
1

UAV-enabled Mobile Edge Computing for
Resource Allocation using Cooperative

Evolutionary Computation
Shidrokh Goudarzi, Member, IEEE, Seyed Ahmad Soleymani,Wenwu Wang, Senior Member, IEEE, Pei

Xiao, Senior Member, IEEE

Abstract—Edge computing is a viable paradigm for supporting the Industrial Internet of Things deployment by shifting computationally
demanding tasks from resource-constrained devices to powerful edge servers. In this study, mobile edge computing (MEC) services
are provided for multiple ground mobile nodes (MNs) through a time-division multiple access protocol using the unmanned aerial
vehicle (UAV)-enabled edge servers. Remotely controlled UAVs can serve as MEC servers due to their adaptability and flexibility.
However, the current MEC approaches have proven ineffective in situations where the number of MNs rapidly increases, or network
resources are sparsely distributed. Furthermore, suitable accessibility across wireless networks via MNs with an acceptable quality
of service is a fundamental problem for conventional UAV-assisted communications. To tackle this issue, we present an optimized
computation resource allocation model using cooperative evolutionary computation to solve the joint optimization problem of queue-
based computation offloading and adaptive computing resource allocation. The developed method ensures the task computation delay
of all MNs within a time block, optimizes the sum of MN’s accessibility rates, and reduces the energy consumption of the UAV and
MNs while meeting task computation restrictions. Moreover, we propose a multilayer data flow processing system to make full use of
the computational capability across the system. The top layer of the system contains the cloud centre, the middle layer contains the
UAV-assisted MEC (U-MEC) servers, and the bottom layer contains the mobile devices. Our numerical analysis and simulation results
prove that the proposed scheme outperforms conventional techniques such as equal offloading time allocation and straight-line flight.

Index Terms—Mobile edge computing (MEC), queue-based computation offloading, resource allocation, unmanned aerial vehicle (UAV)

✦

1 INTRODUCTION

The growing use of mobile nodes (MNs) is accelerating
the development of the Internet of Things (IoT) and the
implementation of current mobile applications that demand
sophisticated capabilities, such as autonomous navigation
and unmanned driving. Because of the inadequate com-
puting capabilities and battery capacity, the quality of ex-
perience of compute-intensive services operated on MNs,
as well as the MN lifetime, is adversely affected [1]. The
mobile topology has intermittent communication links for
high-speed data transfer; in addition, the requirements of
services with varied quality of service (QoS) conditions
change dynamically.

Mobile edge computing (MEC) has been recognised as
a potential technique for reaping the benefits of heteroge-
neous IoT applications, as it can utilize diverse cloud re-

S. Goudarzi was with the Centre for Vision Speech and Signal Pro-
cessing (CVSSP), University of Surrey, Guildford GU2 7XH, U.K. She
is now with the School of Computing and Engineering, University of
West London, St Mary’s Rd, Ealing, London, W5 5RF, UK. (e-mail:
shidrokh.goudarzi@uwl.ac.uk).
S. A. Soleymani is with the Centre for Vision Speech and Signal Process-
ing (CVSSP), University of Surrey, Guildford GU2 7XH, U.K. (e-mail:
s.soleymani@surrey.ac.uk).
W. Wang is with the Centre for Vision Speech and Signal Process-
ing (CVSSP), University of Surrey, Guildford GU2 7XH, U.K. (e-mail:
w.wang@surrey.ac.uk).
P. Xiao is with the 5G&6G Innovation Centre, Institute for Commu-
nication Systems (ICS), University of Surrey, Guildford, U.K. (e-mail:
p.xiao@surrey.ac.uk).

sources such as storage and computation capabilities closer
to the MNs [2]. MEC is a potential concept that places cloud
servers near the MNs of mobile networks [3]. Offloading
compute processes to the MEC server can improve both
the quality of computing and the battery life. However, in
some cases with inadequate infrastructure, such as disaster
response, military mobility, emergency aid, or in remote
locales such as forests, mountains, and wetlands, the tech-
nology is infeasible. Therefore, unmanned aerial vehicle
(UAV)-enabled MEC was envisioned and developed as a
viable option to address this drawback [4]. The previous
studies [4], [5] have mainly focused on the computation and
communication offloading of MNs, and the computation
time at the UAVs has not been considered. Nevertheless, the
computation time duration at the UAVs cannot be neglected
in a real situation. Moreover, the existing studies [6], [7]
focused on partial or binary computational tasks. However,
task streaming over a fixed period of time has received little
attention in UAV-enabled MEC.

This study is motivated by utilizing UAVs as MEC
servers in wireless networking. Against this background,
this study proposes a joint computation offloading and
adaptive computing resource allocation system, where the
UAVs serve as edge servers to provide edge computing ser-
vices to the MNs. The objective of this study is to minimise
the energy consumption of the system used by all MNs
while guaranteeing effective task computation for all MNs
within a time block, by jointly addressing the queue-based

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3251967

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Surrey. Downloaded on April 27,2023 at 14:46:35 UTC from IEEE Xplore. Restrictions apply.

2

offloading and resource allocation.
This is a non-convex nonlinear optimization problem,

which is an NP-hard problem. Cooperative evolution [8]
has inherent parallelism due to the use of the divide-and-
conquer technique, making it applicable to a distributed net-
work. Moreover, the distributed cooperative evolutionary
method has a high level of scalability, allowing it to address
problems with high dimensions and computational de-
mands. By suggesting novel decomposition methods, some
studies [9]–[12] changed the grouping structure dynami-
cally throughout the optimization process. However, most
of them still employ the classical cooperative evolutionary
design which is an even round-robin method that considers
all subcomponents equally, where the subcomponent refers
to the UAV processors used for task computation.

Different from this, we present a cooperative evolu-
tionary computation approach using software-defined net-
working (SDN) in a multilayer data flow processing system
where the computation resources are optimized during the
entire process. More specifically, we develop an optimized
computing resource allocation (OCRA) model for assessing
the viability of the subcomponents and allocating resources
accordingly in the SDN control layer, where SDN is used
to control the network connectivity across the data centre
with dynamic programming. The top layer is the cloud
centre (CC), the middle layer contains the UAV-assisted
MEC (U-MEC) servers, and the bottom layer contains the
mobile devices, with centralised control of the network
elements [2]. To minimise congestion and reduce latency, the
SDN controller divides and assigns the network flows into
various routes [13]. In cloud connectivity, SDN refers to a
control model in which a central controller makes decisions
on resource distribution [14].

To effectively allocate the computational resources to the
subcomponents, the OCRA model utilizes various strate-
gies: (i) evaluate the degree of contributions for each sub-
component; (ii) calculate the priority of the subcomponents
and distribute the resources accordingly; (iii) evaluate the
cost function based on the computation time for selecting
the best UAV for serving the MN’s population; (iv) utilize
a verification plan inside a shared pool layer to assist the
optimizer in making effective use of a given computational
resource and record the role of each subcomponent to
achieve the global objective; and (v) utilize the queue based
offloading algorithm to make optimal offloading decisions
for choosing the subcomponents. The following are the key
contributions of this paper:

1) We formulate an optimization problem for compu-
tation offloading and resource allocation in wireless
networks with UAV-enabled edge servers.

2) We propose a two-layer cooperative co-evolution
model to address the energy consumption and com-
putation time minimization issues. The comput-
ing task is assigned to multiple UAV-enabled edge
servers based on the dimension of the MN popu-
lation and the priority constraints among the UAV
processors.

3) We apply techniques to distribute the resources
adaptively, with the priority ranking of computing
tasks of the MNs in the first layer, and the distribu-

tion of MNs tasks across different UAV processors by
a population-distribution model in the second layer.

4) We propose a queue-based offloading algorithm to
make optimal offloading decisions with UAVs to
facilitate the allocation of MNs’ queued computing
tasks and minimize the task execution latency.

The remainder of the paper is organised as follows. Section 2
presents related research on computation offloading in UAV-
enabled MEC networks. Section 3 presents our proposed
model for the problem of joint optimization for the resource
allocation and computation offloading control. Section 4 de-
scribes the proposed algorithm in detail. Section 5 presents
a comparison of the proposed approach against state-of-
the-art methods. Finally, concluding remarks are drawn in
Section 6.

2 RELATED WORK

UAVs have attracted considerable attention from both
academia and industry due to their high flexibility in
deployment. UAVs have been used in a variety of wire-
less communication applications, including non-orthogonal
multiple access networks [15], mmWave communications
[16], and caching [17]. A previous study presented the
three-dimensional (3D) coverage performance of the cellular
network-connected UAVs that function as aerial nodes [18].
UAV relaying was also reported as an important application
that may effectively enhance the coverage for communi-
cations [19]. The UAV-enabled MEC features dependency
on line-of-sight (LoS) connectivity and controlled mobility
management. For example, in a previous study [5], the
researchers created a dispersed deployment strategy for
UAVs, which maximised the average distance between the
UAV and MN. Nevertheless, they assumed that the UAVs
served all MNs with the same data rate instead of introduc-
ing various data rates for various MNs [5].

