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Abstract— Deep learning models have been used recently
for target recognition from synthetic aperture radar (SAR)
images. However, the performance of these models tends to
deteriorate when only a small number of training samples are
available due to the problem of overfitting. To address this
problem, we propose a two-stage multiscale densely connected
convolutional neural networks (TMDC-CNNs). In the proposed
TMDC-CNNs, the overfitting issue is addressed with a novel
multiscale densely connected network architecture and a
two-stage loss function, which integrated the cosine similarity
with the prevailing softmax cross-entropy loss. Experiments
were conducted on the MSTAR data set, and the results
show that our model offers significant recognition accuracy
improvements as compared with other state-of-the-art methods,
with severely limited training data. The source codes are
available at https://github.com/Stubsx/TMDC-CNNs.

Index Terms— Deep learning, limited data, synthetic aperture
radar (SAR), target recognition.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) has been used in var-
ious applications, such as marine surveillance, climate

monitoring, and disaster relief [1], for identifying targets
from the SAR images collected in the target area [2]. Unlike
conventional methods for SAR target recognition, such as
[3], deep learning-based methods require a large amount of
training data to achieve high performance [4], [5]. However,
data labeling is a time-consuming and labor-intensive process
and often requires expertise from the application domain. It is
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often hard to obtain a large amount of labeled data to meet the
requirement of conventional deep learning-based methods in
real applications. On the other hand, due to the absence of a
large-scale labeled SAR data set, and the difficulty of learning
with optical images, it is difficult to directly apply the prevalent
transfer learning-based methods (e.g., meta-learning [6]) with
limited samples to the problem of SAR target recognition.
Therefore, research efforts are still needed for SAR target
recognition with a small training set, although learning with
a limited number of samples is a common problem arising in
much wider applications.

Three main ideas have been developed to improve SAR
recognition performance with limited training samples. The
first idea is to use customized transfer learning. For exam-
ple, an auto-encoder was used in [7] to learn knowledge
from sufficient unlabeled SAR images and transfer it to a
labeled SAR data set. The second idea is to focus on model
improvement. For example, in [8], features from optimally
selected convolutional layers are cascaded and an ensemble
learning-based classifier is then used to replace the original
softmax layer to achieve more accurate recognition with lim-
ited samples. In [9], a light-weight and robust structure based
on highway convolutional neural networks (CNNs) is used to
reduce the over-fitting problem. In [10], a multiple feature-
based lightweight CNNs (MFCNNs) model is presented for
SAR target recognition with different ratios of training data.
By reducing the complexity of the model, a smaller number
of free parameters need to be optimized, and thus the model is
less prone to overfitting. The third idea is to use data augmen-
tation techniques. Examples in this category include multilevel
reconstruction [11], super-resolution [12], and simulation [13]
where the amount of training data is increased via techniques
such as mix-up.

However, these methods still have limitations. For exam-
ple, transfer learning from unlabeled data is less effec-
tive than that from labeled data. As shown in [7], this
method still needs a fair amount of data, e.g., 50 sam-
ples for each category, to achieve acceptable performance.
Although model improvement [8]–[10] and data augmenta-
tion [11], [13] methods can improve the recognition accu-
racy, their performance falls behind the transfer learning-
based methods. In addition, when the number of available
training samples is very small (e.g., less than 20 samples
per category), the performance of all these methods drops
significantly.
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Fig. 1. Framework of the proposed TMDC-CNNs. In this model, each dense block contains 16 Inception units, and each Inception unit outputs 12 channels
of the feature maps. The ratio of output number of feature map channels among different convolutional kernels (i.e., 3, 5, 7) is 1:3:8. The 1 × 1 Conv layers
after the first two dense blocks reduce the number of feature map channels to a certain ratio, which is annotated in the figure. Pooling denotes a 2 × 2 average
pooling with stride 2. Only the first 7 × 7 Conv stride is 2, the others are 1. The linear classifier is a FC layer with an output of K classes.

In this letter, we introduce a new method for SAR target
recognition, namely two-stage multiscale densely connected
CNNs (TMDC-CNNs), to improve the recognition accuracy
with a limited number of training samples. There are two
novel aspects in our TMDC-CNNs. First, based on DenseNet
[14] and Inception [15], we propose a novel network structure,
which provides an improved ability in mitigating the over-
fitting problem by utilizing features of different scales. Second,
we introduce a new two-stage loss function by integrating the
cosine similarity loss with the softmax cross-entropy loss. This
can help avoid overconfident prediction in the early stage of
training and improve the generalization ability of the network.

