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Abstract This paper presents a novel algorithm, named GMM-PARAFAC, for
blind identification of underdetermined instantaneous linear mixtures. The GMM-
PARAFAC algorithm uses Gaussian mixture model (GMM) to model non-Gaussianity
of the independent sources. We show that the distribution of the observations can also
be modeled by a GMM, and derive a maximum-likelihood function with regard to
the mixing matrix by estimating the GMM parameters of the observations via the
expectation-maximization algorithm. In order to reduce the computation complexity,
the mixing matrix is estimated by maximizing a tight upper bound of the likelihood
instead of the log-likelihood itself. The maximum of the tight upper bound is obtained
by decomposition of a three-way tensor which is obtained by stacking the covariance
matrices of the GMM of the observations. Simulation results validate the superiority
of the GMM-PARAFAC algorithm.
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1 Introduction

Blind identification (BI), which aims to estimate the mixing system from observed
signals without prior information about the sources and the mixing system, has
attracted a lot of research interests due to its wide range of applications in sig-
nal processing, including blind source separation (BSS), and direction of arrival
(DOA) estimation. There exist a large number of publications dealing with deter-
mined/overdetermined mixtures [1, 3, 9, 19, 25], which are unlikely to be reviewed
exhaustively here due to the lack of space. However, in practical situations, for ex-
ample, in telecommunications, it becomes increasingly likely for more sources to be
received by fewer sensors due to the increase of the reception bandwidth. Therefore,
BI methods that are able to process underdetermined mixtures, where the number of
sources P is greater than that of sensors Q, are desired.

To this aim, many methods for BI of underdetermined mixtures turn to the use of
various decomposition methods based on different data structures such as the second-
order (SO), the fourth-order (FO), or the higher-order (HO) cumulants of the data [6,
10, 13, 15, 23]. The main idea of these algorithms is to construct a tensor based
on the cumulants of the observations and then to estimate the mixing matrix by the
decomposition of such a tensor. It has been shown in these methods that underde-
termined mixtures can be identified up to a trivial matrix, i.e., a diagonal matrix and
a permutation matrix, provided that all sources are non-Gaussian. However, these
methods use restrictive assumptions on the source distribution, which makes them
inapplicable in some scenarios. For example, the second-order blind identification
of underdetermined mixtures (SOBIUM) algorithm [13] cannot be applied when the
sources follow identical and independent distributions (i.i.d.) due to the fact that the
spatial covariance of the i.i.d. sources equals zero.

In [16] it is shown that many probability density functions (PDFs) can be closely
approximated, in terms of Kullback–Leibler (KL) divergence [12], by a finite-order
Gaussian mixture model (GMM). Therefore, in this paper, GMM is used for model-
ing the PDF of each source and for exploiting its non-Gaussianity. Several researchers
have utilized the GMM in solving the BSS problem. For example, Moulines et al.
[17] developed an approximate maximum-likelihood (ML) method for blind separa-
tion and deconvolution of noisy linear mixtures, where the PDF of each source was
modeled by a GMM. According to this approach, an expectation-maximization (EM)
algorithm [5], which jointly estimates the mixing matrix, the source distribution pa-
rameters, and the noise covariance matrix, was developed. Some related works have
been presented in [8, 22, 26]. For example, instead of using the EM method, a varia-
tional Bayesian method is used to obtain the estimates of the mixing matrix and model
parameters in [26], and the conjugate prior densities are introduced in [8] to incorpo-
rate the prior information to improve the separation performance. However, there are
still several limitations associated with these methods. First, the computational com-
plexity of these methods is very high even for identifying the mixing matrix only (i.e.,
without considering the recovery of the sources). Second, an accurate initialization is
vital to ensure the algorithms to converge to the desired minima/maxima, whereas it
is usually difficult to obtain a good initialization, especially for the underdetermined
case.
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On the other hand, an alternative strategy, in which the GMM is fitted to the ob-
served data, rather than the sources, is developed in [20, 24]. In this method, the
GMM parameters are estimated via the EM algorithm and the separation matrix is
estimated by applying a joint diagonalization (JD) technique to the covariance ma-
trices of the GMM of the observations. An important feature of this method is that
it is easy to initialize the parameters when implementing the EM algorithm since the
EM algorithm is applied to estimate the GMM parameters of the observations rather
than those of the sources. However, only the determined/overdetermined mixtures are
considered. In this paper, we generalize the GMM-JD method to the underdetermined
mixtures. The main contributions of our work are two-fold.

