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Abstract—Unmanned aerial vehicles (UAVs) are useful devices
due to their great manoeuvrability for long-range outdoor target
tracking. However, these tracking tasks can lead to sub-optimal
performance due to high computation requirements and power
constraints. To cope with these challenges, we design a UAV-based
target tracking algorithm where computationally intensive tasks
are offloaded to Edge Computing (EC) servers. We perform joint
optimization by considering the trade-off between transmission
energy consumption and execution time to determine optimal
edge nodes for task processing and reliable tracking. The simu-
lation results demonstrate the superiority of the proposed UAV-
based target tracking on the predefined trajectory over several
existing techniques.

Index Terms—Edge computing (EC), task offloading, un-
manned aerial vehicle (UAV)

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been effectively
deployed in a variety of applications during the last decade,
including wireless communications for civilian, commercial,
and military services [1]. Target tracking is one of the activ-
ities performed by UAVs to track movable targets in order
to support a variety of military, surveillance, and mapping
applications. However, UAVs have a limited power supply
and limited computer capabilities. As a result, they tend to
fail to execute tasks that demand extensive processing, facing
significant problems in terms of computing capabilities, low
latency, and inference accuracy requirements. The edge com-
puting (EC) technique has emerged as a promising solution to
address those challenges imposed on UAVs [2].

The compute-intensive operations can be offloaded to edge
computing nodes by utilizing edge’s computational capacity.
EC has been recognised as a potential technique for reaping the
benefits of heterogeneous internet of things (IoT) applications,
as it can utilize diverse cloud resources such as storage and
computing capabilities closer to the UAVs [3]. EC is a novel
concept that places cloud servers near the mobile nodes [4].

A brief comparison of cloud computing and edge computing
indicates that cloud computing has high end-to-end latency
due to the distance between the edge and remote data centres,
whereas edge computing has a low end-to-end latency due to
its proximity to users. In cloud computing, data acquired by
sensors is uploaded to the cloud, and output is given back to

Figure 1: Network model

the desired devices, which may consume a lot of backbone
network bandwidth, and can result in a delay in response.
On the other hand, edge computing enables sensor data to be
stored and processed on edge devices rather than in the cloud,
thus it uses less bandwidth than cloud computing, fulfilling
requirements such as low latency, real-time response, and
reduced network traffic.

The quality of computing and the battery lifetime can both
be enhanced by offloading computation operations to the EC
server. However, the technology is infeasible in some sce-
narios with limited accessible infrastructure, such as disaster
response, military mobility, emergency assistance, or rural
locations. Therefore, unmanned aerial vehicle (UAV)-enabled
EC was envisioned and developed as a viable option to address
this drawback [5]. The previous studies [5], [6] have mainly
focused on the computation and communication offloading of
tasks, without the computation time at the UAVs. Nevertheless,
the computation time cannot be neglected in a real situation.
The UAV offloads computational tasks to an edge node (EN)
for cooperative processing and then collects data to adjust
its trajectories to follow the targets. There are two essential
challenges that must be addressed in order to offer fast and
efficient target tracking. The first is about dynamic tracking
trajectories and adaptive edge device selection. The second
issue is that a battery-powered UAV has limited resources,
especially for real-time computation.

Against this background, providing a suitable solution for
optimized task offloading during UAV-assisted target tracking



is critical. In this article, we present a novel UAV-aided target
tracking algorithm where edge nodes are selected to minimize
the total cost and UAV’s transmit power. We design an edge
node selection algorithm by considering the capability of edge
nodes for task processing and the distances between the edge
nodes and the UAV. The following are the key contributions
of this paper:

1) We propose an effective UAV task distribution algorithm
that adjusts transmission power and selects an optimal
edge node, to achieve efficient target tracking over the
predefined trajectory.

2) We propose three computing strategies: local, total of-
floading and partial offloading.

3) The simulations are conducted to evaluate our algorithm’s
performance and results show that our algorithm outper-
forms existing works while minimizing the total cost.

