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Abstract—In this paper, we propose a new expectation-
maximization (EM) algorithm, named GMM-EM, to blind sep-
aration of noisy instantaneous mixtures, in which the non-
Gaussianity of independent sources is exploited by modeling
their distribution using the Gaussian mixture model (GMM).
The compatibility between the incomplete data structure of the
GMM and the hidden variable nature of the source separation
problem leads to an efficient hierarchical learning and alternative
method for estimating the sources and the mixing matrix. In
comparison with conventional blind source separation algorithm-
s, the proposed GMM-EM algorithm has superior performance
for the separation of noisy mixtures due to the fact that the
covariance matrix of the additive Gaussian noise is treated as a
parameter. Furthermore, the GMM-EM algorithm works well in
underdetermined cases by incorporating any prior information
one may have and jointly estimating the mixing matrix and
source signals in a Bayesian framework. Systematic simulations
with both synthetic and real speech signals are used to show
the advantage of the proposed algorithm over conventional
independent component analysis techniques, such as FastICA,
and a recent technique called null space component analysis
(NCA), especially for noisy and/or underdetermined mixtures.

Index Terms—Blind source separation, Gaussian mixture mod-
el, expectation-maximization, underdetermined mixture.

I. INTRODUCTION

LIND source separation (BSS) aims to estimate unknown

sources from the observed sensor signals without (or
with very limited) prior information about the sources and
how the sources propogate to the sensors. It has drawn great
attention due to its wide range of applications in signal
processing. Many algorithms have been developed to solve the
BSS problem based on the assumption that the sources to be
recovered are statistically independent, leading to a family of
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well-known methods called independent component analysis
(ICA) [1]-[5], such as, the information maximization based In-
fomax algorithm [1], the joint approximate diagonalization of
eigenmatrices (JADE) algorithm [3] and the FastICA algorithm
[4]. However, most of the ICA methods are developed for the
case of determined/overdetermined mixtures (i.e., the number
of sources P is equal to or smaller than the number of sensors
@), and consider a noiseless source separation model. These
methods are not directly applicable to the problem of source
separation from noisy and/or underdetermined mixtures.

There have been a number of attempts to extend the ICA
approach in order to address the noisy and/or underdetermined
BSS problem, such as, the noise-model based FastICA algo-
rithm [6], cumulant-based separation algorithms [7], [8], and
the characteristic functions based blind identification methods
[9]-[12]. These methods have offered new ideas for estimating
the mixing system, however, their performance is still limited
for recovering the source signals. The underdetermined source
separation problem is, in particular, very challenging since, as
opposed to dealing with determined/over-determined mixtures,
even provided with the information about the mixing system,
the sources cannot be uniquely reconstructed, simply because,
for P > @, the mixing matrix is not invertible. In contrast to
the ICA approach, the recently proposed null space component
analysis (NCA) approach can solve the noisy and/or underde-
termined BSS problem effectively [13], [14]. Given a set of
signals, the NCA approach constructs an operator for each
signal so that only the signal of interest is in the operator’s
null space, and all the other signals are excluded. Furthermore,
an additional constraint on the rank of the operators is imposed
to remove the rotation ambiguity.

In fact, the methods discussed above can be considered as
special cases under the Bayesian framework. In a Bayesian
technique, a statistical model defined by a set of parameters
is used to describe the source separation problem [15]-[18].
The parameters of the model can be inferred from the ac-
quired data, with the help of some prior information about
the physical system under consideration. As compared with
the classical ICA methods [1]-[5], the Bayesian approach
provides advantages in several scenarios. For example, the
Bayesian approach is often much more robust to noise since
the noise levels in the data are taken into account through
the parameterization of the noise covariance matrix within the
Bayesian model [15], [16]. Second, the Bayesian approach also
enables any prior knowledge about the physical application
systems to be exploited in the model where appropriate prior



distributions for the unknown parameters can be assigned.
Moreover, the BSS problem can be reformulated as a problem
of joint maximum a posteriori (MAP) probability estimation of
the mixing matrix and the sources, and as a result, the Bayesian
approach can be extended to address the underdetermined BSS
problem [17], [18].

Under the Bayesian framework, a number of BSS approach-
es have been presented in the literature. Belouchrani et al.
[19] developed a maximum-likelihood (ML) method for jointly
estimating the mixing matrix and noise covariance matrix via
the expectation-maximization (EM) algorithm [20], [21] where
the sources are drawn from a finite alphabet set. However,
many natural signals, such as speech signals, are continuous
signals (rather than the discrete sources). It has been shown
in [22] that many PDFs can be closely approximated by a
finite-order Gaussian mixture model (GMM) via the Kullback-
Leibler (KL) divergence [23]. Following this route, several
GMM based BSS approaches have been proposed. For exam-
ple, an approximate ML approach was developed by Moulines
et al. [24] for blind separation and deconvolution of noisy
linear mixtures. This method primarily considered the use of
GMMs to model the distribution of sources, and the parameters
of this model, along with the unknown mixing matrix were
optimized to best represent the observed data. Some related
works can also be found in [15], [17], [18], [25]-[27], in
which different mixture models, such as generalized Gaussian
mixture model [25], are used. The application of these models
for blind separation of underdetermined mixtures has been
studied in [17], [18], [25]. On the other hand, an alternative
strategy, in which the GMM is fitted to the observed data,
rather than the sources, is developed in [28], [29]. In this
approach, the mixtures are separated by finding the rotation
matrix that approximately diagonalizes all of the correlation
matrices resulting from the GMM. However, it is limited to
the noiseless determined case.

Recently, we proposed an EM algorithm for separat-
ing noisy determined/underdetermined mixtures with non-
stationary sources, in which the continuous density hidden
Markov model (CDHMM) is used to model the PDF and
to track the non-stationarity of the sources [30]. Preliminary
study on synthesized data has shown great potentials of this
algorithm, despite the challenge in initialising appropriately
the large number of hyper-parameters in practical scenarios.
In practice, the distribution model plays a vital role in Bayesian
approach. On one hand, the distribution model is required to
depict as many distribution forms and traits as possible to
make the approach more flexible and to potentially improve
separation performance. On the other hand, it is also required
to involve as few parameters as possible such that the Bayesian
approach can be implemented easily. Hence, there is a tradeoff
between the generalization of the distribution model and
estimation precision.