• We derive an ML function of the mixing matrix by estimating the GMM parameters
of the observed data via the EM algorithm, and show that a tight upper bound of
the log-likelihood, instead of the log-likelihood itself, can be utilized to estimate
the mixing matrix, which alleviates the cumbersome computational loads for the
direct maximization of the log-likelihood function of the mixing matrix.

• We propose a parallel factor (PARAFAC)-based approach to estimate the mixing
matrix by decomposing the tensor which is formed from the covariance matrices
of the GMM of the observations in a way similar to our previous work [7], except
in which the tensor is formed from the Hessian matrices of the second generalized
generating function of the observations. The proposed algorithm is shown to work
well in underdetermined cases, thanks to the powerful uniqueness properties of the
PARAFAC decomposition.

The remainder of the paper is organized as follows. In Sect. 2, the mathematical
models for the PDFs of the sources and observation signals are introduced. In Sect. 3,
an ML objective function with regard to the mixing matrix is derived by estimating
the parameters of the GMM of the observations via the EM algorithm. Furthermore,
a tight upper bound is proposed to approximate the ML objective function to reduce
the computation complexity. In Sect. 4, the mixing matrix is estimated by applying
the PARAFAC decomposition to the tensor formed from the estimated covariance
matrices of the GMM of the observations, and the application of the proposed method
to the underdetermined case is also discussed. In Sect. 5, the performance of the
proposed method is evaluated and compared with other existing methods. Finally,
Sect. 6 summarizes the main findings of this paper.

Notation Scalars are denoted by lower-case italic letters (a, b, . . .), vectors by
lower-case boldface letters (a,b, . . .), matrices by boldface capitals (A,B, . . .) and
tensors by calligraphic letters (A,B, . . .). The entry with row index i and column in-
dex j in a matrix A, i.e., (A)ij , is symbolized by aij . Likewise, we have (A)ijk = aijk .
The columns of A are denoted by a1,a2, . . . . Conversely, the matrix with columns
a1,a2, . . . is denoted by A. The superscript (·)T denotes the transpose operator.

2 The Distribution Models for the Sources and Observations

Considering the following instantaneous linear mixture model:

xt = Ast + wt , t = 1,2, . . . , T (1)
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The random vector st = [s1,t , . . . , sP,t ]T, representing P statistically independent
sources at time instance t , is mixed by a fixed unknown mixing matrix A. The
observation vector xt = [x1,t , . . . , xQ,t ]T is obtained from an array of Q sensors,
and contaminated by the noise vector wt = [w1,t , . . . ,wQ,t ]T. The noises are as-
sumed to be Gaussian white with zero-mean and unknown variance matrix Rw =
Diag(σ 2

1 , . . . , σ 2
Q), and independent of st = [s1,t , . . . , sP,t ]T. Under the assumption

of stationary and non-Gaussian source signals, the sources and observations distribu-
tion models are discussed next.

2.1 Sources Distribution Model

The PDF of the ith source signal at time instance t is modeled as in [8] by a GMM in
the following manner:

fs(si,t |θ i ) =
Ni∑

li=1

αi,liN
(
si,t ;μi,li , σ

2
i,li

)
, i = 1, . . . ,P (2)

where N (·; ·, ·) represents a Gaussian density function and Ni denotes the number
of Gaussian components. The mixing weights are represented by {αi,li }Ni

li=1, such

that
∑Ni

li=1 αi,li = 1. The means and variances of the Gaussians are represented by

{μi,li }Ni

li=1 and {σ 2
i,li

}Ni

li=1, respectively. Owing to the independence between the source
signals, their joint PDF is a multivariate GMM with diagonal covariance matrices,
which can be formulated as follows [8]:

fs(st |Θs) =
P∏

i=1

fs(si,t |θ i )

=
N1∑

l1

α1,l1N
(
s1,t |μ1,l1 , σ

2
1,l1

) N2∑

l2

α2,l2N
(
s2,t |μ2,l2 , σ

2
2,l2

) · · ·

×
NP∑

lP

αP,lP N
(
sP,t |μP,lP , σ 2

P,lP

)