Numerous UAV deployment methods have been de-
signed to address the requirements of MNs with varying
data rates [20]. However, employing evolutionary-based
solutions for the combined resource allocation and deploy-
ment problem has not been addressed in the literature. We
explored stochastic task models in the MEC scenario with
several servers and MNs to reduce the computation for
the overall long-term weighted average of power in the
system [21]. Although those problems have been addressed
in terrestrial cellular environments, MEC server mobility
management has received little attention. Most previous
studies related to UAV deployment in communication sys-
tems have envisaged their main applications as moving
relays [22] or flying base stations [23]. Combined communi-
cation and computing resource allocation have been studied
in the scenario of multi-user with single server MEC [24]–
[27]. However, they did not take offload computation into
account.

Our work differs from the previous studies [22], [24]–
[27] in the following aspects. First, our study analyzes the
situations in which the UAV-enabled MEC server can cater
for multiple MNs concurrently, whereas previous studies
only considered the scenario in which the MEC server
can sequentially serve multiple MNs. Second, this work
focuses on the cooperative optimization between UAV task

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3251967

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Surrey. Downloaded on April 27,2023 at 14:46:35 UTC from IEEE Xplore. Restrictions apply.

3

Centralized

controller

Cloud computing layer

Edge computing layer

Device layer

 Controller 1 Controller 2 Controller 3

GatewaySmall cell MicrocellData linkControl link Mobile Device

Computing

resource

Storage

resource

Communicating

resource

UAV

Figure 1: Network model.

execution and MN task execution, whereas previous studies
have focused only on one of these approaches. Third, for the
first time, the priority among different UAV processors in
computing resource allocation is considered in our method.
In addition, we present both locally and globally optimal so-
lutions to the joint optimization issue, whereas the previous
studies have only reported locally optimized solutions.

3 NETWORK MODEL AND PROBLEM FORMULA-
TION

We propose a UAV-enabled MEC system, as depicted in
Figure 1, whereby each UAV performs MEC server com-
putation for the overlaying MNs. There are two primary
modules in the SDN controller. The first module is used
to keep track of the tasks. This module stores all the MN
mission data. It also determines which tasks are computed
locally or offloaded to the edge for processing. The other
module is the edge server module. Its data indicate how
much memory and CPU are available on the server, as
well as the loading of the server. The objective is to fly the
UAV from an initial location to a designated destination and
offload the MN computing tasks to the MEC server for im-
plementation. The UAV-enabled MEC servers, represented
by a set J = {1, ..., j, ..., J}, are evenly distributed in the
area to serve the MNs on the ground in the present study.
Furthermore, I ≜ {1, ..., i, ..., I} and N ≜ {1, ..., n, ..., N}
are used to represent the sets of the MNs and time slots,
respectively. The set T = {1, ..., t, ..., T} is split into N time
slots and refers to the time taken to complete a task, with a
slot length of τ , T = τN .

The UAV provides equal bandwidth allocation to all
MNs by using frequency division multiple access (FDMA).
We assume that the UAV flies at a constant altitude H >
0 above the ground. The positions of the MNs and UAVs

as edge servers are represented using the 3D Cartesian
coordinate system in this article. The 3D coordinates of the
UAV j are denoted as uj=(Xj , Yj , H). The 3D coordinates
of the MN i are denoted as mi=(xi, yi, 0). At the UAV, the
3D coordinates of all MNs are recognised in advance for
resource allocation and position design. The line-of-sight
(LoS) links should be considered between all MNs on the
ground and the UAV because the UAV flies relatively high
and the probability of the UAV dispersing is minimal [28].
The effects of the LoS paths are dominant in comparison
with the non-line-of-sight (NLoS) pathways [22]. Thus, the
channel power gain from MN i to the UAV j is modelled
according to a previous study [28],

hji =
g0

∥uj −mi∥2
, i ∈ I (1)

where g0 represents the reference channel gain at 1 meter
away from MN i, and ∥·∥ represents an l2 norm. For MN
i, the computation task with Ai(t) > 0 bits at time slot t
is separated into two sections with ui ≥ 0 and vi ≥ 0 bits.
The latter is computed locally, while the former is sent to
the MEC server with UAV capabilities.

Interference between the MNs and MEC servers can be
avoided during the data transmission phase if the orthog-
onal FDMA (OFDMA) technology is employed for data
transmissions between the MEC servers and the MNs. The
matrix E describes the channel selection by the MNs, with
each elementEi,t representing the number of channels filled
by MN i at time t. We also constructed a new matrix F to
represent the resource assignment, in which Fi,j (i ∈ I and
j ∈ J) are the computing resources allocated to MN i from
MEC server j. For call admission control, we used a QoS-
based approach that MN is assigned a rate requirement Ri.
When a new call arrives, the call admission policy examines
the bandwidth; if the bandwidth is available, the call is con-
nected; otherwise, the call is terminated. The transmission
bandwidth of UAV j for each MN is defined as B̃j such that
B̃j =

Bj

|Ij | , where Bj is the available bandwidth of UAV j,
Ij ⊂ I and |Ij | is the number of MNs served by UAV j.
Each UAV j shares a proportion of the resource, defined as
αj , with the macro MNs, and (1 − αj) is allocated to other
MNs of the UAV. Each MN’s bandwidth demand must be
equal or less than allocated bandwidth, which is denoted by
(1−αj)·Bj

|Ij | ≤ maxB̃j . In order to guarantee QoS, the criterion
for admission control [19] is given as follows:

maxB̃j · |Ij |
Bj

≤ 1 (2)

Furthermore, the UAV may serve |Ij | ground MNs
simultaneously owing to implementation of the FDMA
mechanism. The flying UAVs act as edge servers to de-
liver edge computing services to MNs because MNs have
extremely limited processing capabilities and energy, as
depicted in Figure 1. In this article, we consider UAVs which
have efficient processors for performing computationally
demanding tasks as those in [29], [30]. In a mobile topology,
the communication lines demand high-speed data transfer
in addition to the continuously changing needs of services
with varying QoS requirements. Our goal is to optimize the
sum of the average rates of the MNs while maintaining the

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3251967

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Surrey. Downloaded on April 27,2023 at 14:46:35 UTC from IEEE Xplore. Restrictions apply.

4

QoS of the MNs by optimizing the computation offload-
ing and resource allocation control jointly. This is a non-
convex mixed integer problem that can be divided into sub-
components, which can be optimized by the cooperative
evolutionary computation technique. The signal-to-noise ra-
tio (SINR) [29], represented by γi, of any MN i is expressed
as

γi = pg0/σ
2 (3)

where p is the transmission power of the UAV, and σ2 is
the noise power. Based on the Shannon capacity formula,
the achievable data rate of MN i, represented by ri, from
the UAV j can be expressed as ri = Wlog2(1 + γi) and W
refers to the bandwidth allocated to MN i. We defined a
variable ai,j to indicate the connectivity of MN i to UAV
j. If the achievable data rate ri of MN i is greater than or
equal to its required resources Si, then it is linked to the
UAV. Here ai,j = 0 indicates that a task is executed on its
own MN and ai,j = 1 shows that a task is offloaded on
UAV j for execution. Consequently, the related restriction
for MN i, as well as the allocated resources, can be adjusted
to ri ≥ ai,jSi. The deterministic UAV’s optimal deployment
is obtained by optimizing the total of the potential rates of
the MNs as well as ensuring fair UAV coverage, with a fixed
{Si|∀ i}. The task needs to be transmitted to the UAV and
computed by the UAV’s MEC server, for the task assigned to
the UAV. The result is returned to the MN upon execution.
The distance of MN i to UAV j is

di,j =
√
(xi −Xj)2 + (yi − Yj)2 +H2,∀i ∈ I, j ∈ J (4)

The distance between two UAVs is:

dj1,j2 =
√
(Xj1 −Xj2)

2 + (Yj1 − Yj2)2,
∀j1, j2 ∈ J , j1 ̸= j2

(5)

If a task is executed on a UAV, the MN should be within
the coverage area of the UAV. Under the restrictions of com-
putation offloading and resource allocation, the following
constraint should be satisfied for fair coverage of the MNs
by the UAV:

C1 : ai,jdi,j ≤ Rj ,∀i ∈ I, j ∈ J (6)

Here, the constraint C1 indicates that if a task is transferred
to UAV j, MN i should be located in the coverage area
of UAV j. Rj is the coverage radius of each UAV and
the UAVs are assumed to have directional antennas with
a fixed beamwidth θ. The coverage radius of each UAV is
Rj = H · tanθ, and the UAVs fly at a constant altitude H
[31]. In our system, there are three models: the UAV hover
model, the local execution model, and the MEC execution
model.

3.1 UAV Hover Model

The energy required by a UAV to hover at a fixed location
for a period of time [32] can be represented as

EH = P0Th (7)

where the hover time and hover power are denoted by Th
and P0 respectively.