The remainder of the paper is organised as follows: Section
2 presents the recent research on computation offloading in
UAV-enabled EC networks. Section 3 presents our proposed
model and the core modelling procedure. In Section 4, we
describe the proposed algorithm. Section 5 presents a compar-
ison of our approach against state-of-the-art solutions. Finally,
concluding remarks are drawn in Section 6.

II. RELATED WORK

UAVs have attracted considerable attention from both
academia and industry due to their high flexibility in deploy-
ment. UAVs have been used in a variety of wireless communi-
cation applications, including non-orthogonal multiple access
networks [7], UAV-aided seamless coverage [8], mmWave
communications [9], and caching [10]. MmWave is a possible
approach for fulfilling the high data rate demands of 5G by
providing data rates at gigabit per second. Edge-caching is
an effective solution that can cope with the unprecedented
growth in data traffic and reduce delivery latency by bringing
content close to end-users. A previous study presented the
three-dimensional (3-D) coverage performance of the cellular
network-connected UAVs that function as aerial nodes [11].
UAV relaying was also reported as an important application
that can enhance the coverage for communications [12].

The target tracking network for UAVs integrated with
ground nodes is more efficient than the ground target track-
ing network. However, since the ground nodes have limited
computational capability, real-time target monitoring is chal-
lenging. As a result, when the UAV in an edge environment
can catch up with the target, the problem of weak process-
ing capabilities of ground nodes may be alleviated, and the
performance of the tracking system can be enhanced [13].

In comparison with cellular infrastructure-based networks,
UAV-enabled EC features dependency on line-of-sight (LoS)
connectivity and controlled mobility management. For exam-
ple, in a previous study [6], the researchers created a dispersed
deployment strategy for UAVs, which maximised the average
distance between the UAV and ground node. Nevertheless,
they assumed that the UAVs served all nodes with the same
data rate instead of introducing variable data rates for different

nodes [6]. A UAV can also be employed as a mobile cloud
computing system and a UAV-mounted cloudlet [14], which
provides offloading options to ground nodes. As a result,
UAVs can provide fog computing even in the absence of
a functioning wireless infrastructure [14]. There are limited
investigations exploring the usage of UAV in target tracking
process.

Some applications investigated the impact of energy con-
sumption in UAV communication systems. The study of
energy-efficient UAV communication considers throughput
and UAV energy consumption [15]. However, there have been
limited works in minimizing UAV energy consumption in
UAV-based target tracking settings. In [16], an energy-saving
technique is proposed for continuous target tracking, although
this study only examined the energy consumption of the UAV
during movement and ignored the energy consumption for data
transmission. To the best of our knowledge, in UAV-assisted
target tracking, no research has considered both the selection
of edge nodes and the adjustment of transmission power.

III. NETWORK MODEL AND PROBLEM FORMULATION

We propose a UAV-enabled EC system, as depicted in
Figure 1, whereby each edge node performs task computation
for the overlaying UAVs. The UAV can discover neighbouring
edge nodes and save information such as their location,
processing power, and other data. A UAV acquires data during
UAV-assisted target tracking that must be quickly analysed and
processed, and to guarantee successful tracking, the findings
must be delivered back to the UAV.

The UAV can offload the computing tasks to the edge
node, and subsequently the computing results can be sent
back to the UAV. The UAV adjusts its position to maintain
consistent tracking and to receive information of available edge
nodes and offload computational tasks to the edge nodes for
cooperative processing. A UAV that offloads tasks to an edge
node on a regular basis for a duration of T is considered. We
assume that the UAV flies at a constant altitude H > 0 above
the ground and lu,m is the position of UAV projected on the
ground at time slot m, {1 ≤ m ≤ M}. We also defined T as
the mission completion time, which can be divided into M
time slots with a slot length of τ , T = τM . The slot length
should be small enough to ensure an unchanged approximate
position of the UAV during each slot. The set of UAVs defined
as U ≜ {1, 2, ..., U} are used to track the targets. We assume
that there are Z edge nodes denoted as a set Z ≜ {1, 2, ..., Z}.
It is assumed that a UAV can offload the tasks to an edge
node xz,m for a duration of T and only one edge node can
be selected as best edge node for serving UAV. We defined
X = {xz,m,∀z,m} as the set containing the schedules of the
edge nodes, where xz,m as a variable indicating whether edge
node z is selected at time slot m. If edge node z is selected
as the optimal edge node for task offloading, then xz,m = 1
otherwise xz,m = 0. The distance between selected edge node
and UAV is defined as [17]:

dmu,z =

√
H2 + ∥lu,m − lz,m∥2 (1)



where lz,m ∈ R2 is the location of edge node z selected in
time slot m, lu,m ∈ R2 is the position of UAV u projected
on the ground at time slot m, and ∥·∥ is an l2 norm. For the
communication link between the UAV and an edge node, we
consider quasi-static fading model, where the channels may be
changed between time slots but remain fixed at each time slot.
Because the UAV flies relatively high and the probability of
the UAV dispersing is minimal, thus line-of-sight (LoS) links
can be established between edge nodes on the ground and the
UAV [18]. The quasi-static fading model is defined as:

hm
u,z = g0(d

m
u,z)

−2 =
g0

H2 + ∥lu,m − lz,m∥2
(2)

where g0 refers to channel power gain at 1 meter away
from UAV. Assume pm,z is the transmission power of edge
node z at time slot m. The transmit power is a variable
relevant to the distance between the edge node and UAV
and is used to decrease the transmission energy consumption.
The transmission power can be modified to reduce transmit
energy consumption, however, it is dependent on the distance
between the UAV and the edge node as well as the edge node’s
processing capacity. The channel capacity in bits per second
is stated as:

Rm,z =
B

n
log2

(
1 +

pm,z

∣∣hm
u,z

∣∣2
σ2

)
(3)

where B shows the the channel bandwidth between UAV and
edge node that can be divided into n subbands for the offload-
ing communication, σ2 is the variance of the white Gaussian

noise (WGN) channel at the edge node, and (
pm,z|hm

u,z|2
σ2 ) is

the signal-to-noise ratio (SNR) at d0 = 1m, where d0 refers to
the distance between the UAV and the edge node at 1 meter.
The total transmission time and computing time of the edge
node which can serve the UAV are used to calculate the task
execution time as follows

ttotalm,z = ttransmission
m,z + tcomputation

m,z (4)

where the transmission time is calculated as:

ttransmission
m,z =

sm
B log2(1 +

g0pm,z

σ2.(dm
u,z)

2 )
(5)

where sm (bits) refers to the size of computation input data
in time slot m. The computing time tcomputation

m,z is calculated
as:

tcomputation
m,z =

sm
rm,z

(6)

where rm,z is the capacity of data processing (bytes per
second) of the z-th available edge node for each task at time
slot m, τ refers to the task delay tolerance, and ttotalm,z ≤ τ
guarantees that the UAV receives the data and adjusts time
on each task as needed. For the energy component, we
evaluate the energy consumed during transmission, i.e., the
transmission energy Em,z in Joule (J) as follows:

Em,z = ttransmission
m,z pm,z (7)

where pm,z is the transmit power of edge node z at time
slot m. According to equation (7), the key elements that
influence transmission energy usage are transmission time
and transmission power. The transmit power has a significant
impact on the transmission energy consumption of UAV and
Em,z is an increasing function of pm,z . In addition, the
distance between UAV and edge node can affect transmission
energy consumption. The transmission time is reduced when
the UAV is offloading the tasks to a close edge node, and
subsequently the energy consumption is decreased. Further-
more, the selected edge node needs to have sufficient data
processing capability. Based on the data processing capabilities
of edge nodes and the distance between UAV and edge nodes,
we divide UAVs into three groups: U1 ⊂ U, U2 ⊂ U and
U3 ⊂ U. The UAVs belonging to U1 can only carry out tasks
locally since they are not near the edge node or the edge node
has limited data processing capabilities. The UAVs belonging
to U2 can only offload tasks to edge nodes, because of the
limited computational resources. The UAVs belonging to U3