=
N1∑

l1

N2∑

l2

· · ·
NP∑

lP

α1,l1α2,l2 · · ·αP,lP

×N
([s1,t , s2,t , . . . , sP,t ]T|[μ1,l1 ,μ2,l2 , . . . ,μP,lP ]T,

Diag
(
σ 2

1,l1
, σ 2

2,l2
, . . . , σ 2

P,lP

))

=
M∑

m=1

ωmN (st |μm,Cm) (3)

where M = ∏P
i=1 Ni is the total number of Gaussian components used to model the

joint PDF and ωm = ∏P
i=1 αi,li ; m = 1, . . . ,M are the mixing weights for each Gaus-
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sian component such that
∑M

m=1 ωm = 1. The index m represents a unique combi-
nation of Gaussians from each source, i.e., l1, . . . , lP → m, where li ∈ {1, . . . ,Ni}
represents a Gaussian index of the ith source. The mean vector and covariance
matrix of the mth Gaussian are represented by μm = [μ1,l1 ,μ2,l2 , . . . ,μP,lP ]T and
Cm = Diag(σ 2

1,l1
, σ 2

2,l2
, . . . , σ 2

P,lP
), respectively.

2.2 Observations Distribution Model

In this subsection, the generative model of the observation signals at time instance t ,
similar to that in [8], is utilized to derive an expression for their joint PDF.

In this model, a hidden indication variable yt , is used to indicate the Gaussian
component of st at every instance, which is randomized by the following PDF:

fy(yt ) =
M∑

m=1

ωmδ(yt − m) (4)

where δ(·) denotes Dirac’s delta function and

yt =
{

m if st is generated by the mth Gaussian component
0 otherwise

(5)

Note that the value of yt determines the distribution parameters μm and Cm, the
mixing process depicted in (1) is a linear mixing process, and w(t) is assumed to be
zero-mean and white Gaussian noise. Thus, we get

fx|y(xt |yt = m,Θx) = N
(
xt |Aμm,ACmAT + Rw

)
(6)

where Θx = {ωm,Aμm,ACmAT +Rw}Mm=1 denotes the unknown distribution param-
eters of the observation signals. According to Bayes’ theorem, the PDF of xt is given
by

fx(xt |Θx) =
M∑

m=1

ωmfx|y(xt |yt = m,Θx) (7)

Thus, the joint PDF of the observation signals can also be represented by the GMM
with non-diagonal covariance matrices, as follows:

fx(xt |Θx) =
M∑

m=1

ωmN (xt |ηm,Rm) (8)

3 Derivation of an ML-Based Objective Function

According to the above analysis, the observation signal matrix X = [x1, . . . ,xT ] can
be viewed as incomplete data, and the hidden data is the indication variable vector
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y = [y1, . . . , yT ]. We assume that a complete data set exists, Z = (X,y), and also we
assume a joint density function

f (Z|Θx) = f (y,X|Θx) = f (y|X,Θx)f (X|Θx) (9)

With this new density function, we can define the complete data likelihood
L(Θx|X,y) = f (X,y|Θx). In order to get the maximum-likelihood estimate of the
parameters, we define the following auxiliary function:

F(Θx, Θ̂x) = E
[
logf (X,y|Θx)|X, Θ̂x

]
(10)

where Θ̂x are the current parameter estimates which may be an initial guess or de-
rived from the former iteration, and used to evaluate the expectation E[.], and Θx
are the new parameters that we optimize to increase F . Note that, in (10), X and
Θ̂x are constants, Θx is the variable that we wish to adjust, and y is a random vari-
able governed by the distribution f (y|X, Θ̂x). Therefore, the right side of (10) can be
rewritten as

E
[
logf (X,y|Θx)|X, Θ̂x

] =
∫

Υ

logf (X,y|Θx)f (y|X, Θ̂x) dy (11)

Note that f (y|X, Θ̂x) is the marginal distribution of the unobserved data and is
dependent on both the observation signals X and the current parameters Θ̂x, and Υ is
the range of values that y can take. The values of the hidden variables y = {yt }Tt=1, in-
dicates which component density is used to generate each observation signal. Hence,
if we know them, the complete data likelihood expression can be significantly sim-
plified. In this way, the log-likelihood becomes

log
(
f (X,y|Θx)

) =
T∑

t=1

log
(
f (xt |yt )f (yt )

) =
T∑

t=1

log
(
ωyt f (xt |yt )