In this paper, we also consider the challenging noisy and/or
underdetermined BSS problem. In order to address the above
issue, we propose to exploit the non-Gaussianity of the sources
by modeling their distributions using a GMM, and to incor-
porate prior information by assigning conjugate priors for the
parameters of the GMM and mixing matrix for improving the

separation performance. In such a case, the BSS problem can
be treated as a problem of estimating parameters from incom-
plete data. The EM algorithm is probably the most well-known
algorithm for obtaining the ML estimates in parametric models
for incomplete data. It is an iterative algorithm alternating
between the E-step and M-step respectively. In the E-step, the
conditional expectation of the complete data log-likelihood is
computed on the basis of the observed data and parameter
estimates. In the M-step, the parameters are estimated by
maximizing the complete data log-likelihood from the E-step.
Therefore, an EM algorithm is proposed for obtaining the
MAP estimates of the mixing matrix, the sources and the
noise covariance matrix in a joint manner. Although there are
some similar works in the literature, our approach differs from
these works in the following aspects. First, such as [24], the
conjugate priors used for incorporating prior information have
not been considered. Second, as opposed to the variational
Bayesian method in [27], a new GMM-EM method is used
to obtain the MAP estimates of the sources and parameters
due to its advantage of providing fast and stable convergence
[31]. Thanks to the prior information incorporated by the
conjugate priors, the proposed EM method works well even
for underdetermined mixtures. Third, in comparison with the
method based on CDHMM [30], the proposed GMM-EM
method is easier to implement.

The remainder of this paper is organized as follows. In
Section II, the BSS problem and the assumptions made in
our work are presented. The source distribution model based
on GMM is given in Section III. The notations describing
the prior laws for the mixing coefficients, noise covariance
matrix and the model parameters are presented in Section IV.
In Section V, a new GMM-EM algorithm is derived for the
estimation of the mixing coefficients, the noise covariance
matrix, and the model parameters, in oder to estimate the
source signals. Issues regarding the practical implementation
and performance of the proposed algorithm are discussed in
Section VI, where the initialization scheme for the parameters,
the convergence performance, and computational complexity
are analyzed. In Section VII, simulations are provided to
show the performance of the proposed algorithm. Finally,
conclusions are drawn in Section VIIL.

II. PROBLEM FORMULATION

We consider the well-known instantaneous linear mixing
model given as [4]

x(t) = As(t) +w(t),t=1,....T 1)

The random vector s(t) = [s1(t),...,sp(t)]*, representing
P statistically independent sources at discrete time instance
t, is mixed by a time-invariant unknown mixing matrix A.
The observation vector x(t) = [z1(t),...,2q(t)]T is obtained
from an array of () sensors, and contaminated by the noise
vector w(t) = [wi(t),...,wg(t)]T which is assumed to
be Gaussian white with zero-mean and unknown covariance
matrix Ry, = diag(c?,...,05) and independent of s(t).
Different from the determined and/or noiseless models in-
vestigated in many existing contributions, here, we consider



the more practical situations where the mixtures may be
corrupted by noise or the mixing system is underdetermined.
Our objective in this paper is therefore to develop an algorithm
for recovering the source signals from noisy and/or under-
determined mixtures. To this aim, we propose to reconstruct
the source signals {s(¢)};=1, .o and the mixing matrix A in
a joint manner under the Bayesian framework on the basis
of the observed signals {x(t)};=1, . r and the assignment of
some prior information. Note that the method described in this
paper could be extended to a convolutive mixing model, which
however is out of the scope of this work.

III. SOURCE DISTRIBUTION MODEL

This section describes the source model based on GMM.
The PDF of the ith source signal at time instance ¢ is modeled
by the GMM as follows
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where N(.;.,.) denotes a Gaussian density function and N;
denotes the number of Gaussians. The mixing weights are
denoted by {O‘i,li};\ji’ such that le\le a;;, = 1. The means
and variances of the Gaussians are denoted by {,u,ll}ljy ¢ and
{JZ li}lii’ respectively. Assuming that the source signals are
statistically independent, the joint PDF of the sources can be
formulated as follows [26]
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where M = Hi:l N; is the total number of Gaussians in
the joint PDF and w,, = Hil Qigm = , M are
the mixing weights of each Gaussian component such that
Z%zl wm = 1. The index denotes a unique combination of
the Gaussian components from each source, i.e., [y, -+ ,lp —
m, where [; € {1,---,N;} denotes a Gaussian index of
the source. The mean vector and covariance matrix of the
Gaussian are denoted by p,, = [p1,1,, fl2,15, "+, pp]T and
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C,, = diag(o3,; ,05,,,---,0p,,), respectively. It can be
observed from (3) that the joint PDF of the sources is a
multivariate GMM parameterized by a diagonal covariance
matrix [30].

IV. CHOICES OF PRIOR DENSITIES

In this section, we discuss how to choose the prior dis-
tributions to incorporate prior information for improving the
performance of blind separation. The prior distribution is used
to attribute uncertainty rather than randomness to the unknown
parameter or latent variable. The hyper-parameters of the
priors are chosen to reflect any existing information. In the
Bayesian framework, the aim for solving BSS problem is to
obtain the posterior distribution of the relevant parameters.
Generally, let z be a random variable, and ¥ be the relevant
parameter. According to the Bayesian theorem, the posterior
distribution can be represented as the product of the likelihood
function f(z|}) and prior f(9), normalized by the probability
of the data f(z2)

M
J f(z10) f(9)dd

The likelihood function is usually well-determined from the
data-generating process and can be considered fixed. There-
fore, the difficulty in calculating the integral in the denomi-
nator in the right hand side (RHS) of the above equation will
depend on the choice of the prior distributions. With conjugate
priors !, the posterior distribution will have the same algebraic
form as the prior distribution (but with different parameter
values and also depending on the likelihood function if the
form of the likelihood function is varied). This essentially re-
duces the difficulty involved in the calculation of the numerical
integrations as described above, as the conjugate priors [32]-
[34] can provide a closed-form expression for the posterior
distribution. Moreover, the use of conjugate priors does not
prevent the proposed EM algorithm from choosing flexible
forms of the density functions, such as Gaussian, Laplacian,
Gamma, or other members in the exponential family, which
covers a wide range of distributions for the mixing matrix and
the noise covariance. The choice of the hyper-parameters of
the priors will be discussed later in Section VI-B. Next, we
discuss the choice of the prior densities for the mixing matrix
and noise covariance matrix, as in [30], and for the source
models, as in [28].