can compute the tasks locally and also they are able to offload
part of the tasks to available edge node according to offloading
ratio. The aim of a UAV is to minimize the total cost and it is
defined as a weighted sum of the time cost and energy cost. It
is measured by a total cost metric Cm,z for executing a task.

Cm,z = αEm,z + βttotalm,z (8)

where α and β are weighting parameters, set in different
situations accordingly (see Section V). A low cost value
indicates a low-energy and execution time target tracking
technique. We propose an algorithm to optimize the adjustment
between transmission energy and execution time. For this
purpose, the UAV’s transmission power is optimized and a
new adaptive scheme for edge node selection is derived based
on local computing and offloading computing strategies. The
problem can be formulated as

min
xm,z

M∑
m=1

Z∑
z=1

xm,zCm,z (9)

subject to the following constraints:

C1 : ttotalm,z ≤ τ,∀z,m (10)

C2 :

Z∑
z=1

xm,z = 1,∀z,m (11)

where the constraint C1 indicates that the total execution
time should be equal or less than a delay tolerance τ for
task offloading. During normal target tracking, UAV needs to
receive the results from edge node and make adjustment in
time. The constraint C2 indicates xm,z = 1, it means that at
each time slot m only one edge node z ∈ Z can serve UAV
for task offloading.

A) Local Computing: The computing task is executed at the
UAV in the local computing scenario. Denote the UAV’s CPU
frequency as CPU cycles per second. The local computation



delay is calculated as
til =

ci
f i
l

(12)

where ci is the total number of CPU cycles required to
accomplish the computation for thee i-th task and si (bits)
denotes the size of the input data related to the i-th task; f i

l is
the CPU cycle frequency of UAV for local computing (denoted
as subscript "l") of the i-th task.

According to the widely adopted model [19], the energy
consumed for local processing on UAV can be calculated as

εil = k(f i
l )

2.ci (13)

where k is the energy efficiency parameter that mainly depends
on the chip architecture [20], and f i

l is the CPU clock speed.
The weighted cost for local computing is defined as

Oi
l = θtil + (1− θ)εil (14)

where θ and (1−θ), 0 ≤ θ ≤ 1, indicate the UAV’s preference
on processing delay and energy consumption, respectively.

B) Offloading Computing: The task offloading means that
the UAV can offload the computing tasks to near edge nodes.
In this case, delay and energy consumption at both the edge
node and via wireless link should be measured [21]. The delay
for offloading (denoted as a subscript "o" below) the task to
the edge node is given by

tio = (
ci
f i
l

+ γi(
si
Ri

+
ci
fi
)) (15)

where si (bits) denotes the size of computation input data for
task i, γi is the scale coefficient i.e. γi = siout/si, where
siout is the size of the data output from UAV, and Ri is
the available data rate for the data transmitted between the
UAV and edge node. The energy consumption of UAV using
offloading computing is calculated as [22],

εio = k(f i
l )

2ci + γi(P
m
i

si
Ri

+ Pm
i

ci
fi
) (16)

where Pm
i is the power consumption of UAV, when UAV

sending i-th task at time slot m to edge node and staying
idle while waiting for the execution results from edge node.
The weighted cost for offloading computing is defined as

Oi
o = θtio + (1− θ)εio (17)

where θ and (1−θ), 0 ≤ θ ≤ 1, indicate the UAV’s preference
on processing delay and energy consumption, respectively.