)
(12)

which can be optimized using a variety of techniques. The problem, of course, is
that we do not know the values of y. However, if we assume y to be a random
vector, then we can proceed. We first must derive an expression for the distribu-
tion of the hidden variable. Given Θ̂x, we can easily compute fm(xt |ϑ̂m) for each
t and m, where ϑ̂m is the current parameter of mth Gaussian component corre-
sponding to the observation signals. Therefore, using Bayes’ rule, we can com-
pute

f (yt |xt , Θ̂x) = ω̂yt f (xt |ϑ̂yt )∑M
m′=1 ω̂m′f (xt |ϑ̂m′)

(13)

and

f (y|X, Θ̂x) =
T∏

t=1

f (yt |xt , Θ̂x) (14)
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In this case, Eq. (11) takes the form

F(Θx, Θ̂x) =
∑

Υ

log
(
f (X,y|Θx)

)
f (y|X, Θ̂x)

=
∑

Υ

T∑

t=1

log
(
ωyt f (xt |ϑyt )

) T∏

t ′=1

f (yt ′ |xt ′ , Θ̂x)

=
M∑

y1=1

M∑

y2=1

· · ·
M∑

yT =1

T∑

t=1

log
(
ωyt f (xt |ϑyt )

) T∏

t ′=1

f (yt ′ |xt ′ , Θ̂x)

=
M∑

y1=1

M∑

y2=1

· · ·
M∑

yT =1

T∑

t=1

M∑

m=1

δm,yt log
(
ωmf (xt |ϑm)

) T∏

t ′=1

f (yt ′ |xt ′ , Θ̂x)

=
M∑

m=1

T∑

t=1

log
(
ωmf (xt |ϑm)

) M∑

y1=1

M∑

y2=1

· · ·
M∑

yT =1

δm,yt

T∏

t ′=1

f (yt ′ |xt ′ , Θ̂x)

(15)

In this form, F(Θx, Θ̂x) looks fairly daunting, yet it can be greatly simplified. We
first note that for m ∈ 1, . . . ,M

M∑

y1=1

M∑

y2=1

· · ·
M∑

yT =1

δm,yt

T∏

t ′=1

f (yt ′ |xt ′ , Θ̂x)

=
(

M∑

y1=1

· · ·
M∑

yt−1=1

M∑

yt+1=1

· · ·
M∑

yT =1

T∏

t ′=1,t ′ �=t

f (yt ′ |xt ′ , Θ̂x)

)
f (yt = m|xt , Θ̂x)

=
T∏

t ′=1,t ′ �=t

(
M∑

yt ′=1

f (yt ′ |xt ′ , Θ̂x)

)
f (yt = m|xt , Θ̂x) = f (yt = m|xt , Θ̂x) (16)

since
∑M

m=1 f (m|xt ′ , Θ̂x) = 1. Substituting (16) into (15) and normalizing (15) by a
factor of 1/T , then, we can write (15) as

F(Θx, Θ̂x) = 1

T

M∑

m=1

T∑

t=1

γt,m log
(
ωmN (xt |ηm,Rm)

)
(17)

where

γt,m = f (yt = m|xt , Θ̂x) = ω̂mN (xt |η̂m, R̂m)
∑M

m′=1 ω̂m′N (xt |η̂m′ , R̂m′)
(18)

Therefore, the estimation of A can be performed as follows:

Â = arg max
A

F(Θx, Θ̂x) (19)
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Note that direct maximization of F(Θx, Θ̂x) with regard to A is analytically cum-
bersome. Hence, A is estimated in two separate steps. In the first step, a tight upper
bound on the log-likelihood of a function of A with the observations is obtained by
applying the EM algorithm for the GMM parameter estimation. In the second step,
the obtained tight upper bound is maximized over the subspace of A.

The GMM parameters of the observation signals, obtained in the final step of the
EM algorithm [2] are denoted by Θ̂∗

x = {ω̂∗
m, η̂∗

m, R̂∗
m}Mm=1. In the Appendix, it is

shown that [24]

F
(
Θx, Θ̂

∗
x
) = −

M∑

m=1

ω̂∗
m

{
KLnorm

[
R̂∗

m|(ACmAT + Rw
)]

+ 1

2

[(
η̂∗

m − Aμm

)T(ACmAT + Rw
)−1(

η̂∗
m − Aμm

)]}+ const (20)

where KLnorm(Σ1|Σ2) denotes the KL divergence [12] of a zero-mean Q-variate nor-
mal density with covariance matrix Σ2 from a zero-mean Q-variate normal density
with covariance matrix Σ1.