f(0]2) = )

A. Prior Density for Mixing Matrix

To account for some model uncertainty, we assign a Gaus-
sian prior law to each element of the mixing matrix A

— N(juizs %) )

With (5), some constraints can be imposed on the elements
of the mixing matrix, i.e. by assigning some known values to
the means p;; with o;; chosen for small values to reflect the
degree of the uncertainty [30]. Assuming that the elements

g(aijlpij, o)

'For a likelihood function, a conjugate prior is defined as the prior for
which the posteriori and the priori are of the same type of distributions.



of the mixing matrix are independent from each other, it is
straightforward to derive that g(vec(A)) = [T, TT5_, 9(as;)

ghtforward to derive that g(vec =112 =0 9(ai;),
where vec(.) is an operator for obtaining a vector by stacking
the columns of a matrix one beneath the other. It is straight-
forward to get

g(vec(A)) = N(py, A) (6)

where pty = [p11,- - pip, -+ Qs -+ pop)t and A is a
diagonal matrix whose elements are afj.

B. Prior Density for Noise Covariance Matrix

Covariance matrices are symmetric positive semi-definite
matrices. To model the prior knowledge about them, Wishart
distribution, which is a generalization of the univariate chi-
square distribution, is often used. The Wishart distribution is
a conjugate density which therefore has another advantage in
simplifying the GMM-EM process as described in Section V.
Therefore, as in [30], the Wishart density is assigned as the
prior density of the noise covariance matrix R, defined as

vR—Q— 1
g(R;1|E;1,UR) x ’R;1|( r=Q-1)/2 exp {—QIr(EwR;l)}
@)

where ¥, is a @ x @ positively defined symmetric matrix,
vR is a scalar greater than ) — 1, tr(.) denotes the trace of a
squared matrix, and |.| indicates the determinant of a squared
matrix.

C. Prior Density for Parameters of the Source Model

The conjugate prior density assignment for the parameters
O = {wWm, My, Crn}M_, in (3) is more complicated. Ac-
cording to [35], however, we can interpret a finite mixture
density as a density associated with a statistical population,
denoted as a mixture of M component populations weighted
by the coefficients (w1, ...,wps). Therefore, we can regard
f(s(t); ©) as a marginal PDF of the joint PDF of the param-
eters ©. More specifically, it can be computed as the product
of a multinomial density and multivariate Gaussian densities,
which denote the sizes of the populations and the densities of
individual components, respectively [35]. If the joint density of
the weighting parameters is a multinomial distribution, then a
practical candidate for modeling the prior knowledge of these
parameters is a conjugate density such as the Dirichlet density

M
glwr, - wnln, - om) o< [T 0wt ®)

where 7,, > 0 are the hyper-parameters for the Dirichlet
density. As for the parameters (u,,,C,,) of the individual
Gaussian mixture component

g(um’C:nlhmvum»vmyZ:nl) o8 ’C:nll(vm_P)/Q
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where (T, W, U, 5m) are the prior density hyper-
parameters such that v,, > P — 1, 7, > 0, u,, is a vector of
dimension P, and ¥,, is a P x P positive definite matrix.

Fig. 1. The probability-generative model of observed signals at the discrete
time instance t.

Assuming that the parameters of the individual mixture
components and the mixture weights are independent [35],
then, the joint prior density g(©) can be computed as the prod-
uct of the prior densities defined in (8) and (9), respectively,
given as follows,

9(6) = glwn,- ) []

M

9. Cl)  (10)

m=1

V. BAYESIAN BLIND SEPARATION

In this section, equipped with the source model discussed
in Section III and prior densities defined in Section IV, we
develop a new EM algorithm under the Bayesian framework
for the BSS problem as described in Section II. For the
convenience of analysis, we employ a probability-generative
model, as depicted in Fig. 1, where a graphical model is used
to show the process of generating an observation signal at
time instant ¢ based on the mixture model. Apparently, there
are two levels of hidden variables in this graphical model, with
the first level being represented by the Gaussian component
labels {y(t)}¢=1,.. r of the density mixture, and the second
level by the source signals {s(¢)}i=1,... 7

As a result, the BSS problem in essence can be treated
as a problem of estimating parameters from incomplete-data.
The incomplete-data are the observations X = {x(t)};=1,....7,
while the missing data are the sources S = {s(t)}=1,.. 1
and the unobserved Gaussian component labels of the density
mixture Y = {y(¢)}¢=1,.. 7. The parameters that need to
be estimated are A, R, and ©. The EM algorithm is a
commonly used method for inferring the parameters of an
underlying distribution from incomplete data based on the
ML/MAP scheme [36]. Therefore, similar to the method we
adopted in [30], we derive an GMM-EM algorithm in this
work to obtain the MAP estimates of the unknowns including
the mixing matrix, noise covariance matrix, and the parameters
of the source model, as detailed below.

A. The E-step

Given the observed data X and the current parameter
estimates, the E-step of the GMM-EM algorithm aims to
obtain the expected value of the complete-data log-likelihood
log f(X,S,Y]A,R,, ©) with respect to the unknown data S
and Y. The evaluation of this expectation is called the E-step



of the algorithm. To this end, we define an auxiliary function
as

J(AR,,0,A% RS, O
= E[log f(X,S,Y|A, Ry, 0)|X, A?, R, 07

where A9, RY, and ©Y are the current estimates of the
parameters that we use to evaluate the expectation and A, R,
and © are the new parameters that we optimize to increase .J.
E[] is an expectation operator.