C) Partial Computing: In the partial offloading scheme, both
the UAV and edge nodes are used for computing the tasks. We
define ω as the ratio of data offloaded to edge node from UAV
and 1− ω shows the ratio of data to be computed locally on
UAV. We assume that the total data can be divided into two
portions, among which ωsi (bits) is offloaded to edge node
and (1−ω)si (bits) is computed locally at the UAV. The total
delay imposed by the partial offloading strategy (denoted with

subscript "p" below) is computed as:

tip = (
ci
f i
l

+ ω(γi(
si
Ri

+
ci
fi
))) (18)

It should be mentioned that the energy consumption introduced
by partial offloading is given by (εil + εio). Based on this
analysis, the overall cost of UAV utilising the partial offloading
strategy is calculated as:

Oi
p = θtip + (1− θ)(εil + εio) (19)

We analysed the offloading ratio ω of the partial offloading
to minimize the cost combining energy consumption and
execution time.

IV. PROPOSED ALGORITHM

In this section, we present the proposed algorithm for
minimizing the total cost by the optimal edge node selection
for task offloading based on task processing capability and the
distance between UAV and edge node. The pseudo-code for
the edge node selection (ENS) is summarized in Algorithm 1.

In Lines 1-9, we need to recognize local, total offloading,
or partial offloading computing. In the case of offloading, the
UAV needs to find the optimal edge node. In Line 16, the
distances between UAV and nearby edge nodes are calculated.
In Line 17, the edge nodes within 100 meters from UAV are
extracted. The edge nodes with the processing capability (PC)
equal to or more than 2 Mb/s are extracted in Line 18. The
total cost of available edge nodes is computed by calling the
procedure SELECT in Line 19. In Line 23, we set a value
of ω between 0 and 1 for partial offloading. In Line 24, the
best edge node is selected by calling the procedure SELECT
for partial offloading. Then, ωsi bits of data are offloaded
to the best edge node for computing. Note that we set the
maximum distance between UAV and edge node to 100 meters.
In addition, we set the minimum capacity for the edge node
to 2 Mb/s.

V. NUMERICAL EVALUATION

In this section, we present the simulation studies to evaluate
the performance of the proposed algorithm. We investigate
the scenario of straight flight, where the UAV flies at a
constant speed from an initial location to a final destination.
We consider a system with 10 edge nodes placed at various
locations randomly and within an area of 500 × 500 m2. At
each time slot m, the data generated by UAV is 120 Mb.
The relevant parameters for evaluating the performance of our
model are summarized in Table 1. The codes and results for
the experiments can be found from a GitHub link1.

Furthermore, we consider the effects of different relative
weights on task execution in terms of the cost of energy and
time. We set the weights of energy cost α and time cost β equal
to 0.9 and 0.1 respectively. Figure 2 shows the performance
when setting different values for the two weights. We found
that the cost of energy decreases when the weight on energy

1https://github.com/Sh-Goud/UAV-EDGE-Selection-Tracking.git



Table I: List of Simulation Parameters.
Description Parameter Value
System bandwidth B 1 MHz
UAV Altitude H 100 m
UAV transmission power Pt 100 dBm
Simulation area – 500m2

Radio range of the UAVs R 500-800 m
Noise power spectral density at an edge node receiver N0 −170dBm/Hz

Corresponding noise channel σ2 -110 dBm
Maximum transmit power of the UAV 20 dBm (0.1W)
Number of time slots N 30
Duration of UAV flight tf 2 s
Total number of CPU cycles Ci 50
Effective switching capacitance ηc 10−28

Channel power gain g0 -50 dB
Transmission constant Ct -11Db
Probabilistic SINR Threshold SINR Threshold -6 dB
Size of computation task input data for ith UAV (bit) D̄ 150 Mb
Receiving threshold Th 1.17557e-10 W
Constant speed of the UAV Vc 10 m/s
Energy efficiency k 10e-11

cost α increases. The same trend can be observed for β. If we
increase the value of β then the time cost reduces. We also vary
the weights in different situations and observe the performance
changes. Figure 3 shows that, when we use a bigger α, the
total cost is smaller than those in other cases. A task with
a longer execution time needs more energy consumption and
in turn, a bigger weight on energy consumption is needed to
meet this demand. Also, in target tracking process the latency
requirement is stringent and the UAV needs more time for its
status adjustment. As such, we need to set bigger weight on
α in target tracking process. The performance of the proposed
scheme is compared with the following benchmark schemes:

1) Our scheme (Optimized): The UAV is allowed to offload
the tasks to the best edge node if required. The selection of
the best edge node is based on distance between edge node
and UAV and processing capacity of the edge node.