3.2 Local Execution Model

For the computing ability of MN i ∈ I , the number of
CPU cycles per second of MN i ∈ I is represented as li.
In addition, the delay-tolerant computing tasks carried by
i ∈ I at time slot t are represented as Zi(t)

△
= (Di(t), Ci(t)),

where Di(t) represents the size of the input data for compu-
tation and needs to be measured in bits similar to program
codes, and Ci(t) represents the total number of CPU cycles
required to accomplish these computing tasks [33]. If a task
is sent to UAV j, MN i should be positioned inside UAV
j’s coverage area. When an MN performs a calculation
task locally, it must assign computing resources to the task.
The computation capacity allocation matrix is written as L,
whose element li,t indicates the computing capacity of the
MN i in Hz, at time slot t, where i ∈ I [33]. The required
time for an MN i to complete a computational task locally
is given as follows,

Ti,t =
Ci

li,t
(8)

It is essential that the computing resource allocated to
the MN by each MEC server does not surpass the overall
resource capacity. The amount of energy used to perform
operations locally is determined by the number of required
computer cycles [33], expressed as follows:

Ei,t = q0l
2
i,tDiCi (9)

where q0 > 0 represents the operating coefficient of capaci-
tance.

3.3 MEC Execution Model

The MNs first transmit the input parameters necessary for
computation to the MEC server on the UAV before offload-
ing the computational tasks to the system. The MEC servers
calculate the tasks in terms of the received data. The MEC
servers return the results to the MNs when the calculations
are completed. It is worth mentioning that the amount of
data in the outputs is significantly less than the input data.
Therefore, the energy usage and task execution time during
the phase of returning the results are not discussed in this
work. In addition, the time required to compute a task on a
MEC server is split into offloading and execution time [32].
The total time to complete a task includes both transmission
and computing time on UAV j, i.e.,

Ti,j =
Di

ri,j
+

Ci

Fi,j
,∀i ∈ I, j ∈ J (10)

where Fi,j represents the computing resources assigned to
the task on the UAV j, and ri,j reflects the uplink data rate.
The required energy to complete a task on the MN locally is
determined as follows:

EMN
i = ηc(Fi)

v−1
Ci,∀i ∈ I (11)

where ηc represents the effective switching capacitance and
v represents a positive constant. In order to make the
application more realistic [32], we set v = 3 in this paper.
Furthermore, the overall energy used to complete a task

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3251967

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Surrey. Downloaded on April 27,2023 at 14:46:35 UTC from IEEE Xplore. Restrictions apply.

5

is the sum of the transmission and computation energy of
UAV j as follows:

EUAV
i,j = P

Di

ri,j
+ ηc(Fi,j)

v−1
Ci,∀i ∈ I, j ∈ J (12)

where P shows the transmission power of each MN.

The transmission delay and transmission time on the
downlink can be omitted since computing tasks often use
smaller data sizes than offloaded tasks, and downlink trans-
mission rates are considerably greater than uplink trans-
mission rates [34]. As a result, the total transmission and
computation delays are equivalent to the overall offloading
delay, as follows:

doveralli,j,t = dtrai,j,t + dcomp
i,j,t (13)

where dtrai,j,t is the transmission delay, determined by divid-
ing the throughput by the transmission rate, and dcomp

i,j,t is
the computation delay. The throughput of MN i at time slot
t is computed [35] as

Ki,j,t = min

(
Qi(t), τBj log2

1 + pthj
δ2

)
(14)

where the task queue of MN i is Qi(t). Bj and hj represent
the bandwidth and uplink channel gain of the subchannel
UAV j, the noise power is denoted by δ2, and pt refers to
the transmission power at the time slot of τ . Therefore, dtrai,j,t

can be computed as follows:

dtrai,j,t =
Ki,j,t

Di(t)
(15)

where Di(t) refers to the quantity of data sent to the edge
server. According to the computational intensity model in
[34], the processing density of the transmitted data for the
allocated task is the number of CPU cycles required for
completing each bit of data in the computing task, which is
defined as ρ (CPU cycles/bit). In addition, Ki,j,t CPU cycles
are required to process the data of the subchannel UAV j.
Denote the number of computing tasks performed at MN i
as di(t) over time slot t, the computational delay dcomp can
be calculated as:

dcomp
i,j,t =

Ki,j,t × ρ
di(t)

(16)

Next, we explain the main optimization objective. In
order to reduce the system’s energy consumption, which
includes the energy required to accomplish all tasks in
the local computing pattern or the computation offloading
pattern as well as the energy required for UAVs to hover, we
must jointly optimize the computing resource allocation and
computation offloading. The goal of resource allocation is
to reduce the system’s energy usage and computation time
at each UAV location (Xj , Yj , H). The joint optimization
problem for computing resource allocation and computation
offloading is described as:

min
N,Xj ,Yj ,ai,j ,Fi,j

I∑
i=1

ai,jEMN
i +

J∑
j=1

ai,jE
UAV
i,j

+ βNEH

(17)

subject to the following constraints:

C2 : dj1j2 ≥ dmin,∀j1, j2 ∈ J , j1 ̸= j2 (18)

C3 :
I∑

i=1

J∑
j=1

ai,j ≤ nmax,∀i ∈ I, j ∈ J (19)

C4 : ai,jTi,j ≤ T, ∀i ∈ I, j ∈ J (20)
C5 : Fi,j > 0,∀ai,j = 1, i ∈ I, j ∈ J (21)

where the constraint C2 indicates that a minimum distance
dj1j2 must be maintained between any two UAVs to avoid
the collision. The constraint C3 indicates that due to restric-
tions in the computational capability of the MEC server,
a maximum number nmax of tasks can be executed by
each UAV. The delays for each task are indicated by the
constraint C4. Based on a previous study [32], we assumed
that the task’s output could be returned to the MN with a
low transmission delay. As a result of the restriction C5 if
the task runs in UAV j, the computing resource assigned
to this task is larger than 0; otherwise, it is equal to 0. In
this work, β is the weight coefficient that is set empirically
to 1 in our experiments, in terms of tests with values such
as 0, 0.5, and 1. Because this system included both MNs
and multi-UAV-enabled MEC, the goal of this system is to
improve the UAV deployment and task computing to reduce
the system energy usage. This includes energy from the
local computational or MEC computation for performing all
tasks, as well as the energy for the hovering of the UAVs. In
Section 3.3, it is clear that (17) is a non-convex nonlinear
optimization problem. Therefore, it cannot be addressed
using traditional optimization methods. The cooperative
evolutionary computation techniques have the potential to
address it since they are a kind of population-based heuristic
search methods that do not need gradient information. We
present a cooperative evolutionary computation technique
to find both locally and globally optimal solutions to the
optimization problem to reduce computational time and
energy consumption.

4 OPTIMIZED COMPUTING RESOURCE ALLOCA-
TION (OCRA)
In this section, we present a two-layer OCRA model for
cloud-based communication with adaptive computing re-
source allocation. This model constitutes the first layer re-
sponsible for calculating the priority of the subcomponents
and distributing the resources appropriately. Based on an
approach for calculating the contribution periodically, an
algorithm is devised to efficiently distribute the resources.
As the second layer, a pool model is designed to ensure
the full use of unbalanced resource, as illustrated in Figure
2. The arriving tasks are ordered within the task buffer
at the MN and handled on a first-in-first-out (FIFO) basis
in this algorithm. They are carried out locally at the MN
or transferred to the UAV-enabled edge server. As can be
observed, task execution at the MN and task offloading at
the UAVs are connected and cannot be separately solved.

To addressing the optimization problem, a coopera-
tive evolutionary algorithm is proposed which takes two
steps, namely, decomposition and optimization. In the
first step, a problem is decomposed into sub-problems.

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3251967

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Surrey. Downloaded on April 27,2023 at 14:46:35 UTC from IEEE Xplore. Restrictions apply.

6

Then, an optimizer (MN / UAV solution) is assigned to
each sub-problem. This process is applied to the widely
known dimension-distributed model [36]. The decomposi-
tion step is executed based on the distributed optimiza-
tion method [36]. In this step, M-dimensional problem
Z = {z1, z2, · · · , zM} can be solved to prevent excessive
resource imbalance between UAV processors. Meanwhile,
for serial cooperative coevolution, when one MN population
evolves in computing the task locally over time, the other
UAV solution remains static, which is defined as

Z = Z1

⋃
Z2

⋃
· · ·

⋃
ZM ;

where ∀p ∈ [1,M] , Zp ̸= 0;

∀p, q ∈ [1,M] ∧ p ̸= q, Zp

⋂
Zq = 0

(22)

In the optimization step, the fitness of each MN population
is assessed via integration and comparison with the other
best entities. The best entity in the pth population and the
qth generation is presented as best solution bqp. The fitness
of a MN population popp is defined as follows:

F (popp) = F
(
popp, Zq

p

)
where Zq

p =
(
bq1, · · · , b

q
p−1, b

q
p+1, · · · , b

q
M

) (23)

Each MN population in each generation should update its
own tasks until the update of the corresponding subcom-
ponent is complete and the global best (GB) solution for
allocating the limited resources from the idle subcomponent
is obtained.