According to (17), one can notice that in order to estimate A, a structure on ηm =
Aμm and Rm = ACmAT + Rw is constrained. Nevertheless, {η̂∗

m}Mm=1 and {R̂∗
m}Mm=1

in Θ̂∗
x are estimated by applying the EM algorithm in which this constraint is not

enforced, and the maximum of F(Θx, Θ̂x) with regard to {A, {ηm}Mm=1, {Rm}Mm=1}
is not strictly attained. The middle term of (20) denotes the divergence of η̂∗

m and
Aμm, which is always nonnegative. Thus, by removing the middle term of (20), the
following upper bound is obtained:

F
(
A, Θ̂∗

x
) ≤F∗(A, Θ̂∗

x
)

(21)

where

F∗(A, Θ̂∗
x
) = −

M∑

m=1

ω̂∗
m

{
KLnorm

[
R̂∗

m|(ACmAT + Rw
)]}

(22)

The following simulated example is used to examine in a graphical manner the
relation between F(A, Θ̂∗

x ) and F∗(A, Θ̂∗
x ). Two thousand samples of two source

signals are synthesized by the following GMM PDF:

fs(st |Θs) =
4∑

m=1

ωmN (st |μm,Cm) (23)

where the GMM order of each source is 2. The values of the mixing weights, mean
vectors and covariance matrices are ω1 = 0.06, ω2 = 0.14, ω3 = 0.24, ω4 = 0.56,
μ1 = [−5,−5]T, μ2 = [−5,5]T, μ3 = [5,−5]T, μ4 = [5,5]T, C1 = diag([10,1]),
C2 = diag([10,12]), C3 = diag([3,1]), C4 = diag([3,12]), respectively. The source
signals are mixed by a unitary mixing matrix

A =
[

cosα sinα

− sinα cosα

]
(24)
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Fig. 1 The complete
log-likelihood function of
F(A, Θ̂∗

x ) (solid curve) and its
tight upper bound F∗(A, Θ̂∗

x )

(dashed curve) as a function of
the SNR of the observations

where α = 45◦. The observations are contaminated by Gaussian noise, and the signal-
to-noise ratio (SNR) ranges from 0 dB to 25 dB. The GMM parameters of the mixed
source signals are estimated via the EM algorithm. Hence, F(A, Θ̂∗

x ) and F∗(A, Θ̂∗
x )

can be sketched as a function of the SNR of the observations, as depicted in Fig. 1.
It is shown that F∗(A, Θ̂∗

x ) is a tight upper bound for F(A, Θ̂∗
x ), especially when the

SNR of the observations is high.

4 PARAFAC-Based Estimation of the Mixing Matrix

In this section, we discuss the way to estimate the mixing matrix A based on the
objective function (22). According to the above analysis, maximizing the objective
function (22) with regard to the mixing matrix A results in the following equation
array:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R̂∗
1 = AC1AT + Rw

R̂∗
2 = AC2AT + Rw

...

R̂∗
M = ACMAT + Rw

(25)

Note that the component Rw will lead to estimation error for the mixing matrix.
Nevertheless, this estimation error can be decreased by transforming the JD prob-
lem (25) into a new JD problem in which the new equations are composed by the
differences between any two equations in (25). In such a way, the component Rw is
eliminated.

It is obvious that JD methods can be used to estimate the mixing matrix from (25)
when the mixtures are determined/overdetermined. However, the JD method does
not work for the underdetermined case when Q < P . In this paper, the solution will
be obtained by interpreting (26) as a tensor decomposition problem, similar to our
previous work in [7].
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Stack the matrices R̂∗
1, . . . , R̂∗

M in a tensor R ∈ R
Q×Q×M as follows: (R)ijm =

(R̂∗
m)ij , i = 1, . . . ,Q, j = 1, . . . ,Q, m = 1, . . . ,M . Define a matrix C ∈ R

M×P by
(C)mk = (Cm)kk , k = 1, . . . ,P , m = 1, . . . ,M . Then, we have

rijm =
P∑

k=1

aikajkcmk (26)

which we write as

R=
P∑

k=1

ak ◦ ak ◦ ck (27)

where ◦ denotes the tensor outer product, ak and ck are the kth column of A and C
respectively.