Since X and A9, RY, ©Y are constants, A, R,,, O are
variables that we wish to adjust, and S, Y are random variables
governed by the distribution f(S,Y|X, A9, RY, ©9), the RHS
of (11) can be rewritten as

(1)

E[log f(X,S,Y|A,R,,0)|X, A%, R, 6]
=E[/(S,Y[X, A% R}, 0%)log f(X,S,Y[A, Ry, O)]
(12)

After a series of derivations (more details can be found in
Appendix A), we can get

T M
T=2.2
t=1m=1"%S

log wp f(s(t) |y (t)

T
> [ rstoix. v,

=m|s(t),X, A%, RI, OY)
=m, 0)ds+

R, 07)log f(x(t)[s(t), A, Ruy)ds
(13)

It is clear that the  posterior  distribution
f(s(®)|X,A9,RY,09) is indispensable for the evaluation
of the expectation in (13). In practice, it can be proved that
(more details can be found in Appendix B)

Fs@IX, A%, RS, 6 Zwth( ); f1%,,, C )
m=1 (14)
where
Gl = ((A9)T(Rg) A+ (Cg)~)
l"mt = (Cg ) ((Ag) (Rg})* ( )_|_ (CTQn)flugn)
oy =wd, ( (C? ) |27T-R1g1)|1/2 |C$n1/2>
exp {—§ [xT(1)(Rg,)~'x(1)
+ ()" (Ch) ™

‘g, — (a5,)" (érgnt)_lﬁﬁmt}}
(15)

B. The M-step

This step maximizes the expectation of the complete-data
log-likelihood as shown in (13) with respect to A, R, and ©,
and the maximum point is then taken as the new parameters.
It can be observed that the first term in the RHS of (13) is
dependent on the parameters © of the GMM model, while
the second term is determined by the mixing matrix A and
the noise covariance matrix R,,. For this reason, the auxiliary
function in the RHS of (13) can be split into two parts J; and
JQ, ie.

J=J1+J2 (16)

where

Ji= 2 [, F(s(D]X, A9, RY,, ©9)
log f(x <)|s< ). A, Ry )ds

Z Z Js f(y(t) = mls(t), X, A9, RS, ©9)
=1m=1
logwmf(S(t)ly(t) =m,O)ds
A7)

Accordingly, the parameters A, R,, and © can be estimated
by optimizing the auxiliary functions J; and .J5, respectively,
as explained in the next two sub-sections.

1) Estimation Formula for the Mixing Matrix A and the
Noise Covariance Matrix R,,: First of all, the updating rules
for the mixing matrix A and the noise covariance matrix R,
are discussed based on the auxiliary function .J;. Note that
the auxiliary function J; in (17) can be converted into the
following form as

T
Jp=-— 3 log [27R., |

T
— 5 [Ry (Rus — ARy — RLAT 4 AR AT)]

(18)
where
T
R, = 2 3 x(Ox7()
t=1
T
R, — 4 3 E(OIX. A% RS, 0970  (19)
t=1
R., = } Y Bls(t)s" ()X, A%, R2,, 07
t=1

Note that the prior information for the mixing matrix A
denoted by J is related to its conjugate prior as shown in
(6). Therefore, we can obtain the MAP auxiliary function for
the mixing matrix A by incorporating its prior information,
which gives

Ja=J1 +J4
T 1
T
B 5”’ [R;l(Rﬂm —AR,; — R?xAT + AR“;SAT)]
1
— itr [A (vec(A) — py)(vec(A) — “A)T]

(20)

The updating rule for the mixing matrix A can therefore be
obtained by taking the derivative of .J4 with respect to A, and
setting it to zero, which gives

-1

vec(A) = [TRs @ Ry + A7

2D
[vec(TR;lRm) + AfluA]

where ® denotes the Kronecker product.

Similarly, by incorporating the prior information for the
noise covariance matrix R, denoted by J% n which is related
to its prior distribution as defined in (7), the MAP auxiliary



function for the noise covariance R, can be written as

ij =J; + ‘]I%w

T
= - 5 IOg IRwl
T
- [R,' (R, — AR, — RLAT + AR, ,AT)]
~ R0 g Ry |~ ir(BuR)

(22)

The updating rule for the noise covariance matrix R, can be
similarly obtained by taking the derivative of J r,, With respect
to R,,, and setting it to zero, which gives

R, :T+UR1—Q 1
7 (Row — AR,

—~RL(A)T + ARSS(A)T) +%

(23)

The updating rules for A and R, involve the calcu-
lation of Rgss and Rg,. Using the posterior distribution
f(s(t)]|X, A9, RY,09) as shown in (14) and (15), it is easy
to obtain the conditional expectations E[s(¢)|X, A9, RY , ©Y]
and E[sT(t)s(t)|X, A9, RY,, ©9].

2) Estimation Formula for the GMM Parameters: The
parameters © of the GMM can be updated in a similar way
to that for the mixing matrix and noise convariance matrix.
Using (14) and (15), the auxiliary function J5 in (17) can be
re-written as

Jy = zz / &2,
log w, f(s(t)|y(t)

with the prior density as depicted in (8), (9) and (10), then the
prior information for the source signals can be denoted as

g9
“mtﬂ C ) (24)

=m, O)ds

J=3" (= Dlogwn — (v — P)/2)log|Co|
T 1 -
= G (= W) (i, — 1) ] = S1r(5 G

(25)

Hence, the MAP auxiliary function Jg for the GMM param-
eters can be written as js =Jo+J g To maximize this ex-
pression, we can maximize the terms containing the weighting
coefficient parameter w,,, and the term containing the mean
vector f,,, and the covariance matrix C,,, m = 1,--- , M
separately since they are independent from each other.

Note that [, N'(s(t); 4%,, C%,)ds = 1, hence, the part of
the auxiliary function Js related to parameter w,, can be
simplified as

ZZw logwm—l—z

t=1 m=1

J = 1) logw, (26)

Adding the Lagrange multiplier A, using the constraints that
Zf\,{:l wm = 1, and setting the derivative of J él) with respect

to w,, equal to zero, one obtains

<Z Zw logwm>
m=1t=1
M
+Z nm - 1ngm+)\ <Z Wm — >‘| =0

awm

m=1
27
Summing both sides over m, we can get A =
—(2%21 Nm — M + T') resulting in
m 1 r oJ
- n 21 Wit (28)

Zn]\le Nm — M + T

On the other hand, the part of the auxiliary function Jg
related to parameters u,,, and C,, can be written as

e - Z / GIN (s(8); iy, ©2,) log f(s(8) y(t) = m, ©)ds
+ ((vm — P)/2)log |Cm1|
m — 1
= HrIC (f = ) (i — )] = S0 (2 C]
(29)

The updating rule for p,, and C,, can therefore be obtained
by taking the derivative of Jéz) with respect to p,, and C,,
respectively, and setting them to zero. That is 0.7} S 2) / o, =0
and 8% /0C,, = 0.