GB =
(
bq1, · · · , b

q
p−1, b

q−1
p+1, · · · , b

q−1
M

)
(24)

The resource allocator in the cooperative evolutionary
model gathers the contributions of all the UAV processors
in each iteration for reallocation. The basic concept is to
allocate the limited resources from the idle processor to the
system. As we can see in Figure 2, the sub-process deter-
mines the contribution of each solution to the achievement
of the overall goal. It starts at 0 and grows with time. Thus,
the best member is denoted as bestq,gp , where p, q and g
refer to the population, generation, and iteration (g ≥ 1),
respectively. The subcomponents (e.g. UAVs) are chosen
based on their ability to improve the overall fitness. As a
result, the resource allocator will select a subcomponent that
contributes more to the total fitness. The contribution of the
UAV processor for serving MN population p is shown as ϕp
and it is determined as follows:

∆z = F
(
bq,g−1
p , Zq

p

)
− F

(
bq,gp , Zq

p

)
ϕp ← ϕp +∆z.

(25)

The resource allocator then adjusts the allocation. A
subcomponent is allocated to the MN population that has
a higher priority. The host process calculates the priority
(ψp), which is defined as

ψp =
ϕp
λp,g

(26)

This formula indicates the involvement of the subcompo-
nent where λp,g shows the subcomponent in the gth itera-
tion for serving the population p and ϕ denotes the contribu-
tion made by a subcomponent. Furthermore, the maximum

Algorithm 1 Resource Allocation Algorithm

1: Input: Number of Pool {Pool1, Pool2, · · · , PoolM},
minimum and maximum bound mib and mab, number
of sub-components M .

2: ψ = 01×M ;
3: Output: Optimal resource allocator with min f(x) ▷
f(x) is objective function, see (27).

4: for all Poolp ∈ Pool do
5: Calculate ψp according to (26);
6: for p= 1 to M do
7: for q= p+ 1 to M do
8: if Poolq.ψ < Poolp.ψ then
9: swap (Poolp , Poolq)

10: end
11: end
12: pr = −1 ▷ pr is the index of a pool that needs more

processors
13: pd = −1 ▷ pd is the index of a pool that can allocate its

processors to other pools
14: p =M
15: while |λp|≥ mab & p ≥ 1 do
16: p = p− 1

17: pr = p
18: p = 1
19: while |λp|≤ mib & p < pr do
20: p = p+ 1

21: pd = p
22: if pd ̸= −1 then
23: Poolpd denotes a processor to Poolpr
24: end
25: end

and minimum bounds are adjusted to prevent extreme
imbalance in resource allocation and limit the maximum
and minimum number of processors for a subcomponent,
represented as mab and mib, respectively.

The efficient UAVs that facilitate task computation are
defined as UAV-solutions, X = {x1, x2, ..., xJ}. The MN-
solutions are assessed by utilising an objective function that
is dynamically updated based on its role in the generation
of efficient UAV-solutions in the UAVs’ population. On the
contrary, each UAV-solution is assessed by pairing it with
the MN-solution in the MNs’ population, as the best match
for the UAV-solution. We define the following objective
function to evaluate each UAV-solution X based on the
computation operation time,

minf(xj) =
J∑
j

ωj(T − τj) (27)

where T is the mission completion time, τj is expected end
time for computation operation and ωj is the weight of a
maximum number nmax of tasks that can be executed by
each UAV, subject to

∑
j ωj = 1. In the network, we set

each ωj according to the highest flow transmitted through
the MN. We update the weights as the algorithm evolves,
depending on the feedback from the evolution of the MN
solutions.

The resource allocation pseudo code is summarized in

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3251967

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Surrey. Downloaded on April 27,2023 at 14:46:35 UTC from IEEE Xplore. Restrictions apply.

7

Start

Decomposition

Create Sub-process

 Initialize computing resource
allocation of UAVPOP of UAVs

Trigger Sub-Process

Iteration = 0

Iteration ++

Received best individuals and
update gbest j

Received Contributions and
Reallocate Computing

Resources

Destroy Sub-Processes

Iteration > MaxItr

End

Yes

1

1No

Start

Sub-Process

 Initialize computing resource
allocation

Select a best matching

Generation = 0
Contribution = 0

Evolve population and
accumulate contributions

Generation ++

Generation > MaxGen

Send best individuals

Send contributions

End

Yes

2

2 No

3

3

4

5

4

5

Figure 2: Cooperative evolutionary flowchart.

Algorithm 1. First, the MN solutions are created randomly
and then the UAV solutions are generated constantly. Each
population (i.e. 1 to M) can use some processors. In order
to efficiently distribute and allocate the UAV processors to
populations, it calculates the priority of populations (Lines
4-5). Then, it sorts the populations based on the priority in
an ascending order (Lines 6-9). The two indices pr and pd
are initially set to -1 (Lines 12, 13). It looks for a population
with high priority that has processors less than mab (Lines
14-16) and sets pr with the index of this population (Line
17). It also looks for a population with a low priority which
the number of its processors is higher than mib (Lines 18-
20), and then sets pd to the index of this population (Line
21). Finally, a processor from the population pd will be
incorporated into population pr (Line 23).

The OCRA resource allocator is capable of compiling all
the UAV processor contributions in each iteration, and then
reallocating the processors as necessary. Its basic concept is
to transfer limited computational resources from stagnant
UAV processors that contribute less to those that contribute
more. The contribution of each UAV processor to the overall
goal is computed in the relevant subprocess. It starts off
at zero and grows with each generation. The contribution

of the UAV processor is defined as Λj in Equation (28).
After that, the resource allocator moderately modifies the
allocation. If two UAV processors are chosen each time, the
one with a lower priority gives the other one a processor.
The host process, defined in Equation (29), determines the
priority by accounting for the contribution made by each
individual processor. In addition, a lower bound and an
upper bound, termed as mib and mab, respectively, are
specified to limit the lowest and the maximum number
of processors that a UAV processor can hold to prevent
excessive resource imbalance.

4.1 Pool Layer
The performance and convergence behaviour of most EA
algorithms can be affected by two parameters, namely, the
size of the population and the number of generations. In
this work, a verification plan is implemented inside this
layer to assist the optimizer in making effective use of a
given computational resource. Consequently, the coopera-
tive evolutionary model not only enables the scalability in
coping with high-dimensional populations but also allows
the UAV processors to successfully adapt to resource alloca-
tion changes and utilize the computing resource allocated to

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3251967

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Surrey. Downloaded on April 27,2023 at 14:46:35 UTC from IEEE Xplore. Restrictions apply.

8

them efficiently. The population plan modifies the popula-
tion of an optimizer, whereas the generation plan modifies
the number of generations. A validation plan describes how
the evolution approach and the number of processors it
owns are matched. When the number of MN populations
allocated to a UAV processor changes, the "unverified"
situation occurs.

Definition 1: Consider a pool λ owned by the same
processor i.e. the jth processor in the qth generation, is
defined as λj,q . An unverified situation occurs if and only if
λj,q ̸= λj,q+1 and the verification plan of λj,q in the (q+1)th
generation is not executed. When a subprocess detects an
unverified situation, it instantly applies a verification plan
to fix it in order to fully utilize the computational resources
available to it.

As a population-distribution technique, the pool model
controls the population by constructing a shared pool. Fig-
ure 3 elucidates the structure of the OCRA model. The
whole resource pool, which includes all the subcomponents
(i.e. UAV processors), is accessible to all MNs. On the other
hand, each processor is limited to updating only one part
of the pool at a time. The pool is built as an array of N
UAV processors that is divided into M MN populations.
The pooling technique has the advantages of flexibility
and scalability. Adding extra processors is as simple as
increasing the pool size or rearranging the segments, be-
cause all processors share the same resource pool. In the
OCRA paradigm, these features would facilitate dynamic
allocation of resources. Each task Zp is associated with an
MN population Sp in terms of the population distribution.
Each MN and its assigned UAV processor are combined to
build a pool layer in the OCRA model,

Λj = (Sp, λj) (28)

where λj refers to UAV processors which are assigned to
Sp. According to the pool model framework, the N UAV
processors are defined as {λ1, λ2, · · · , λN}. For example,
two UAV processors denoted as {λ1, λ2} are allocated to
the first MN population S1. Three UAV processors denoted
as {λ3, λ4, λ5} are allocated to the second MN population
S2. In general, the MN populations are synchronised at a
predefined number of generation intervals. During synchro-
nisation, the resource allocator also records the role of each
UAV processor to achieve the global objective.