In this way, the mixing matrix A can be obtained by solving the following problem.
Given the third-order tensor R ∈R

Q×Q×M , we can compute its canonical decompo-
sition (CAND) with P components of rank-one tensors that best approximates R,
i.e.,

min
A,C

∥∥∥∥∥R−
P∑

k=1

ak ◦ ak ◦ ck

∥∥∥∥∥

2

(28)

where ‖‖ is the Frobenius norm.
Several algorithms can be used for performing tensor decomposition. The stan-

dard way for computing the tensor decomposition, is by using an “alternating least
squares” (ALS) algorithm [14]. Several improved versions, such as the enhanced line
search (ELS) [18], extrapolating search direction (ESD) [4], are proposed to accel-
erate the rate of convergence of ALS. Hence, the ALS is chosen here to compute
the CAND. To a large extent, the practical importance of PARAFAC stems from its
uniqueness properties. It is clear that the PARAFAC can only be unique up to a per-
mutation of the rank-1 terms and scaling of the factors of the rank-1 terms. Therefore,
we call the tensor decomposition (27) essentially unique if any other matrix pair A′
and C′ that satisfies (27) related to A and C via

A = A′PΔ1, C = C′PΔ2 (29)

with Δ1,Δ2 ∈R
P×P diagonal matrices, satisfying Δ1Δ1Δ2 = I, and P ∈R

P×P is a
permutation matrix.

Definition The Kruskal rank [11] or k-rank of a matrix A, denoted by κA, is the
maximal number λ such that any set of λ columns of A is linearly independent.

Theorem The PARAFAC decomposition of (27) is essentially unique if [11]

2κA + κC ≥ 2(P + 1) (30)

Generally, a matrix is of full rank and full k-rank. Hence, in practice, κA = min(Q,P )

and κC = min(M,P ).
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Fig. 2 The average relative error of the tested algorithms versus the SNR of the observations in the 3 × 4
underdetermined mixture with synthetic sources

Therefore, we can come to the following conclusion: when Q ≥ P , P ≥ 2, then
the identifiable condition is M ≥ 2; when Q < P , if M ≥ P , then the identifiable
condition is P ≤ 2Q − 2, if M < P , then the identifiable condition is P < Q − 1 +
M/2.

5 Simulations

In this section, using the experimental protocols and set-ups that are similar to those
in [8], simulations with synthesized data and speech signals are used to demonstrate
the performance of the proposed GMM-PARAFAC algorithm. The performance is
evaluated and compared in terms of the relative error performance index (PI) versus
the SNR of the observations. Here the relative error PI is defined as follows: PI =
E{‖A − Â‖/‖A‖}, where Â denotes the optimally ordered and scaled estimate of A.

First, we consider blind identification of a 3 × 4 underdetermined mixtures with
synthesized sources. Each of the sources is generated according to the following
GMM PDF fs = 0.5N (s;−5,1)+0.5N (s;5,1). The sources are mixed by a mixing
matrix whose elements are randomly drawn from [0, 2]. Additive Gaussian noise is
added in the mixing process. The FOOBI algorithm presented in [15] is implemented
as the baseline algorithm. 100 Monte Carlo experiments are run.

Figure 2 shows the PI as a function of the SNR when N = 5000 samples are
transmitted. Figure 3 shows the PI as a function of the length of the data set, when the
SNR is 20 dB. We can see that on average the proposed GMM-PARAFAC algorithm
has better performance than the FOOBI algorithm in terms of the relative error. The
main reason is that the GMM-PARAFAC method provides the ML estimate of the
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Fig. 3 The average relative error of the tested algorithms versus the number of the samples in the 3 × 4
underdetermined mixture with synthetic sources

mixing matrix. Moreover, it should be pointed out that the superiority of the proposed
GMM-PARAFAC method is clearer when the data block is short, because estimating
higher-order (HO) statistics from sample data generally requires longer data sets to
obtain sufficient estimation accuracy.

Second, we also consider blind identification of a 3 × 4 underdetermined mixtures
in which the sources are speech signals (available at http://www.kecl.ntt.co.jp/icl/
signal/sawada/webdemo/bssdemo.html), which are sampled at 8000 Hz, and recorded
with 8 bits per sample. The time duration of the sources is 5 s.