For notational simplicity, define

Ty, =E[s()s (t)|y(t) = m, X, A, Rf,, ©7]
9 09 (9 )T (30)
= Cmt + IJ’mt (p’mt)
Then, one obtains
8“7}7 (Z/wmt Hmt’cgnt)
log f(s(t)|y(t) = m,©)ds) (31)
T
Z y’mt Hm)
and
87 (Z/ mt u‘mt’ éfn,t)
t=1
log f(s(t)[y(t) = m,©)ds)

T
- D [-Con (= Bt~ )" + i)
(32)
On the other hand, notice that
5o (= P)/2) 108 ] | -
Tm o1 T _ 1 -1
SO Gt = ) — )] = (20 C))

= - 7-m(jml(/'l’m - um)
(33)



0 _
s ((m = P)/2)log|CL}| -
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= - 9 Cm+ 2 (l"’m_um)<l"’m_um) +2Zm
(34)

Combining the terms (31) and (33), the updating formula for
W, can be easily obtained as
L Tyt Zthl @gntﬁfnt 35
m T ~q ( )
Tm + D i1 Ot
and the updating formula for C,, can be similarly obtained
by combining the terms (32) and (34)

- umxﬂm - UM)T

T ~9
Um — P+ Zt:l Wint

Cm _ Ym + Tm(p’m

+

the iterations. The initial values for the parameters therefore
become important for the convergence of the EM algorithm,
not only in terms of minimizing the number of iterations
required for the algorithm to converge to a local maximum,
but also for it to find a “good” solution [33]. Therefore, the
parameters are given proper prior densities, i.e., conjugate
prior densities, in order to incorporate the prior information
as discussed in Section IV. A reasonable choice for the initial
estimates is the mode of the prior density. For the mixing
matrix and the noise covariance matrix, the initial values can

be set as
{ vec(A) ) = py

RY = (vg - Q- 1)z, Gn

The mean value of the mixing matrix 4 can be estimated
by the blind identification methods such as those presented
in [6]-[12]. Although, in such cases, the source signals can
not be recovered by multiplying the observed signals with
the inverse/pseudo inverse of the mixing matrix, the hyper-

S @8 (T — 19 ()T = oy (3%,)T + fity, (f1,, )T )parameter 414 can be determined by the estimate of the mixing

Uy — P+ 23:1 (“Dfm‘
(36)

VI. PRACTICAL IMPLEMENTATION AND ALGORITHM
ANALYSIS

In this section, we discuss some practical implementation
issues of the proposed algorithm, and also offer an empirical
analysis of its convergence and computational complexity.

A. Summary of the Algorithm

The proposed GMM-EM algorithm can be implemented as

follows:

1) Initialization Initialize the mixing matrix A(O), noise
variance matrix Rg) ) and model parameters 00 ac-
cording to the initialization scheme described in Section
VI-B, and set the EM iteration index ¢ = 0.

2) EM iterations Repeat the E-step and M-step until con-
vergence.

a) E-step Calculate f(s(t)|x(t),A(i),R%),G(i)) ac-
cording to (14)-(15), and calculate R, and R,
according to (19).

b) M-step Calculate the mixing matrix A+ and
noise co-variance matrix Rq(,fﬂ) according to (21)

and (23), respectively. Calculate the weight wgfl)

mean vector ,ﬁ}f“ and co-variance matrix C%H)

according to (28), (35) and (36), respectively.

3) MAP source estimation Let ig be the number of itera-
tions required before the convergence of the algorithm,
the posterior mean estimate Sy;4p is approximated by
the empirical mean of the sequence s;~.;,.

B. Parameter Initialization

It is well-known that the EM optimization strategy is
sensitive to the initial set-ups of the parameters. The likelihood
function may converge to a local maximum instead of the
global maximum due to the use of the bootstrap process in

matrix. In our implementation in Section VII, the LEMACAF-
4 method 2 in [10] has been used for estimating the initial
value of the mixing matrix.

Similarly, the initial estimates for the GMM model param-
eters of the sources are taken as

2 =)/ (S0, 1)

/"’5‘2) = U
C¥ = (v,, — P)%;}!

(38)

It has be shown that the joint PDF of the observed signals
can also be modeled by GMM when the joint PDF of the
source signals is modeled by GMM [28] (due to space
limitation, the detail is omitted here). As a result, the weighting
coefficients, the mean vectors and covariance matrices of
the observation-based GMM model can be learned from the
observed signals. Therefore, according to the relationship
between the weighting coefficients, the mean vectors and
covariance matrices of the observation-based GMM model and
their counterparts of the source-based GMM model, the hyper-
parameters 7,,, W, and X, can be determined by the estimate
of the mixing matrix and the estimates of the observation-
based GMM model parameters jointly.

C. Convergence Analysis

In essence, the proposed GMM-EM separating algorithm
is a gradient-based bootstrap method for optimizing the log-
likelihood function. There are already some works that have
investigated this issue [37], [38]. For example, Xu et al.
[37] have established the linkage of the EM algorithm with
the gradient-based approaches for the ML learning based on
GMM, and shown that the EM parameters are iterated in
terms of the gradient obtained by a positive definite projection
matrix. This result was extended to the more general block

2Matlab codes can be found at: http://www.i3s.unice.fr/ pcomon/TensorPac
kage.html



coordinate descent (BCD) method [39], [40], in which a single
block of variables is optimized at each iteration.

