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ABSTRACT
Low-rank tensor completion is a recent method for estimating
the values of the missing elements in tensor data by minimiz-
ing the tensor rank. However, with only the low rank prior,
the local piecewise smooth structure that is important for vi-
sual data is not used effectively. To address this problem, we
define a new spatial regularization S-norm for tensor comple-
tion in order to exploit the local spatial smoothness structure
of visual data. More specifically, we introduce the S-norm to
the tensor completion model based on a non-convex LogDet
function. The S-norm helps to drive the neighborhood ele-
ments towards similar values. We utilize the Alternating Di-
rection Method of Multiplier (ADMM) to optimize the pro-
posed model. Experimental results in visual data demonstrate
that our method outperforms the state-of-the-art tensor com-
pletion models.

Index Terms— tensor completion, S-norm, LogDet func-
tion, low rank, visual data processing

1. INTRODUCTION

In practical applications, the data captured often contain miss-
ing values due to the failure of storage device, packet loss in
transmission, and incomplete measurement in data collection.
The goal of completion is to recover the unknown elements
based on the known elements. The basic methods for deal-
ing with this problem are local [1], which utilize the adjacent
relationship but do not capture the global information. Re-
cently, a global model has been proposed for addressing the
completion problem, e.g. using the tensor rank minimization
model [2, 3, 4, 5, 6].

For tensor completion, Liu et al. proposed to use the
Sum of Nuclear Norm (SNN) to approximate the tensor rank
[7]. Since the tensor rank is more sensitive to small singu-
lar values, Huang et al. proposed a truncated nuclear norm
minimization (TNNM) method for tensor completion [8], in
which a higher recovery accuracy is obtained by eliminating
smaller singular values. The calculation of the tensor nuclear
norm is expensive, therefore a parallel matrix factorization
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method is proposed in [9]. The tensor train (TT) rank is used
to replace Tucker rank in [10], leading to the Tmac-TT al-
gorithm that works better than Tmac. Simultaneous tensor
decomposition and completion (STDC) is presented in [11]
by utilizing a graph-Laplacian based Tucker decomposition.
However, the matrix nuclear norm does not behave well in
some cases, e.g. when the elements of matrix are sampled
non-uniformly. In order to overcome these limitations, a non-
convex rank approximation has been considered by Zhao et al.
[12] where the log-determinant (LogDet) function is used to
approximate the rank function. The effectiveness of LogDet
has been widely verified in several applications, such as sub-
space clustering [13], recommender system [12], and tensor
completion [14].

Due to the presence of the object edges, visual data are
often only piecewise smooth. For visual data completion, it
is not sufficient to only consider the low rank prior. To ad-
dress this, total variation (TV) is used for completion prob-
lem. For example, TV has been combined with matrix fac-
torization [15], or SNN and Tucker decomposition, leading
to LRTC-TV-I, and LRTC-TV-II [16]. Although the tensor
completion model based on the TV-norm has achieved great
performance, it does not make full use of the neighborhood
information of each missing element. Chen et al. proposed
a new spectral spatial (SS) regularization method to exploit
local smoothness, and applied it successfully to change de-
tection in hyperspectral imagery [17]. Inspired by this work,
we generalize SS regularization for the matrix to higher-order
tensors and define the S-norm as the spatial regularization
for tensor. More specifically, we add the S-norm based spa-
tial regularization to the tensor completion model based on
a non-convex LogDet function. To optimize this model, we
present an Augmented Lagrangian Multiplier (ALM) method
with Alternating Direction Minimizing (ADM) strategy [18].
To summarize, the key contributions of this work are as fol-
lows:
• We propose a new spatial regularization S-norm to ex-

ploit the property of the local piecewise smoothness of visual
data.
• We combine the S-norm with the non-convex LogDet

function to build a tensor completion model.
• Experimental results on color image and the medical



datasets show that our model outperforms the state-of-the-art
tensor completion methods.