The sources are mixed by a mixing matrix whose elements are randomly drawn
from [0, 2]. Additive Gaussian noise is added in the mixing process, and the SNR
of the observations ranges from 0 dB to 25 dB. The SOBIUM algorithm in [13] and
FOOBI in [15] are implemented as the baseline algorithms. The tested algorithms are
operated under the following settings: (1) the GMM order in the GMM-PARAFAC
algorithm is determined according to the Bayesian information criterion (BIC) [21].
Here, the GMM order is set to 30; (2) the mean vectors estimated by the GMM-
PARAFAC algorithm is enforced to zero; (3) the number of delays in the SOBIUM
algorithm is set to 10. 100 Monte Carlo experiments are run.

Figure 4 depicts the behavior of the average relative error of the tested algorithms
versus the SNR of the observations in the 3 × 4 underdetermined mixture. Accord-
ing to Fig. 4, the identification performance of the tested algorithms improves with
the increase of SNR of the observations from 0 dB to 25 dB. The proposed GMM-
PARAFAC algorithm has the best performance, followed by the SOBIUM in [13],
and the FOOBI in [15]. It is due to the fact that the flexible source distribution is
applied in the GMM-PARAFAC algorithm. The simulation results with both synthe-

http://www.kecl.ntt.co.jp/icl/signal/sawada/webdemo/bssdemo.html
http://www.kecl.ntt.co.jp/icl/signal/sawada/webdemo/bssdemo.html
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Fig. 4 The average relative error of the tested algorithms versus the SNR of the observations in the 3 × 4
underdetermined mixture with speech signals

sized data and real speech signals validate the superiority of the proposed GMM-
PARAFAC method as compared with the baseline methods.

6 Conclusions

We have presented a novel algorithm named GMM-PARAFAC for blind identifi-
cation of noisy instantaneous linear mixture. The GMM-PARAFAC algorithm uses
GMM to model non-Gaussianity of the independent sources. In order to derive an ML
estimation of the mixing matrix, we formulate an ML function of the mixing matrix
by estimating the GMM parameters of the observation via the EM algorithm. Aim-
ing for decreasing the computational complexity of the EM algorithm, a tight upper
bound of the log-likelihood, instead of the log-likelihood itself, is used to estimate the
mixing matrix. The mixing matrix is estimated by the PARAFAC decomposition of
a three-way tensor which is composed of the covariance matrices of the GMM of the
observations. Owing to the powerful uniqueness properties of the PARAFAC decom-
position, the proposed algorithm works well in the underdetermined mixture. The
simulation results show that the proposed GMM-PARAFAC algorithm has superior
identification performance to the SOBIUM and FOOBI algorithms.
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Appendix

In this appendix, it is shown that (17) can be formulated as (20).
According to (19)

F
(
Θx, Θ̂

∗
x
) = 1

T

T∑

t=1

M∑

m=1

γ ∗
t,m log

(
ωmN(xt |ηm,Rm)

)
(31)

where γ ∗
t,m = ω̂∗

mN(xt |η̂∗
m, R̂∗

m)/
∑M

m′=1 ω̂∗
m′N(xt |η̂∗
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m′). Therefore
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t,m logωm

}
(32)

Since trace is a linear operator, the summation with regard to t in the mid-term of (32)
can be inserted into the trace operator. Hence, (32) can be rewritten in the following
form:
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∗
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}
(33)

The factor
∑T

t=1 γ ∗
t,m can be extracted out of the main brackets and (33) can be for-

mulated as follows:
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(34)

The updating equations of the EM algorithm for GMM parameter estimation can
be formulated as follows:

⎧
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Therefore

Gm = R̂∗
m + η̂∗
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Substitution of (36) into (35), yields the expression (37) as follows:
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(37)

Applying that ηm = Aμm and Rm = ACmAT + Rw

Hm = 1
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Express the KL divergence of a zero-mean Q-variate normal density with covariance
matrix Σ2 from a zero-mean Q-variate normal density with covariance matrix Σ1 as

KLnorm[Σ1|Σ2] = 1

2
tr
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2 Σ1
]− 1

2
log

∣∣Σ−1
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2
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Then (38) can be formulated in the following form:
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where KLnorm[R̂∗
m|ACmAT + Rw] is the KL divergence between two zero-mean Q-

variate normal densities with a covariance matrix R̂∗
m and ACmAT +Rw, respectively.

Therefore, (20) can be derived by inserting (40) into (37).
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