4.2 Queue Based Offloading

In a queue-based architecture, the MN computation tasks
are based on the data bits of each task computed by MN
i at time slot t and it is expressed as Ai(t). The arrived
tasks are dispersed independently with an average rate of
ri at distinct time windows. Each MN can keep up with a
queue of arriving tasks for a certain amount of time. The
MNs employ a task buffer, where the tasks are queued
and processed in the order of arrival time. The procedure
might be performed locally at the MN or transferred to the
UAV. The local and offloaded tasks from MN i are denoted
by mi(t) and oi(t), respectively. We define the processing
density as the number of CPU cycles required to complete a

one-bit compute task and it is denoted as ρ. The amount of
data stored at local queue at the MN i is mi(t), defined as

mi(t) =
Ci(t)τ

ρ
(29)

where Ci(t) is the number of CPU cycles of MN i at time
slot t with slot length τ . The task queue backlog of MN i at
time slot t i.e. Qi(t) can be updated as:

Qi(t+ 1) = max {Qi(t)−mi(t)− oi(t), 0}+Ai(t) (30)

In case of task offloading, the UAV processor needs to store
the task in a large number of parallel buffers. Because the
UAV processor often has greater computation capacity, it
can handle offloaded tasks. For MN i, the expansion of the
queue length Li(t) at the UAV processor will be as follows:

Li(t+ 1) = max {Li(t)−mi(t), 0}+ oi(t) (31)

The current incoming tasks should be saved in the queue
buffers and completed when a time slot becomes available.
The inequalities Qi(t + 1) ≥ Ai(t) and Li(t + 1) ≥ oi(t)
are defined for the MNs within the cell. The length of the
queues and the value of the selected indicators are both
set to zero during the initialization phase. After that, the
decision-making procedure is carried out one slot at a time.
At the start of the t-th slot, the UAV processor calculates the
value of the weighted total throughput, θi,j,t.

The channel selection indicator is denoted as xi,j,t. The
best choice for UAV j can be the one with the smallest
computing cost O(M), see section(4.3). Subsequently, UAV
processor j updates all queues and sets θi,j,t = 1. The
iteration continues in the following slot until t > T . The
UAV processor j uses two main metrics to make decisions
in each time slot. The first term is θ̄i,j,t−1 that shows the
estimation of θi,j,t and allows the system to choose the
previously determined optimal choice in each time slot.
The second term is the confidence bound x̂i,j,t−1, which
is employed to strike a balance between exploration and
exploitation.

This term enables MN i to evaluate solutions with re-
stricted decisions in order to improve the estimation ac-
curacy. The term x̂i,j,t−1 indicates how many times i has
chosen the j-th option over the slot t. The throughput θ̃ is
the estimation of θ in the slot t for option j as follows:

θ̃i,j,t = θ̄i,j,t−1 − ω
√

2 ln t

x̂i,j,t−1
(32)

where the first term on the right-hand side of the equation
shows the performance of option j, and ω reflects the
weight of exploration against exploitation, with a greater
value of ω indicating a stronger preference for exploration.
The minimum estimation value after estimating θ̃i,j,t for all
subchannel UAV j is defined as follows

j = argmin
j

{
θ̃i,j,t

}
(33)

Accordingly, x̂i,j,t is updated as

x̂i,j,t = x̂i,j,t−1 + xi,j,t (34)

Algorithm 2 demonstrates how to build queues, make

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3251967

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Surrey. Downloaded on April 27,2023 at 14:46:35 UTC from IEEE Xplore. Restrictions apply.

9

λ 1

λ 2

λ 3

λ 4

λ 5

S 1

S 2

S Mλ N

Pool

.

.

.

Resource
Allocator

z 1
z 2

z 3
z 4
z 5

z D

Update

Update

Update

.

.

.

.

.

.

Cooperative Co-evolution (CC)

MN PopulationsUAV Processors

Contribute

Assign

Tasks

Figure 3: Structure of the OCRA model.

Algorithm 2 Queue Algorithm

1: Input: ω; τj ; θi,j,t; xi,j,t
2: Output: Optimal offloading decisions θ̃i,j,t
3: //Step 1: Initialization;
4: Set the initial amount of data; θ̄i,j,t = 0, x̂i,j,t = 0;
5: repeat
6: //Step 2: Decision making;
7: Compute the estimation value of the MN i towards

option UAV j as (32);
8: Select the optimal option j based on (33);
9: Update x̂i,j,t as (34);

10: Update mi(t) as (29);
11: Update computation task executed at MN as (30);
12: Update computation task executed at edge server as

(31);
13: until t > T

task offloading decisions, and update the queues. The UAV
processor j chooses the task offloading option with the max-
imum probability of success. In an ideal case, the processor j
has the entire current information, which includes both local
and non-local data. The lines 6–12 are repeated until t > T
in the system. Algorithm 2 is a low-complexity algorithm
for dealing with the sequential decision-making problem.
In each time slot, MN makes decisions based on only two
kinds of local information: θ̄i,j,t−1 and x̂i,j,t−1 where θ̄i,j,t−1

represents the empirical estimation of θi,j,t−1 up to slot t,
and x̂i,j,t−1 represents the number of times that has selected
the j-th option up to slot t.

Algorithm 2 can manage the computation tasks based
on the queueing and transmitting (or processing) tasks. This
algorithm can adapt to the variations in the amount of
data backlog and service state due to the endowed context
awareness, which is achieved through the dynamic adjust-
ment of the channel selection strategy. The UAV processor

can store the task in many parallel buffers to minimize the
task execution latency. It can handle offloading tasks and
increase the data processing rate.

4.3 Model Complexity
The cooperative coevolution can be easily parallelised due
to its population-based structure, which is one of the advan-
tages of the proposed algorithm. In general, the most time-
consuming aspect of an evolutionary algorithm is fitness
evaluation, which allows parallel processing of multiple
individuals. Because the proposed model is based on co-
operative coevolution, it employs a superior parallelisation
technique by allocating a processing thread to each popu-
lation rather than each individual. As a result, the number
of context switching and thread scheduling is reduced. We
analyze the complexity of the proposed algorithms in this
section.

Algorithm 1: The computational complexity of the pri-
ority computation is O(M) and the complexity of sorting is
O(M2). Additionally, in the worst case, the computational
complexity for assigning the processor to a pool isO(M−1).
Hence, the computational complexity of this algorithm is
approximately O(M) +O(M2) +O(M − 1).

Algorithm 2: The computational complexity of Algo-
rithm 2 includes three main parts, which are initialization,
estimation value calculation, and optimal value selection
and renewing queues with the complexity of O(3M + 6),
O(M + 1) +O(M), and O(2M + 5), respectively. Thus, the
total computational complexity of Algorithm 2 is approxi-
mately O(3M + 3) +O(M + 1) +O(M) +O(2M + 5).

5 NUMERICAL EVALUATION

In this section, we present the simulation results to show the
performance of the proposed algorithm. We consider a UAV-
enabled MEC (UAV-MEC) system with 10 servers placed at

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3251967

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Surrey. Downloaded on April 27,2023 at 14:46:35 UTC from IEEE Xplore. Restrictions apply.

10

Table 1: List of Simulation Parameters.

Description Parameter Value
System bandwidth B 40 MHz
UAV transmission power Pt 100 dBm
Simulation area – 10 km2

Number of macro cell base stations MBS 100
Number of APs configured around each cell Aps 20
Radio range of the UAVs R 500-800 m
Power noise at the UAV σ2 10−9 W
Noise power spectral density N0 174 dBm/Hz
Number of time slots N 50
UAV altitude H 10 m
Total number of CPU cycles to accomplish tasks Ci 50
Effective switching capacitance ηc 10−28

Channel power gain g0 -50 dB
Probabilistic SINR Threshold SINR Threshold -6 dB
Size of computation task input data for ith MN (bit) D̄ 150 Mb
Maximum number of mobile nodes MN 100
Receiving threshold Th 1.17557e-10 W
Radio propagation model - Friis model
Antenna type - Omni Antenna
Maximum data rate (WiMAX) - 1882 Kbps
PHY Mode - 256 OFDM
Maximum data rate (UMTS) - 384 Kbps
Constant speed of the UAV Vc 10 m/s

various locations and 100 MNs randomly distributed within
a 2-D squared area of 1000 x 1000 m2. Our system settings
involve the interactions between the MN devices, UAV, and
ECs, which distinguish our study from prior studies. We
used Friis free-space propagation model [37], which works
in the far-field region. We utilised OMNeT++ and MATLAB
as the two main platforms. We used the LiveLab dataset [38]
to evaluate our approach. LiveLab is a system developed at
Rice University to assess real-world smart-phone usage and
wireless networks by using a reprogrammable in-device log-
ger for long-term MN research. Data from various devices,
such as phones and tablets, are included in the dataset.
Table 1 presents the setup of the important parameters for
evaluating the performance of the proposed method. The
performance of the proposed scheme is compared with the
following benchmark schemes:

1) Straight-line flight: The scheme optimizes task com-
putation and resource allocation by flying the UAV directly
from its starting position to its destination at a constant
speed Vc, similar to a basic straight-line flight trajectory
[39]. The resource allocation is determined by the proposed
OCRA model in Section 5.