In Section V, to update each variable of A, R, wm, i,
and C,,, the employed method is to simply set the first
derivative of the complete-data log-likelihood with respect to
each variable to be zero and solve the corresponding equation
sequentially. Hence, if the Hessian matrices of complete-data
log-likelihood with respect to these variables are non-positive,
then it is safe to state that the subproblem with respect to each
variable is convex. Take the mixing matrix as an example. By
converting the matrix A into vector form vec(A), the Hessian
matrix of J4 with respect to vec(A) can be easily obtained,
and written as Hy = —(TR,, ® R;' + A™1). Since R,, and
A are positively defined, it is obvious that H 4 is non-positive.
The Hessian matrix of .J Rr,, With respect to R, can be obtained
in a similar way, and it is also non-positive. That is, for each
iteration of the GMM-EM algorithm given in (21, 23), the
search direction of the parameters has a positive projection on
the gradient of its corresponding MAP auxiliary function.

We further discuss the GMM parameters wy,, i,, and C,,.
If each mixture component is assumed to be non-degenerate
[37], i.e., Wy, > 0, then @Y ,,...,@7 , is a sequence of T
i.i.d. random variables with a non-degenerate distribution and
lim7_s e Zthl Wm¢ = 0o with probability one. It follows that
the Hessian matrix H,, = — (1, — 1 + Zthl @7 ) is non-
positive with probability one when T' — oo. Applying the
same reasoning, we can see that the GMM-EM estimation
formulas for f,, and C,, are asymptotically similar in terms
of the MAP approach [35], [41]. Therefore, as long as the
initial estimates of A©. R and ©© remain unchanged,
the EM algorithm will converge to the same estimates with
probability one when T' — oo.

Finally, it should be pointed out that the EM algorithm
may converge to a local maximum instead of the global
maximum when the number of parameters is large and/or
the parameters of the algorithm are inappropriately initialized.
This is a general limitation associated with the gradient-based
bootstrap-like optimization algorithms. The reason is that it is
often trapped to the neighborhood of a local optimizer if the
number of parameters is large and/or the parameters of the EM
algorithm are initialized such that the solution is far from the
global optimizer. Hence, the initialization scheme discussed in
Section VI-B is vital to ensure the convergence of the proposed
GMM-EM algorithm.

D. Computational Complexity Analysis

The computational load of the proposed GMM-EM algorith-
m is dominated by the E-step and M-step. In each iteration of
the E-step, it is required to:

o calculate the

7 (sIx, A, R, @@2
requires O(Q(P + Q)(P
observation vector.

o calculate the statistics R, R, and R, with (19) which
requires O((P + Q)?) multiplications per observation
vector.

In each iteration of the M-step, it is required to:

posterior probability
with (14) and (15) which
+ @?)) multiplications per

« update the mixing matrix A using (21) and the noise co-
variance matrix R, using (23) which require O((PQ)3+
(PQ)?) and O(PQ(P+Q)) multiplications, respectively.

o update the weighting coefficients oJ,(le), mean vector
uﬁffrl) and covariance matrix C,(flﬂ) according to (28),
(35) and (36) which amount to O(M P2T) multiplica-
tions.

From the above analysis, we can see that the computational
complexity of the proposed GMM-EM algorithm depends
closely on the number of sources and sample size consid-
ered in the model. Theoretically, the proposed GMM-EM
algorithm for GMM parameter estimation of source signals
would become increasingly intractable and computationally
unaffordable as the number of sources increases. This is
because the number of Gaussians for modeling the source
vector grows exponentially with the number of sources. For
example, assuming that the number of sources is P = 10,
and the PDF of each source is modeled by the GMM with
I, = 3 Gaussians, then it is straightforward to derive that
M = 3'° Gaussians are required to model the source vector.
Howeyver, it has been shown that the determined GMM order
in high dimensions is always much smaller than the theoretical
number of Gaussians [28]. The main reason is that the distribu-
tion of the sensors becomes more Gaussian while the number
of sources increases. Hence, it enables the applicability of
the proposed GMM-EM method also for a large number of
sources.

Note that the computational complexity of an iteration of
the NCA algorithm [14] is O(T®) when the size of the
signal is assumed to be much larger than other parameters.
In contrast to the NCA algorithm, the proposed GMM-EM
algorithm apparently has advantage in terms of computational
complexity. This is because the computational complexity of
an iteration of the proposed GMM-EM algorithm is O(T")
under the same situation.

VII. SIMULATIONS AND ANALYSIS

In this section, the separation performance of the proposed
GMM-EM algorithm is evaluated in terms of similarity score,
and compared with that of the NCA [14] and FastICA [4]
algorithms. Calculation of the similarity score is detailed in
Appendix C. Note that the FastICA algorithm cannot be
implemented in the underdetermined case, hence, we only
compare the proposed GMM-EM with the NCA in such case.

The section is organized as follows. Firstly, the separation
performances of the compared algorithms are evaluated based
on synthetic data in terms of similarity score versus the signal-
to-noise (SNR) level within the mixtures, sample size, and the
number of sources in determined mixtures. Secondly, these
performance aspects are also investigated for underdetermined
mixtures. Finally, the performances of the compared algo-
rithms are evaluated for separating mixtures of real speech
signals.

The compared algorithms were operated under the following
overall settings: 1) The number of EM iterations used in
the proposed GMM-EM algorithm was set to 100; 2) The
separation performance of the NCA algorithm was evaluated
with 100 iterations.
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Fig. 2. The average similarity score of the tested algorithms versus the SNR
in the determined case.

A. Synthetic Data

1) Separation Performance as a Function of SNR in De-
termined Mixtures: The following experiment compares the
separation performances of the tested algorithms for deter-
mined mixtures in the presence of additive Gaussian noise.
Each source signal is synthesized by the following GMM PDF
fs = 0.5N(s;1,0.4) + 0.5N(s; —1,0.4). For each SNR, 100
sets of two-dimensional independent source signals, containing
T = 1000 samples, are synthesized and mixed by a random
2 x 2 mixing matrix, with its elements randomly drawn in the
range [—1, 1]. Additive Gaussian noise is added in the mixing
process, and the SNR of the observations ranges from 0 dB
to 30 dB.

Fig. 2 depicts the average similarity score between the
original sources and recovered sources of the tested algorithms
versus the SNR. For the low SNRs (e.g., lower than 20 dB),
one can observe that the proposed GMM-EM algorithm offers
the best performance, followed by the NCA and FastICA algo-
rithms respectively. The advantage of the proposed algorithm
tends to disappear when the SNR is greater than 20 dB, and in
this case, the level of noise is pretty low and hence could be
ignored in practice. Furthermore, the performance of the NCA
algorithm is close to that of the proposed GMM-EM algorithm.
This is because the noise component is also considered in the
NCA algorithm. The main reason for the proposed GMM-EM
algorithm being robust to noise is that the noise component
has been taken into account in the model with its covariance
jointly estimated in the EM process.