1.1. Notation

In this paper, a scalar is denoted by lowercase letters x, and
a matrix is denoted by capital letters, X ∈ Rm×n which is
composed of column vectors, denoted as (xxx1,xxx2, · · · ,xxxn),
where xxxi ∈ Rm, i = 1, · · · , n. An N th-order tensor is de-
noted by calligraphic letters X ∈ RI1×I2×···×IN , and the el-
ements of X are denoted as xi1,i2,··· ,iN , where 1 ≤ ik ≤ Ik,
1 ≤ k ≤ N . The mode-n unfolding of X is a matrix X(n) of
size In × I1 · · · In−1In+1 · · · IN , i.e, X(n) = Unfoldn(X ).
On the contrary, its reverse operator is denoted as Fold(·),
and X = Foldn(Xn). The operation for a tensor is similar to
those for a matrix. ‖X‖F denotes the Frobenius norm of the
tensor X .

2. THE PROPOSED METHOD

2.1. Tensor Spatial Regularization

For a matrix data A ∈ RM×N , Chen et al. [17] propose the
SS regularization that exploits local spatial patterns and its
definition is given as follows:

‖A‖SS =
I∑

i=1

J∑
j=1

W2−1∑
k=1

wk
ij

∥∥a0
ij − akij

∥∥2

2
, (1)

where akij is the kth neighbor of the center element a0
ij , ‖·‖2

denotes the `2-norm of the matrix, and wkij is the weight of
the kth neighbor of a0

ij . W
2 − 1 is the number of neighbors.

For visual data completion, to preserve the local smooth-
ness structure, we generalize the SS regularization from the
matrix to higher-order tensors. We propose the following def-
inition for S-norm as a tensor spatial regularization:

‖X‖S =

N∑
n=1

λn

∥∥X(n)

∥∥
SS,

(2)

where X is a tensor of size I1 × I2 × · · · × IN , and λn’s are
tuning parameters. For the third-mode visual data, its mode-1
and mode-2 matricizations help preserve the spatial structure,
so we set λ1, λ2 = 1, and λ3 = 0.

2.2. LogDet and S-norm for Tensor Completion

We consider tensor completion by integrating a non-convex
LogDet function with the spatial regularization. Given
an N th-order incomplete tensor X ∈ RI1×I2×···×IN , our
method starts with both the global information and the lo-
cal structure of the tensor data. Specifically, the incomplete
tensor is reconstructed by the global low rank prior of the
data. The S-norm helps to smooth the reconstructed data,
by driving the nearby elements to have similar values. The

objective function is written as:

min
X

τ ‖X‖S +

N∑
n=1

αnlogdet

((
X(n)

TX(n)

)1/2

+ ηnIn

)
s.t. PΩ (X ) = PΩ (T ) , (3)

where τ is a regularization parameter. T is the given incom-
plete tensor with missing elements andX has the same size as
T . PΩ (·) is an operator, which chooses entries that is equal to
1 in Ω. In is the n-th identity matrix. Given the constant array
ααα = [α1, α2, · · · , αN ], αn satisfies αn ≥ 0,

∑
n αn = 1. Ω

is an index set where the index of observation elements can
be either “1” or “0”. ηn is a constant, satisfying ηn > 0.

2.3. Optimization Algorithm

Our objective function (3) consists of a non-convex rank ap-
proximation constraint and a spatial prior. Since the unfolded
matrices share the same entries, they cannot be solved in-
dependently. To address this issue, we introduce additional
variables {Mn}Nn=1 and {Hn}Nn=1 to separate these interde-
pendent terms. As a result, Eq. (6) can be converted to the
following equivalent problem:

min
X ,Mn,

Hn

τ

N∑
n=1

λn ‖Hn‖SS +

N∑
n=1

αnlogdet

((
Mn

TMn

)1/2
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)
s.t. PΩ (X ) = PΩ (T ) ,Mn = X(n), Hn = X(n), (4)

Each variable can be updated alternatively with other vari-
ables fixed. Firstly, we define an effective strategy based on
the ALM method with the ADM strategy [18]. Eq. (4) can be
solved by the following ALM problem:
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where Yn,Λn are Lagrange multipliers, µ1, µ2 are positive
penalty scalars and 〈·, ·〉 denotes the matrix inner product.
Then, we can apply the alternative projection strategy to up-
date X ,Mn, Hn, Yn,Λn, i.e., updating one of the variables
with the others fixed, so we separate a large-scale problem
into the following four smaller subproblems.