2) Benchmark 1: The UAV is allowed to transmit at maxi-
mum power. The edge selection is based on the distance and
the edge node nearest to the UAV is chosen as a service node.

3) Benchmark 2: In this design, the UAV selects edge nodes
randomly under a fixed amount of transmit power.

Figure 4 shows a comparison between the benchmark
algorithms and the proposed algorithm in terms of cost of
energy and time. Since benchmark schemes do not take into
consideration on the processing capability of edge nodes, these
algorithms have great fluctuation on time cost. The proposed
algorithm has lower energy consumption in comparison with
other algorithms. Figure 5 shows that the optimized scheme
archives lower total cost in comparison with other methods.
The key reason behind this is that our algorithm performs
the optimal edge node selection to reduce energy costs while
maintaining an appropriate execution time. Figure 6 shows the
average total cost in local computing, offloading computing
and partial offloading. We found that the average total cost
decreases in partial offloading by increasing ω. It means that
with a large value of ω much data can be offloaded to the
edge node. It can be seen that it is a good solution to reduce
average total cost. This is due to the fact that offloading
data to the edge node can reduce UAV energy consumption
without incurring significant communication latency. Figure
7 and Figure 8 show the UAV’s trajectories in two separate
scenarios with different energy and time cost weights. Based

Algorithm 1 ENS
Input:
UAV’s trajectory
Location of edge nodes
Processing capability (PC) of edge nodes
Relative weights (α ≥ 0) and (β ≥ 0).
The input data size: si
Offloading ratio: ω ∈ [0, 1]
Output:
Best edge node (zbest)

1: if u ∈ U1 then
2: strategy = locally
3: end if
4: if u ∈ U2 then
5: strategy = total offloading
6: end if
7: if u ∈ U3 then
8: strategy = partial offloading
9: end if

10: switch strategy do
11: case locally:
12: Task locally performs on UAV
13: break;
14: case total offloading:
15: for each time slot m do
16: Calculate the distance between edge node and UAV
17: Extract ZI = {zi ∈ Z, dist(zi, u) ≤ 100m}
18: Extract ZA = {zi ∈ ZI, PC ≥ 2MB/s}
19: Call SELECT (ZA)
20: end for
21: break;
22: case partial offloading:
23: Adjust the ω
24: Call SELECT (ZA)
25: ωsi (bits) offload to zbest
26: break;

Select Best Edge Node
27: procedure SELECT(ZA)
28: for each zi ∈ ZA do
29: Calculate total cost Cm,zi according to (8)
30: if Cm,zi < min then
31: min = Cm,zi

32: zbest = zi
33: end if
34: end for
35: return zbest ▷ zbest is the best edge node
36: end procedure

on the proposed algorithm, the UAV selects the optimal edge
node for task offloading based on task processing capability
and the distance between UAV and edge node.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, an algorithm for optimal task distribution
during tracking was proposed to fully utilize of the computa-
tional capability across the system. The main idea is to use an
optimization technique to adjust the transmission energy con-
sumption of UAV and accelerate task execution during normal
tracking. Our simulation results demonstrate the effectiveness
of the proposed algorithm for selecting an appropriate edge
node during target tracking, where the UAV is used to follow
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the given trajectory of the target. Significant enhancement in
the performance was obtained using the proposed model in
comparison to the baseline schemes. In the future, we will
study the scenario where the target trajectory is not given to
the UAV during target tracking.
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