2) Separation Performance as a Function of Sample Size
in Determined Mixtures: The following experiment com-
pares the separation performances of the tested algorithm-
s as a function of the sample size T for determined
mixtures. Each signal is synthesized by the same GM-
M used in the first experiment shown above. For each
T € {100, 200, 400, 600, 1000, 2000, 4000}, 100 sets of two-
dimensional independent sources are synthesized and mixed
by a random 2 X 2 mixing matrix, with its elements randomly
drawn in the range [—1,1]. Additive Gaussian noise is added
in the mixing process, and the SNR of the observations is 10
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Fig. 3. The average similarity score of the tested algorithms versus the sample
size in the determined case.
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Fig. 4. The average similarity score of the proposed algorithm versus SNR
for a varying number of sources in the determined case.

dB.

Fig. 3 depicts the average similarity score of the tested
algorithm versus the sample size 7. One can observe that as T’
increases from 100 to 4000, the separation performances of the
tested algorithms improve, and the proposed GMM-EM and
NCA algorithms outperform the FastICA algorithm. However,
as pointed out in [14], the computational complexity of the
NCA algorithm is proportional to O(T3), hence, it becomes
computationally prohibitive when the sample size is large than
1000, and no results are given beyond this point.

3) Separation Performance as a Function of Dimension in
Determined Mixtures: The following experiment compares
the separation performances of the proposed algorithm as a
function of SNR for different number of sources in determined
mixtures. Each signal is synthesized by the same GMM as
used in the first experiment. For each P € {2,3,4,5}, 100
sets of P independent source signals, containing 7' = 1000
samples, are synthesized and mixed by a random P x P mixing
matrix, with its elements randomly drawn in the range [—1, 1].
Additive Gaussian noise is added in the mixing process, and
the SNR of the observations ranges from 0 dB to 30 dB.

Fig. 4 depicts the average similarity score of the proposed
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Fig. 5. The average similarity scores of the tested algorithms versus the SNR
in the underdetermined case.

GMM-EM algorithm versus the SNR when the number of
sources varied from 2 to 5. One can observe that the perfor-
mance of the proposed GMM-EM algorithm deteriorates as
the number of sources increases.

4) Separation Performance as a Function of SNR in Under-
determined Mixture: The following experiment compares the
separation performances of the tested algorithms for underde-
termined mixtures in the presence of additive Gaussian noise.
Each signal is synthesized by the same GMM used in the
first experiment. For each SNR, 100 sets of three-dimensional
independent source signals, containing 7' = 1000 samples, are
synthesized and mixed by a random 2 x 3 mixing matrix, with
its elements randomly drawn from the range [—1, 1]. Additive
Gaussian noise is added in the mixing process, and the SNR
of the observations ranges from 0 dB to 30 dB.

The average similarity scores of the tested algorithms versus
the SNR in the underdetermined case are shown in Fig. 5. Due
to the mixing matrix and sources are estimated jointly, rather
than separately (e.g., based on the inverse of the mixing ma-
trix), the proposed GMM-EM algorithm can also work in the
underdetermined case. From Fig. 5, one can also observe that
the separation performances of the tested algorithms improve
with the increase of SNR. However, it can also be observed
that the separation performance in the underdetermined case
deteriorates as compared with the performance in determined
case. This is because the information loss caused by the
lack of sensors in the underdetermined case. Furthermore, it
should be pointed out that the NCA algorithm outperforms the
proposed GMM-EM algorithm in such an underdetermined
case. The main reason is that the NCA algorithm mainly
depends on whether the null spaces of different sources are
orthogonal, regardless whether the mixture is determined or
underdetermined.

5) Separation Performance as a Function of Sample Size
in Underdetermined Mixtures: The following experimen-
t compares the separation performances of the tested al-
gorithms as a function of sample size 7' for underdeter-
mined mixtures. Each signal is synthesized by the same
GMM as used in the first experiment. For each T €
{100, 200, 400, 600, 1000, 2000, 4000}, 100 sets of three-
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Fig. 6. The average similarity score of the tested algorithms versus the sample
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Fig. 7. The average similarity scores of the proposed algorithm versus the
SNR for a varying number of sources in the underdetermined case.

dimensional independent source signals are synthesized and
mixed by a 2 x 3 mixing matrix, with its elements randomly
drawn in the range [—1,1]. Additive Gaussian noise is added
in the mixing process, and the SNR of the observations is 10
dB.

Fig. 6 depicts the average similarity score of the tested
algorithm versus the sample size 7', where the performance
of the NCA algorithm is again shown for up to 1000 samples.
One can observe that as 71" increases from 100 to 4000, the
separation performances of the tested algorithms improve.

6) Separation Performance as a Function of Dimension in
Underdetermined Mixtures: The following experiment com-
pares the separation performances of the tested algorithms
as a function of the number of sources in underdetermined
mixtures. Each signal is synthesized by the same GMM used
in the first experiment. For each P € {3,4,5}, 100 sets of P
independent source signals, containing 7' = 1000 samples, are
synthesized and mixed by a random 3 X P mixing matrix, with
its elements randomly drawn in the range [—1,1]. Additive
Gaussian noise is added in the mixing process, and the SNR
of the observations ranges from 0 dB to 30 dB.

Fig. 7 depicts the average similarity score of the proposed
GMM-EM algorithm versus the SNR when the number of
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Fig. 8. Speech signals and their respective histograms of amplitude distribu-
tions.

observations is fixed and the number of sources is varied. One
can observe that the performance of the proposed GMM-EM
algorithm deteriorates as the number of sources increases.

