonstrating the effectiveness of our proposed
method for ASD under domain shift. The proposed SMOTE-
TWFR-GMM in this paper forms the core of the submission
to the DCASE 2022 Challenge Task 2, and ranked the 3rd
place in the competition [16].

We also compared the model size and complexity of the
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Fig. 2: Comparison of the model size and complexity (num-
ber of parameters and Flops), where the model size is illus-
trated by the size of the circles, and the number of Flops is
presented in logarithmic scale.

above methods and the Top-1 method (self-supervised deep
learning method) [17] in DCASE 2022 Challenge Task2, as
illustrated in Figure 2. The proposed TWFR-GMM meth-
ods significantly outperform the above deep learning based
methods (AE, MobileNetV2 and STgram-MFN) with much
smaller model size and complexity. Compared with the Top-1
method (83.28%), our SMOTE-TWFR-GMM (79.96%) per-
forms slightly worse. Our method has a much smaller model
size with significantly reduced model complexity. Specifi-
cally, the Top-1 method has a model size of 4.1 M and Flops
of 700 M, while our proposed method has a model size of
only 33 k and Flops of only 164 k. This demonstrates that our
proposed methods achieve better or comparable detection per-
formance as compared with the baseline methods, with much-
reduced model size and complexity.

3.3. Mahalanobis Distance based Visualization Analysis

We analyze the effectiveness of the proposed TWFR-GMM
by performing visual analysis using t-distributed stochastic
neighbour embedding (t-SNE) [12] with a Mahalanobis Dis-
tance (MD) based metric function, defined as follows

M(y1,y2) = min
k∈[1,K]

√
(y1 − y2)TΣ−1

k (y1 − y2), (4)

where Σk is the covariance matrix of the k-th mixture com-
ponent of the trained GMM, and y1 and y2 are two feature
vectors from both the training and test sets including source
and target domain. Note that, we use the MD metric function,
instead of the Euclidean Distances (ED), as the ED does not
perform well, in particular, we observed that the anomalous
and normal features cannot be visually separated even though
the AUC is high.

Figure 3 is the t-SNE visualization of TWFR-GMM,
Mean-GMM and Max-GMM for section 02 of Valve in the
development dataset of DCASE 2022 Task2, with the MD

Mean-GMM

Max-GMM

TWFR-GMM

Cluster Center Normal Anomaly
Test-Source Test-TargetTrain-Source Train-Target

Cluster Center Normal Anomaly
Test-Source Test-TargetTrain-Source Train-Target

Fig. 3: The t-SNE visualization with Mahalanobis Distance
based metric function of the Mean-GMM, Max-GMM and
TWFR-GMM for Section 02 of Valve. Here, the mean vector
of the trained GMM is adopted as the cluster center, and “•”
and “×” denote normal and anomalous samples, respectively.

metric. Here, the distribution of the normal training sound
from both source domain (Train-Source) and target domain
(Train-Target) is provided to show how the detected sound
from source (Test-Source) and target domain (Test-target) fit
the distribution of normal sound using different methods.

In this case (i.e. section 02 of Valve), Mean-GMM can-
not distinguish the normal and anomalous features, whereas
Max-GMM can. However, in Max-GMM, some anomalous
features are very close to normal features (i.e. just outside the
clusters). In contrast, the proposed TWFR-GMM can distin-
guish the anomalous sound well in the MD space, despite the
domain shift and the training data being sparse in the target
domain.

4. CONCLUSION

This paper has presented a new method for unsupervised
ASD, namely, Time-Weighted Frequency Domain Represen-
tation with Gaussian Mixture Model (TWFR-GMM). The
proposed method is of low complexity, which is appealing
for applications with limited computing resources. Experi-
ments on DCASE 2022 Task2 dataset shows that the proposed
method performs better than several compared methods. Fur-
thermore, its effectiveness is analyzed by t-SNE visualization
with Mahalanobis distance based metric function. Although
the proposed method did not achieve the best performance on
DCASE 2022 Task2, it provides a promising way for model
refinement via improved audio representation.
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