II. RELATED WORKS

A. Network Architecture

Inception [15] and DenseNet [14] are widely used network
architectures for target recognition tasks. Inception introduces
a network-in-network architecture that can extract features
with different scales, whereas DenseNet connects each layer to
every other layer in a feedforward manner. However, the gra-
dient vanishing problem still exists in Inception. In DenseNet,
since the size of the feature maps in each dense block (i.e.,
the convolution kernel) is fixed, it is difficult to extract features
with different scales. To address these issues, we present
a novel network architecture i.e., TMDC-CNNs, as shown
in Fig. 1, which can exploit the advantages of both Inception
and DenseNet.

B. Deep Learning Loss Function for Target Recognition

Softmax cross-entropy is one of the most commonly used
loss functions in deep neural networks. However, it is not
quite suitable for small data sets because of the overconfident
prediction it may give [16]. In contrast, the cosine loss function
is more inclined to minimize the directional error of the
model prediction by reparameterizing the cosine similarity
[16], [17]. It allows the model to give a smoother prediction
[16]. However, since the differences between different SAR
targets are not as significant as those among natural images,
the direction-based cosine loss often leads to under-fitting
[16]. To address these problems, we propose a two-stage loss
function that offers advantages in the case of limited training
data.

III. PROPOSED METHOD

A. TMDC-CNNs Network Architecture

Inspired by Huang et al. [14] and Szegedy et al. [15],
we present a novel network architecture for SAR target
recognition. We use the Inception unit rather than the normal
convolutional layer in the backbone of DenseNet, such that
the proposed architecture can not only alleviate the vanishing
gradient problem and strengthen feature propagation but also
exploit features with different scales. Moreover, skip connec-
tions are added to enhance the ability of the network in utiliz-
ing features of different scales in the final prediction. Such a
network architecture can alleviate the overfitting problem due
to its reduced number of learnable parameters in the model.

The proposed network architecture is given in Fig. 1, which
contains three dense blocks, and each block is constructed by
several densely connected Inception units. The grid size of
the feature map and its channel number are reduced to half
of its original size via the convolution layer and pooling layer
between adjacent dense blocks. Three kernels with different
sizes (i.e., 3, 5, 7) are used to extract the features from different
scales in an Inception unit. Denoting Hl as the output of the
lth layer in a dense block, then the output of (l + 1)th layer
Hl+1 can be expressed as

Hl+1 = [[ f7(Hl), f5(Hl), f3(Hl)],Hl−1, . . . ,H1] (1)

where fn(·) denotes the Conv layer with kernel size of n,
and [·] is the concatenation operation on channels. Here,
the Conv layer consists of four basic operations, namely,
batch normalization, convolution without bias, rectified linear
unit (ReLU) activation, and dropout with 0.2 probability. The
Inception unit consists of several Conv layers, and its first
1×1 Conv is introduced as the bottleneck layer that produces
four times of feature-map dimensions. Then, the feature maps
are processed by Conv layers of different kernel sizes. For a
kernel of large size, e.g., 7, two Conv layers with a kernel
size of 7 × 1 and 1 × 7 are used to replace this 7 × 7 kernel.
The bottleneck layer and replacement operations can help
reduce model complexity and alleviate over-fitting. Moreover,
to utilize features from different grid sizes, the feature maps
generated by the first two dense blocks are added to the final
fully connected (FC) layer via a 1 × 1 Conv layer and global
average pooling.
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B. Two-Stage Loss Function

In this section, we present a two-stage loss function for
model training, which can mitigate the overfitting problem
caused by insufficient training data. Unlike single-stage soft-
max cross-entropy loss, we divide the training process into
two parts: warm-up and fine-tuning. In the warm-up stage,
a new log cosine loss is proposed for model training to
alleviate overfitting by reparameterizing the cosine similarity
with negative log, which ensures the loss value to be above 0.
After this stage, the loss function is switched to the weighted
sum of the log cosine loss and softmax cross-entropy to fine-
tune the model for better performance. The proposed two-stage
loss function can be described as follows:

Ltwo−stage =
{
LCosine, s < αE

LSoftmax + βLCosine, αE ≤ s < E
(2)

where E denotes the total number of epochs, s is the number
of trained epochs, α and β are the parameters that control
the time to switch between the loss functions and the weight
of the log cosine loss in the second stage, respectively. Here,
in a single training batch with N instances, the conventional
softmax loss LSoftmax and our reparameterized log cosine loss
LCosine can be formulated, respectively, as follows:

LSoftmax = 1

N

N∑
i=1

− y�
i log

e fθ (Xi )

‖e fθ (Xi ) ‖1
(3)

LCosine = 1

N

N∑
i=1

− log
σ
(

fθ (Xi ), yi

) + 1

2
(4)

where Xi denotes the training SAR image sample, and fθ (·)
denotes the CNNs which are parameterized by the learnable
parameters θ . fθ (Xi) is a column vector that represents the
corresponding prediction scores of sample Xi over K classes.
Denote ci ∈ {1, . . . , K } as the corresponding category of Xi ,
and yi as the one-hot vector of ci . Then, the cosine similarity
between fθ (Xi) and yi can be formulated as