B. Real Data

The following experiments compare the performances of the
tested algorithms, in terms of similarity score, in separating
different mixture combinations of three 0.5-s-long speech
signals 3, sampled at 8000 Hz and recorded with 8 bits per
sample. Fig. 8 shows the waveform of the sources and their
histograms of the amplitude distributions. On the other hand,
the PDF of each source signal is modeled by GMM of order
3, where the order of the GMM is determined according to the
Bayesian information criterion (BIC) [42]. The BIC, based on
the likelihood function and a penalty term introduced for the
number of parameters in the model, is a well known criterion
for model selection among a finite set of models. By calcu-
lating the BIC values for all possible models, the candidate
model is chosen as the one corresponding to the minimum
value of the BIC. The density estimations for the sources are
shown in Fig. 9. We can observe that each distribution can be
well approximated with 3 Gaussian components and similar
to its counterpart in Fig. 8.

Two experiments are used to investigate the separation
performance of the proposed GMM-EM algorithm when the
sources are real speech signals.

« In the first experiment, two speech signals are artificially
mixed by a 2 X 2 mixing matrix, whose elements are
randomly generated from a uniform distribution over the
interval [—1,1]. Additive Gaussian noise is added in
the mixing process, and the SNR of the observations
ranges from 0 dB to 30 dB. In [28], it is shown that the
joint PDF of the observed signals can also be modeled
by GMM when the joint PDF of the source signals
is modeled by GMM. Hence, the order of the GMM
of the sources equals to that of the observed signals.
As a result, the order of the GMM can be determined

3available at: http://www.kecl.ntt.co.jp/icl/signal/sawada/webdemo/bssdemo.
html
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Fig. 10. The average similarity score of the tested algorithms versus the SNR
in the determined mixtures with real speech signals.

according to the BIC based on the observed signals.
Here, the optimal GMM order determined by the BIC
criterion for the GMM-EM separating algorithm is 9.
The NCA and FastICA algorithms are implemented as
baseline algorithms. 100 Monte Carlo experiments are
run.

o In the second experiment, the underdetermined case of
P = 3 sources and (Q = 2 observations is considered.
The source signals are the same speech signals used in the
noisy determined case. The sources are artificially mixed
by a 2 x 3 mixing matrix, whose elements are randomly
generated from a uniform distribution over the interval
[-1,1]. The SNR of the observations is ranged from 0
dB to 30 dB. The optimal GMM order determined by
the BIC criterion for the GMM-EM algorithm is 27. The
NCA algorithm is implemented as the baseline algorithm.
100 Monte Carlo experiments are run.

The average separation performance of the tested algorithms
in terms of the similarity score versus the SNR in determined
mixtures is shown in Fig. 10. The separation performances of
the tested algorithms for underdetermined mixtures are shown
in Fig. 11. One can observe similar performance patterns to
those in Fig. 2 and Fig. 5. More specifically, the proposed
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Fig. 11. The average similarity score of the tested algorithms versus the SNR
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GMM-EM algorithm seems to give almost identical similarity
scores as for synthetic data.

VIII. CONCLUSION

In this paper, the challenging noisy and/or underdetermined
BSS problem is considered. To address this issue, we have pro-
posed a GMM-EM approach in which the non-Gaussianity of
the sources is exploited by modeling their distributions using
GMM. Then, the mixing coefficients, the GMM parameters
and the noise covariance matrix are estimated by maximizing
their posterior probabilities using an EM algorithm. Finally,
issues regarding the practical implementation and performance
of the proposed GMM-EM algorithm, such as the initializa-
tion scheme for the parameters, the convergence performance
and computational complexity, are also discussed. Simulation
results have shown that the proposed GMM-EM algorithm
gives promising results in two difficult cases: low SNR and
underdetermined mixtures. Taking into account the noise in
the model and jointly estimating its covariance are the main
reasons for the robust performance achieved by the proposed
GMM-EM method in noisy environments. The competitive
separation performance achieved by the proposed algorithm
in underdetermined cases is mainly due to the incorporation
of prior information by conjugate priors to assist recovering
the sources and no computation for the inverse of the mixing
matrix.

APPENDIX A
PROOF OF EQUATION (13)

Since
f(S, Y\X A RY,09)

= Hf )X, A%, RY,, 09) f(y(t)|s(t), X, AY, Rf,, ©9)
(39)
On the other hand,
f(X,S,Y|A,R,,0)

T
= [ Fx@ls(t

(40)
R.,)f(s(t)[y(t), ©)

Substituting (39) and (40) into (11), it is straightforward to
derive that

T M

T=> 3" [ fy(t) =mls(t),

t=1 m=1"%S

log wi f(s(1)[y(t)

T
3 / F(s(6)|X, A9,

APPENDIX B
PROOF OF EQUATION (14)

), X, A9 RY OY)
=m, 0)ds+

RY,09) log f(x(t)[s(t), A, Ry)ds

Based on the Bayesian theory, it is easy to obtain

f(s(t)[x(t), A7, R, ©9)
M
= Y J(x()ls(t), A%, RS, 09) @1)
y(t)=1
f(s(@)]y(t) = m, A9, R, 09)
Hence
f(x(t),s(t), A, RI, ©9)
1
7|27TRZJ|1/2

exp {—;(x(w — A%s(t))"(R,) 7 (x(1) - Ags<t)>}
ZM W 1

|2 co 1/2
exp {5 (5(0) - w2 T(CL) 500 - )}
1 1

_Zm 1 |2 R, |1/2 \27rC§n|1/2
exp {5 (x(0) — ATS(0)(RE) (x(0) - A%5(0) |
2 w
exp { = (5(0) ~ w2 T(CL) 500 - )}
(42)

After a series of derivations, one obtains

M
Zm: w7gntN {s(t);ufnt? Cfnt:|

1

f(s(®)]x(t), A7, R, 07) =

(43)
where
Chui = ((A9)T(RE) A7 + (Cg) )
it = (Ch) (AT (RE)™x(t) + (CF) " u)
st =ty ([@20] " frmy o)
exp {~ 1 [x"(t)(R4)'x(t) )
(118" () "y — () (€500 i

APPENDIX C
DEFINITION OF SIMILARITY SCORE

In order to measure the separation performance, the similar-
ity score is introduced to evaluate the separation performance



of the proposed algorithm

T T T
pi=3 s () / \/ S 2> (i)

(44)

where $;(t) is the ith recovered source signal. p;; depicts

the similarity between the ¢th original source signal and the

corresponding recovered source signal. It is clear that, the

larger the value of p;;, the higher the degree of similarity

between the original sources and the recovered sources.
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