2) Equal offloading time allocation: The proposed OCRA
model is used to describe the computation resource alloca-
tion and completion time for the optimal resource allocation
and equal offloading time allocation [40]. This method de-
fines the assigned slot time t for the i-th device to offload
the computing tasks to the UAV.

3) Full offloading: The scheme provides optimal resource
allocation and computation offloading without local com-
puting at the ground devices, similar to [40]. The arriving
tasks are offloaded to the UAV for processing.

4) Hybrid (UAV-MEC)-MN scheme: The UAV processes
half of the tasks, and the MNs process the other half [41]. We
call our suggested approach collaborative UAV-MN scheme.
The proposed scheme is compared with the UAV-only, MN-
only, and hybrid UAV-MN schemes to demonstrate the ben-
efits of leveraging the computing resources at both the UAV
and MNs. To this end, the performances of our proposed
OCRA model is compared with the existing benchmarks
and hybrid (UAV-MEC)-MN schemes.

Figure 4 shows the relationship between the completion
time and energy consumption of the UAV with Di(t)=
150 Mb. It is first observed in Figure 4 that the tradeoff
between the energy consumption of the UAV and the com-

Completion time (S)
170 175 180 185 190 195 200

U
A

V
 e

n
er

g
y
 c

o
n
su

m
p
ti

o
n
 (

J)

×10
4

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

Pareto Boundary

Figure 4: Completion time versus energy consumption.

pletion time follows a “U” shape. The Pareto boundary is
represented by the left side of the curve in Figure 4. The
Pareto-optimal solution can achieve a balance between the
two objectives. The curve is given by Eqs (14) and (15) for
any t, t ≥ tmin, where tmin is the minimum completion
time for executing computation tasks Di(t). The energy
consumption by the UAV initially decreases and gradually
increases with the increase in the completion time. The
reason for this is that the UAV’s speed reduces as the
completion time increases. As a result, the UAV’s propulsion
power consumption fluctuates based on its current speed.
In the beginning, the decrease in the propulsion power
consumption is more than the increase in the completion
time. Then the energy consumption of the UAV decreases
until the minimum value has been achieved. Next, the
reverse situation happens, and then the energy consumption
of the UAV increases. Figure 4 illustrates the difference
between the UAV’s energy consumption and completion
time. Unlike the current MEC system that applies a method
for the minimization of the energy used by the UAV, the
proposed model may provide a solution to minimise the
energy consumption of the UAV, either without a specified
completion time or within an ideal completion time. The
optimal completion time (approximately 2.1 s) that mini-
mizes the energy consumption of the UAV in Figure 4 is
also obtained.

Minimization of UAV energy consumption and exe-
cution time are two major problems in the UAV-enabled
MEC system and they are both relevant to the speed of
UAV flight. The formula

∫ T
0 ki(t)Ptdt refers to the UAV’s

energy consumption, where Pt is the transmission power
for the MN at task offloading. The computation energy
consumption of MN i is measured as

∫ T
0 q0(Fi,k)(t)dt, as

in Eqs (14) and (15), where q0 > 0 represents the effec-
tive capacitance coefficient of MN i. Therefore, we have∫ T
0 q0(Fi,k)(t)dt +

∫ T
0 ki(t)Ptdt ≤ Emax

i , where Emax
i is

the energy budget of MN i in pattern k. The MNs are
randomly distributed in a rectangular area in the proposed
UAV-enabled MEC system. The computational task input
size, energy budget, and transmission power are consid-
ered identical for all MNs such that Di(t) = 150 Mb,

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3251967

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Surrey. Downloaded on April 27,2023 at 14:46:35 UTC from IEEE Xplore. Restrictions apply.

11

Computation task data input size
60 80 100 120 140 160

C
om

pl
et

io
n

tim
e

(s
)

0

50

100

150

200

250

300
OCRA

Hybrid(UAV-MEC)-MN

Straight-Line Flight

Equal Offloading Time Allocation

Without MN Local Computing

Figure 5: Completion time vs. task-input data size D̄.

Computation task data input size
60 80 100 120 140 160

U
A

V
 e

ne
rg

y
co

ns
um

pt
io

n
(J

)

×106

0

1

2

3

4
OCRA

Hybrid(UAV-MEC)-MN

Straight-Line Flight

Equal Offloading Time Allocation

Without MN Local Computing

Figure 6: Energy cons. vs. task-input data size D̄.

UAV consumption capacity (GHz)

10 20 30 40 50

S
ya

te
m

 c
os

t

0

20

40

60

80
OCRA

Hybrid(UAV-MEC)-MN

Straight-Line Flight

Equal Offloading Time Allocation

Without MN Local Computing

Figure 7: UAV computation capacity versus system cost.

UAV transmission power (W)
2 4 6 8 10

S
ys

te
m

 c
os

t
0

20

40

60

80
OCRA

Hybrid (UAV-MEC)-MN

Straight-Line Flight

Equal Offloading Time Allocation

Without MN Local Computing

Figure 8: UAV transmission power versus system cost.

Emax
i = 1 J , Pt = P̄ = 0.1 W for all i. All system

parameters are listed in Table 1.
Figure 5 shows a comparison between different com-

pletion times. It can be seen from Figure 5 that the execu-
tion time of the proposed method increases linearly, while
the execution time of the no MN local computing design,
straight-line flying method and hybrid method increases
exponentially. Although the execution time of all methods
are almost the same at first, the execution time of other
methods rapidly exceeds the execution time of the proposed
method as the size of the input data increases. Therefore,
for large-scale networks, applying the proposed method
can significantly reduce the algorithm execution time and
improve execution efficiency. It can also be observed that the
completion time by the no MN cooperation design increases
sharply with the increase in data size. The other designs
achieve a smaller time compared with the no MN local
computing design, this is because the MN as a helper can
improve task computation. In addition, it can be observed
that the proposed design outperforms the other designs
due to the joint optimization for computation and resource
allocation.

Figure 6 shows the energy usage by the UAV versus the
input data size Di(t). The improvement in the system per-
formance is more significant whenDi(t) is larger. The differ-
ence in performance between our joint design scheme and
the straight-line flying benchmark implies that the recom-
mended trajectory designs are beneficial. The comparison
of our combined design technique with a benchmark based
on equal time allocation for offloading further proved the
advantage of the proposed model in terms of the offloading

time. Improved flexibility in computing resource allocation
can be achieved when the offloading time allocation is
adjusted.

The performance disparity between our cooperative de-
sign approaches and those without local computing bench-
marks highlights the importance of local computing and
UAV offloading integration. For the no MN design, high
energy consumption is incurred for task computing, for the
following main reasons. First, in this design, the MN does
not help compute. Second, with increase in the task bits, the
energy consumption increases with regard to the cube of the
required task bits. Last but not least, due to the trajectory
pattern being fixed, the straight flight design is limited in
mobility exploitation compared with the proposed method,
which leads to larger energy consumption.

Figure 7 illustrates the influence of system cost when the
UAV processing capacity increases from 4 to 50 GHz. Ac-
cording to [42], the computing capacity of the edge server is
usually 2–5 times that of the MNs. Therefore, the computing
capacity of the edge server is set to 3 times that of the MNs.
The system cost of the proposed method does not vary when
the computation capacity changes, this is because UAVs
are able to provide higher-quality computing or offloading
services with less flight time when the battery capacity
has been improved [43]. This leads to energy consumption
minimization. We also observe that when the computing
capacity increases, the system costs of all three offloading
techniques decrease because more computation resources
are available at the UAV level to reduce the task processing
delay.

Finally, we consider the effect of system cost as the

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3251967

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Surrey. Downloaded on April 27,2023 at 14:46:35 UTC from IEEE Xplore. Restrictions apply.

12

transmission power of the UAV is increased from 1 to 10
W, as shown in Figure 8. The system cost of the UAV-only
strategy increases as the transmission power of the UAV
increases, since this design requires all MNs to offload all
tasks to the UAV for execution without local computation.
We also find that the system cost increases with the increase
in the transmission power for the other four techniques, be-
cause of the corresponding increase in the usage of the UAV
downlink transmission energy. The main reason is that the
proposed method uses optimal offloading decisions for task
offloading in a queue-based offloading algorithm and also
uses a pool layer in the resource allocation algorithm. The
pool layer used to store the explored resource is also an im-
portant reason for improving the stability and performance
over other algorithms. We find that our method outperforms
the baseline schemes in terms of system cost reduction in all
of the above scenarios, indicating the significance of UAV-
EC collaboration in task offloading operations.