σ
(

fθ (Xi ), yi

) = fθ (Xi)
� · ψ(

yi

)

‖ fθ (Xi)‖2

∥∥ψ(
yi

)∥∥
2

(5)

where ψ(·) denotes the label shift operation on yi used to
further reduce the over-confident prediction. The shifted label
y′

i of yi can be cast as

y′
i = ψ(yi) = yi + τ yi − τ (6)

where τ is the shift value, then the standard one-hot label yi
can be expressed as

yi = ϕonehot (ci ) =
⎡
⎣0 · · · 0︸ ︷︷ ︸

ci −1

1 0 · · · 0︸ ︷︷ ︸
K−ci

⎤
⎦

�

(7)

such that y′
i can be recast as

y′
i = ψ

(
yi

) =
⎡
⎣−τ · · ·−τ︸ ︷︷ ︸

ci −1

1 −τ · · · −τ︸ ︷︷ ︸
K−ci

⎤
⎦

�

. (8)

To visually show the difference between softmax and the
proposed log cosine loss, and illustrate the characteristics of
log cosine loss against overfitting, the value heatmaps of both

Fig. 2. 3-D heatmaps of the log cosine loss (τ = 0.3) and softmax cross-
entropy in a ten-class classification task. Here, the x- and y-axis denote the
predicted score of the correct labels and the average predicted score of the
other nine wrong labels, respectively. The range of the predicted score for
the correct labels is [−5, 5], and predicted for wrong labels is drawn from
a normal distribution with a standard deviation of 1 and a mean range of
[−5, 5]. (a) Softmax cross-entropy. (b) Log cosine loss.

log cosine loss and softmax cross-entropy are given in Fig. 2.
From the heat maps, we summarize the two reasons that our
proposed log cosine loss can mitigate the over-fitting problem.

First of all, compared with softmax, our proposed log cosine
loss can avoid overconfident predictions caused by limited
training samples, thereby reducing the possibility of overfit-
ting. In a deep learning paradigm with insufficient samples,
each sample will be repeatedly trained. As can be seen from
Fig. 2, the gradient of softmax will not decrease during
optimization, so the softmax loss will finally be reduced to a
very small value [i.e., the dark blue area of Fig. 2(a)], which
causes overconfident predictions. However, our proposed log
cosine loss can avoid this overconfident prediction. During
optimization, the log cosine loss will enter a smoother area,
i.e., the low plateau area (light blue) observed in Fig. 2(b).
Such smooth and stable gradients can alleviate the overcon-
fident prediction caused by continuous optimization for the
same sample.

Second, with the log cosine loss, the deep learning model
can avoid continuing optimization of the loss when it has
a particularly small value (i.e., near zero), which has been
verified to cause severe overfitting [18]. As can be seen from
the two heatmaps in Fig. 2, the proposed log cosine loss
has a larger minimum loss value, and it will eventually enter
a relatively stable platform area, so the loss value will not
continue to decrease to a near-zero value, which helps our log
cosine loss to resist overfitting.

To further demonstrate the effectiveness of the log cosine
loss and explicitly show the difference between our proposed
two-stage loss and the softmax cross-entropy, we provide
t-distributed stochastic neighbor embedding (t-SNE) cluster
visualization of the output before the final FC layer of TMDC-
CNNs (softmax cross-entropy) and TMDC-CNNs (two-stage
loss), respectively. Both networks are trained by the same
5% of all training samples in MSTAR, the results are shown
in Fig. 3.

As can be seen from Fig. 3, the proposed two-stage loss
function can not only gather the features of different types
of samples by locations but also according to their directions.
This is because the proposed log cosine loss can recognize
the target by the vector angle between predicted scores and
labels. As a result, for samples with blurred features, the
network trained by the two-stage loss can recognize them
better according to their directions.
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Fig. 3. t-SNE cluster figures of output features before the final FC layer
of models trained by different loss functions. The numbers denote the labels
of different types of targets. Both models are trained by the same 5% of
all training samples, where TMDC-CNNs trained by softmax cross-entropy
achieved recognition accuracy of 90.80%, and TMDC-CNNs trained by
two-stage loss achieved recognition accuracy of 92.91%. (a) TMDC-CNNs
(softmax cross-entropy). (b) TMDC-CNNs (two-stage loss).

TABLE I

NUMBER OF SAMPLES IN EACH CATEGORY IN THE MSTAR DATA SET

IV. SIMULATIONS AND RESULTS

A. Data Set

We evaluate our methods on the MSTAR data set. It is an
SAR image data set with 0.3 m resolution, which consists of
SAR targets at different depression angles and aspect angles
[19]. For fair comparison, we select ten typical classes from
MSTAR for classification [19]. The detail about each class is
given in Table I.