6 CONCLUSIONS AND FUTURE DIRECTIONS

We have presented an optimized computing resource al-
location (OCRA) model to make an effective use of the
computational capability across the system. The main idea
behind the proposed adaptive resource allocation method is
to use the compliance rules of the cooperative coevolution
technique to adjust the resource allocation. Our simulation
results indicate that the algorithm for computing resource
allocation and the population policy is effective. Moreover,
the presented distributed architecture has higher efficiency
and scalability. In the proposed edge computing framework,
each UAV-enabled edge server satisfies the requirements
of mobile device communication. In addition, the MN’s
accessibility rates can be significantly improved, and the
energy consumption of the MNs can be reduced. Significant
enhancement in the performance was obtained using the
proposed designs when compared with the other baseline
schemes. In the future, we will focus on cross-layer resource
optimization at the edge server, including task assignment
and resource allocation in the presence of uncertainty.

ACKNOWLEDGMENT

This research was sponsored by the US Army Research Lab-
oratory and the UK MOD University Defence Research Col-
laboration (UDRC) in Signal Processing under the SIGNeTS
project. It is accomplished under Cooperative Agreement
Number W911NF-20-2-0225. The views and conclusions
contained in this document are of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory,
the MOD, the U.S. Government or the U.K. Government.
The U.S. Government and U.K. Government are authorised
to reproduce and distribute reprints for Government pur-
poses notwithstanding any copyright notation herein. For
the purpose of open access, the authors have applied a
creative commons attribution (CC BY) licence to any author
accepted manuscript version arising. We would like to thank
the reviewers and editor for their helpful comments in
improving this article.

REFERENCES

[1] F. Samie, V. Tsoutsouras, L. Bauer, S. Xydis, D. Soudris, and
J. Henkel, “Computation offloading and resource allocation for
low-power IoT edge devices,” in 2016 IEEE 3rd World Forum on
Internet of Things (WF-IoT). IEEE, 2016, pp. 7–12.

[2] S. Goudarzi, M. H. Anisi, H. Ahmadi, and L. Musavian, “Dynamic
resource allocation model for distribution operations using SDN
,” IEEE Internet of Things Journal, vol. 8, no. 2, pp. 976–988, 2020.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[4] J. Wang, K. Liu, and J. Pan, “Online UAV-mounted edge server
dispatching for Mobile-to-Mobile edge computing,” IEEE Internet
of Things Journal, vol. 7, no. 2, pp. 1375–1386, 2019.

[5] H. Dai, H. Zhang, B. Wang, and L. Yang, “The multi-objective
deployment optimization of UAV-mounted cache-enabled base
stations,” Physical Communication, vol. 34, pp. 114–120, 2019.

[6] Q. Hu, Y. Cai, G. Yu, Z. Qin, M. Zhao, and G. Y. Li, “Joint offloading
and trajectory design for UAV-enabled mobile edge computing
systems,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1879–
1892, 2018.

[7] M.-A. Messous, H. Sedjelmaci, N. Houari, and S.-M. Senouci,
“Computation offloading game for an UAV network in mobile
edge computing,” in 2017 IEEE International Conference on Commu-
nications (ICC). IEEE, 2017, pp. 1–6.

[8] M. A. Potter and K. A. D. Jong, “Cooperative coevolution: An
architecture for evolving coadapted subcomponents,” Evolutionary
Computation, vol. 8, no. 1, pp. 1–29, 2000.

[9] W. Chen, T. Weise, Z. Yang, and K. Tang, “Large-scale global opti-
mization using cooperative coevolution with variable interaction
learning,” in International Conference on Parallel Problem Solving from
Nature. Springer, 2010, pp. 300–309.

[10] M. N. Omidvar, X. Li, and X. Yao, “Cooperative co-evolution with
delta grouping for large scale non-separable function optimiza-
tion,” in IEEE Congress on Evolutionary Computation. IEEE, 2010,
pp. 1–8.

[11] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-
evolution with differential grouping for large scale optimization,”
IEEE Transactions on Evolutionary Computation, vol. 18, no. 3, pp.
378–393, 2013.

[12] Y. Mei, M. N. Omidvar, X. Li, and X. Yao, “A competitive divide-
and-conquer algorithm for unconstrained large-scale black-box
optimization,” ACM Transactions on Mathematical Software (TOMS),
vol. 42, no. 2, pp. 1–24, 2016.

[13] M. A. Ali, Y. Zeng, and A. Jamalipour, “Software-defined co-
existing UAV and WiFi : Delay-oriented traffic offloading and
UAV placement,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 6, pp. 988–998, 2020.

[14] C.-F. Liu, S. Samarakoon, M. Bennis, and H. V. Poor, “Fronthaul-
aware software-defined wireless networks: Resource allocation
and user scheduling,” IEEE Transactions on Wireless Communica-
tions, vol. 17, no. 1, pp. 533–547, 2017.

[15] N. Zhao, X. Pang, Z. Li, Y. Chen, F. Li, Z. Ding, and M.-S. Alouini,
“Joint trajectory and precoding optimization for UAV-assisted
NOMA networks,” IEEE Transactions on Communications, vol. 67,
no. 5, pp. 3723–3735, 2019.

[16] Y. Zhu, G. Zheng, and M. Fitch, “Secrecy rate analysis of UAV-
enabled mmWave networks using matérn hardcore point pro-
cesses,” IEEE Journal on Selected Areas in Communications, vol. 36,
no. 7, pp. 1397–1409, 2018.

[17] M. Chen, W. Saad, and C. Yin, “Liquid state machine learning
for resource and cache management in LTE-U unmanned aerial
vehicle (UAV) networks,” IEEE Transactions on Wireless Communi-
cations, vol. 18, no. 3, pp. 1504–1517, 2019.

[18] J. Lyu and R. Zhang, “Network-connected UAV: 3-D system
modeling and coverage performance analysis,” IEEE Internet of
Things Journal, vol. 6, no. 4, pp. 7048–7060, 2019.

[19] S. Goudarzi, M. H. Anisi, D. Ciuonzo, S. A. Soleymani, and
A. Pescape, “Employing unmanned aerial vehicles for improving
handoff using cooperative game theory,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 57, no. 2, pp. 776–794, 2020.

[20] P. Yang, X. Cao, X. Xi, Z. Xiao, and D. Wu, “Three-dimensional
drone-cell deployment for congestion mitigation in cellular net-
works,” IEEE Transactions on Vehicular Technology, vol. 67, no. 10,
pp. 9867–9881, 2018.

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3251967

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Surrey. Downloaded on April 27,2023 at 14:46:35 UTC from IEEE Xplore. Restrictions apply.

13

[21] Y. Mao, J. Zhang, S. Song, and K. B. Letaief, “Stochastic joint
radio and computational resource management for multi-user
mobile-edge computing systems,” IEEE Transactions on Wireless
Communications, vol. 16, no. 9, pp. 5994–6009, 2017.

[22] S. Jeong, O. Simeone, and J. Kang, “Mobile edge computing via a
UAV -mounted cloudlet: Optimization of bit allocation and path
planning,” IEEE Transactions on Vehicular Technology, vol. 67, no. 3,
pp. 2049–2063, 2017.

[23] M. N. Soorki, M. Mozaffari, W. Saad, M. H. Manshaei, and
H. Saidi, “Resource allocation for machine-to-machine communi-
cations with unmanned aerial vehicles,” in 2016 IEEE Globecom
Workshops (GC Wkshps). IEEE, 2016, pp. 1–6.

[24] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient
resource allocation for mobile-edge computation offloading,” IEEE
Transactions on Wireless Communications, vol. 16, no. 3, pp. 1397–
1411, 2016.

[25] H. Q. Le, H. Al-Shatri, and A. Klein, “Efficient resource allocation
in mobile-edge computation offloading: Completion time mini-
mization,” in 2017 IEEE International Symposium on Information
Theory (ISIT). IEEE, 2017, pp. 2513–2517.

[26] J. Ren, G. Yu, Y. Cai, Y. He, and F. Qu, “Partial offloading for
latency minimization in mobile-edge computing,” in GLOBECOM
2017-2017 IEEE Global Communications Conference. IEEE, 2017, pp.
1–6.

[27] U. Saleem, Y. Liu, S. Jangsher, and Y. Li, “Performance guaranteed
partial offloading for mobile edge computing,” in 2018 IEEE Global
Communications Conference (GLOBECOM). IEEE, 2018, pp. 1–6.

[28] M. Cui, G. Zhang, Q. Wu, and D. W. K. Ng, “Robust trajectory and
transmit power design for secure UAV communications,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 9, pp. 9042–9046,
2018.

[29] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, “Computation rate
maximization in uav-enabled wireless-powered mobile-edge com-
puting systems,” IEEE Journal on Selected Areas in Communications,
vol. 36, no. 9, pp. 1927–1941, 2018.

[30] M. Li, M. Huo, X. Cheng, L. Xu, X. Liu, and R. Yang, “Joint
offloading decision and resource allocation of 5g edge intelligent
computing for complex industrial application,” in 2021 IEEE 20th
International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom). IEEE, 2021, pp. 1542–1547.

[31] Y. Wang, Z.-Y. Ru, K. Wang, and P.-Q. Huang, “Joint deployment
and task scheduling optimization for large-scale mobile users in
multi-UAV-enabled mobile edge computing,” IEEE Transactions on
Cybernetics, vol. 50, no. 9, pp. 3984–3997, 2019.

[32] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks
with mobile edge computing,” IEEE Transactions on Wireless Com-
munications, vol. 16, no. 8, pp. 4924–4938, 2017.

[33] K. Wang, K. Yang, and C. S. Magurawalage, “Joint energy mini-
mization and resource allocation in C-RAN with mobile cloud,”
IEEE Transactions on Cloud Computing, vol. 6, no. 3, pp. 760–770,
2016.

[34] S.-W. Ko, K. Han, and K. Huang, “Wireless networks for mobile
edge computing: Spatial modeling and latency analysis,” IEEE
Transactions on Wireless Communications, vol. 17, no. 8, pp. 5225–
5240, 2018.

[35] H. Liao, Z. Zhou, X. Zhao, L. Zhang, S. Mumtaz, A. Jolfaei, S. H.
Ahmed, and A. K. Bashir, “Learning-based context-aware resource
allocation for edge-computing-empowered industrial iot,” IEEE
Internet of Things Journal, vol. 7, no. 5, pp. 4260–4277, 2019.

[36] Y.-H. Jia, W.-N. Chen, T. Gu, H. Zhang, H.-Q. Yuan, S. Kwong,
and J. Zhang, “Distributed cooperative co-evolution with adaptive
computing resource allocation for large scale optimization,” IEEE
Transactions on Evolutionary Computation, vol. 23, no. 2, pp. 188–202,
2018.

[37] M. A. Sayeed, R. Kumar, and V. Sharma, “Efficient data manage-
ment and control over wsns using sdn-enabled aerial networks,”
International Journal of Communication Systems, vol. 33, no. 1, p.
e4170, 2020.

[38] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum,
“LiveLab: measuring wireless networks and smartphone users
in the field,” ACM SIGMETRICS Performance Evaluation Review,
vol. 38, no. 3, pp. 15–20, 2011.

[39] Y. Zeng and R. Zhang, “Energy-efficient UAV communication with
trajectory optimization,” IEEE Transactions on Wireless Communica-
tions, vol. 16, no. 6, pp. 3747–3760, 2017.

[40] C. Zhan, H. Hu, X. Sui, Z. Liu, and D. Niyato, “Completion
time and energy optimization in the UAV-enabled mobile-edge
computing system,” IEEE Internet of Things Journal, vol. 7, no. 8,
pp. 7808–7822, 2020.

[41] X. Hu, K.-K. Wong, K. Yang, and Z. Zheng, “UAV-assisted relaying
and edge computing: Scheduling and trajectory optimization,”
IEEE Transactions on Wireless Communications, vol. 18, no. 10, pp.
4738–4752, 2019.

[42] F. Guo, H. Zhang, H. Ji, X. Li, and V. C. Leung, “An efficient com-
putation offloading management scheme in the densely deployed
small cell networks with mobile edge computing,” IEEE/ACM
Transactions on Networking, vol. 26, no. 6, pp. 2651–2664, 2018.

[43] J. Buczek, L. Bertizzolo, S. Basagni, and T. Melodia, “What is a
wireless uav? a design blueprint for 6g flying wireless nodes,” in
Proceedings of the 15th ACM Workshop on Wireless Network Testbeds,
Experimental Evaluation & Characterization, 2022, pp. 24–30.

Shidrokh Goudarzi is a lecturer in Computer
Science at the School of Computing and En-
gineering at the University of West London,
U.k. Prior to this, she was a research fellow
at the Centre for Vision, Speech, and Sig-
nal Processing (CVSSP), University of Surrey.
She was a senior lecturer at the Universiti Ke-
bangsaan Malaysia (UKM). She received her
Ph.D. degree in communication systems and
wireless networks from the Malaysia-Japan In-
ternational Institute of Technology (MJIIT), Uni-

versiti Teknologi Malaysia (UTM). She received three-year full schol-
arship to study Ph.D. at (UTM). Then, she joined the Department of
Advanced Informatics School at Universiti Teknologi Malaysia as a
Postdoctoral Fellow from 2018 to 2020. She serves as a reviewer for
some journals. Her research interests are in wireless networks, Artificial
Intelligence, Machine Learning, Next-Generation Networks, Internet of
Things (IoT) and Mobile/distributed/Cloud Computing.

Seyed Ahmad Soleymani is a research fellow
at the Centre for Vision, Speech, and Signal
Processing (CVSSP), University of Surrey. Pre-
vious to this role, he was a research fellow at the
5G&6G Innovation Centre, Institute for Commu-
nication Systems (ICS), University of Surrey. He
received his Ph.D. in computer science from the
faculty of engineering, UTM, Malaysia in 2019.
His research interests are in Wireless Sensor
Networks, Mobile Ad Hoc Networks, Vehicular
Ad Hoc Networks, and UAVs Networks.

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3251967

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Surrey. Downloaded on April 27,2023 at 14:46:35 UTC from IEEE Xplore. Restrictions apply.

14

Wenwu Wang (M’02–SM’11) was born in Anhui,
China. He received the B.Sc. degree in 1997,
the M.E. degree in 2000, and the Ph.D. degree
in 2002, all from Harbin Engineering University,
China. He then worked in King’s College Lon-
don, Cardiff University, Tao Group Ltd. (now An-
tix Labs Ltd.), and Creative Labs, before joining
the University of Surrey, UK, in May 2007, where
he is currently a Professor in Signal Process-
ing and Machine Learning, and a Co-Director
of the Machine Audition Lab within the Centre

for Vision Speech and Signal Processing. He is also an AI Fellow
within the Surrey Institute for People-Centred Artificial Intelligence. His
current research interests include blind signal processing, sparse signal
processing, audio-visual signal processing, machine learning and per-
ception, artificial intelligence, machine audition (listening), and statistical
anomaly detection. He has (co)-authored over 300 publications in these
areas including two books: Machine Audition: Principles, Algorithms,
and Systems by IGI Global published in 2010, and Blind Source Sep-
aration: Advances in Theory Algorithms and Applications by Springer in
2014. His work has been funded by EPSRC, EU, Dstl, MoD, DoD, Home
Office, Royal Academy of Engineering, National Physical Laboratory,
BBC, and industry (including Samsung, Tencent, Huawei, Atlas, Saab,
and Kaon). He is a (co-)author or (co-)recipient of over 15 awards
including the 2022 IEEE SPS Young Author Best Paper Award, ICAUS
2021 Best Paper Award, DCASE 2020 Best Paper Award, DCASE 2019
and 2020 Reproducible System Award, LVA/ICA 2018 Best Student
Paper Award, FSDM 2016 Best Oral Presentation, ICASSP 2019 and
LVA/ICA 2010 Best Student Paper Award Nominees. He is a Senior
Area Editor (2019-2023) for IEEE Transactions on Signal Processing, an
Associate Editor (2020-) for IEEE/ACM Transactions on Audio Speech
and Language Processing, an Associate Editor of Nature Scientific
Report (2022-) and Senior Area Editor of Digital Signal Processing
(2021-), and an Associate Editor (2019-) for EURASIP Journal on Audio
Speech and Music Processing. He is a Specialty Editor in Chief (2021-)
of Frontier in Signal Processing, and was an Associate Editor (2014-
2018) for IEEE Transactions on Signal Processing. He is elected Chair
(2023-2024) of IEEE SPS Machine Learning for Signal Processing Tech-
nical Committee, elected Vice Chair (2022-2024) of EURASIP Technical
Area Committee on Acoustic Speech and Music Signal Processing, an
elected Member (2021-2023) of the IEEE Signal Processing Theory
and Methods Technical Committee, and an elected Member (2019-) of
the International Steering Committee of Latent Variable Analysis and
Signal Separation. He was a Publication Co-Chair for ICASSP 2019
(Brighton, UK) and a Satellite Workshop Co-Chair for INTERSPEECH
2022 (Incheon, Korea), and a Technical/Program Committee Member of
over 100 international conferences.

Pei Xiao is a professor of Wireless Com-
munications at the Institute for Communi-
cation Systems (ICS), home of 5GIC and
6GIC at the University of Surrey. He re-
ceived the PhD degree from Chalmers Uni-
versity of Technology, Gothenburg, Sweden in
2004. He is currently the technical manager of
5GIC/6GIC, leading the research team in the
new physical layer work area, and coordinat-
ing/supervising research activities across all the
work areas (https://www.surrey.ac.uk/institute-

communication-systems/5g-6g-innovation-centre). Prior to this, he
worked at Newcastle University and Queen’s University Belfast. He also
held positions at Nokia Networks in Finland. He has published exten-
sively in the fields of communication theory, RF and antenna design,
signal processing for wireless communications, and is an inventor on
over 15 recent 5GIC patents addressing bottleneck problems in 5G
systems.

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3251967

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Surrey. Downloaded on April 27,2023 at 14:46:35 UTC from IEEE Xplore. Restrictions apply.