B. Experimental Setup

In all the experiments, an aggressive but simple data aug-
ment strategy is applied to make full use of each avail-
able sample. Each image is randomly rotated by 0◦ − 360◦,
flipped horizontally and vertically with a probability of 0.5.
In addition, we also center-crop the image into a 64 × 64
patch to accelerate the training and reduce computation. All
the networks are trained using stochastic gradient descent
(SGD) with 10−4 weight decay and 0.9 Nesterov momentum
without dampening. The initial learning rate is set to 0.3,
and then scaled by 0.3 after every 200 epochs during a total
of 500 epochs training. In our two-stage loss training process,
the hyperparameters are empirically set as α = 0.6, β = 1,
and τ = 0.3. According to our experiments, at these values
and their vicinity, the model can obtain a better performance.

C. Performance Comparison

Our model is compared with state-of-the-art methods,
including MFCNNs [10], CHU-Net [9], CNN-TL-bypass [7],
transfer learning from simulated data (TLSD) [13], and Zhang
et al. [8]. The results of these baseline methods are taken from
their original letters, and our models are evaluated according
to the data selection strategies as used in these methods,
i.e., selecting different percentages of the training data as in
[9], [10], and [13], and using different numbers of samples in
each class as in [7] and [8]. For each setting, ten independent
tests are conducted for our proposed models, where the data

Fig. 4. Performance comparison in terms of accuracy under different data
selection strategies. (a) Different percentages of the training data from the data
set. (b) Different numbers of samples in each category. Note that the results
for some test cases are not shown in the figure if they are not provided in the
corresponding references.

Fig. 5. Confusion matrices of Inception and TMDC-CNNs with 15 training
samples in each class, the number on the horizontal and vertical coordinates
represents the numeric label for each target category. (a) Confusion matrix of
inception. (b) Confusion matrix of TMDC-CNNs.

used in each test are selected randomly from the training set.
The baseline methods [7]–[9] used similar data augmentation
strategies, while no data augmentation was used in [10] and
[13]. For a fair comparison, we also show the performance of
our TMDC-CNNs without using data augmentation, namely,
TMDC-CNNs-NA. The results are given in Fig. 4, where we
can see that our model can achieve better performance than
the baseline methods. More specifically, our proposed TMDC-
CNNs perform significantly better than [8] (i.e., with five
samples per category) and [9] (i.e., with 5% and 10% training
data). Even without using data augmentation, our TMDC-
CNNs-NA still outperforms [10] and [13], such performance
improvement becomes larger when the amount of training data
decreases.

D. Ablation Studies

As our TMDC-CNNs are derived from DenseNet and Incep-
tion, we also perform ablation studies with DenseNet, Incep-
tion, and the most commonly used architecture: ResNet [20],
to show further the improvement of our proposed architecture.
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TABLE II

ABLATION STUDIES OF DIFFERENT NETWORK ARCHITECTURES AND LOSS FUNCTIONS IN TERMS OF RECOGNITION ACCURACY (%)

In addition, we evaluate our TMDC-CNNs by using different
loss functions, i.e., softmax cross-entropy and the proposed
two-stage loss function. Different numbers of samples in each
category are used to demonstrate the performance of different
models, and the results are given in Table II. It can be seen
that, compared to the baseline, i.e., ResNet [20], the Inception,
DenseNet, and our network architecture TMDC-CNNs give
better performance for a small number of training samples,
and our proposed TMDC-CNNs model offers the largest
improvement. In addition, the proposed two-stage loss function
improves the performance when only limited training data
(i.e., 50 and less samples per category) is available, although
the proposed loss results in a small decrease in recognition
accuracy when sufficient data are available (i.e., 100 and
more samples per category). Moreover, the results demonstrate
that our data augmentation strategy can significantly improve
the recognition accuracy when data are severely limited,
i.e., 30 and less samples in each class.

To further illustrate the improvement and effectiveness
of our TMDC-CNNs, confusion matrices of Inception and
TMDC-CNNs on the test set are given in Fig. 5(a) and (b),
respectively. Both models are trained using a data set with
15 samples per category. It can be seen that TMDC-CNNs can
achieve high recognition accuracy when the number of training
samples is small. In addition, the recognition accuracy of most
categories can be improved when compared with the Inception.

V. CONCLUSION

We have introduced a TMDC-CNNs model to improve
the SAR target recognition performance with limited training
samples, which included a novel network architecture and
a two-stage loss function. With the proposed network
architecture, multiscale features can be extracted. With the
two-stage loss function, the generalization ability of the
proposed model was further improved when only limited
training samples were available. Experiments conducted on
MSTAR demonstrated the improved performance of our
proposed model, as compared with several state-of-the-art
methods, with a severely limited amount of training data.
In the future, we will also study intelligent data augmentation
techniques for this problem.
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