1. Update1. Update1. Update Mk+1
n : Given X k, Hk

n, Y
k
n ,Λ

k
n, we solve the

following optimization problem:
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In order to solve Eq. (6) effectively, we use the Theorem 1
in [19] to deal with the tensor case. Based on this theorem,
define A = X k(n) −

1
µk
1
Y kn . We can obtain the closed form

solution of Eq. (6), written as:

Mk+1
n = Udiag(proxf,uk

1
(σA)− diag(vk))V T , (7)

where U , V , σA are obtained by the singular value decompo-
sition (SVD) ofA. proxf,uk

1
(·) is the Moreau-Yosida operator

[19]. vk = [1
/(
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)
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)
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/(
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(
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)
].

2. Update2. Update2. UpdateHk+1
n : Given X k,Mk+1

n , Y kn ,Λ
k
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following optimization problem:
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2

2
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Let J = X k(n) −
1
µk
2

Λkn. Taking the derivative with respect to
Hn and setting it to zero, we get

hhhk+1
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1∑
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i

Dk
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where i = 1, 2, · · · ,W 2, Dk
r ∈ RI1···In−1In+1···IN×W 2

,

and the matrix Dk
r = [hhh

k(1)
r , · · · ,hhhk(W

2−1)
r , jjjr]. jjjr is

column vector of J . The coefficient vector is denoted as
ccck = [w1, w2, · · · , wW 2−1,

1
2τ µ

k
2 ]. So the variable Hk+1

n can
be easily obtained by solving Eq. (9).

3. Update3. Update3. UpdateX k+1: GivenHk+1
n ,Mk+1

n , Y kn ,Λ
k
n, the closed

form solution to the least squares problem is obtained as:
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]
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4. Update4. Update4. Update multipliers: Given X k,Mk+1
n , Hk+1

n , we have
the following update equations:

Y k+1
n = Y k

n + µk
1

(
X

k+1
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)
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The pseudocode is summarized in Algorithm 1.

3. EXPERIMENTS

In this section, we illustrate the experimental results for vi-
sual data, namely the color image completion and medical
data completion. We compare our method with the existing
algorithms, such as FaLRTC and HaLRTC [7], TmacTT [10],
STDC [11], LRTC-TV-I and LRTC-TV-II [16] and LogDet

Algorithm 1: Optimization Procedure of LRTC-S
Input: input an N th-order corrupted tensor T , and

index set Ω.
Output: recovered tensor X

1 Initialize these variables
H0
n = M0

n = 0, Y 0
n = Λ0

n = 0, PΩ

(
X 0
)

= PΩ (T ) ,
µmax = 1010,max iter = 500, ηn = ε = 10−6,
ρ = 1.05, µ0

1 = µ0
2 = 10−4, α, λ;

2 while not converged do
3 Update variables Mk+1

n according to Eq. (7);
4 Update variables Hk+1

n according to Eq. (9);
5 Update variables X k+1 according to Eq. (10);
6 Update Y k+1

n ,Λk+1
n according to Eq. (11);

7 Check the convergence conditions;
8 Update µk+1

1 = ρµk1 ;µk+1
2 = ρµk2 .

9 end

[14]. Our model is implemented by the Tensor Toolbox for
MATLAB1. For convenience, we use three metrics to evaluate
the performance of our algorithm, namely the relative squared
error (RSE), peak signal-to-noise ratio (PSNR)[16], and
structural similarity (SSIM) [20]. In our experiments, we use
the relative error of two adjacent iterations as the criterion to
show convergence, i.e,

∥∥X k −X k−1
∥∥
F

/∥∥X k∥∥
F
≤ ε . The

other parameters of our algorithm are initialized as follows.
We tune τ from set {0.001, 0.005, 0.01, 0.1}, which gives the
best performance. We set W = 3, and w1,3,6,8, w2,4,7,9 are
chosen from values in {1, 2, 3, 4}.

3.1. Color image completion

First, we choose seven classic color images, namely airplane,
lena, baboon, barbara, house, peppers and sailboat. Each im-
age is represented as a third order tensor with size 256×256×
3. In the experiment, we randomly remove many pixels of
each image, and the missing rate is ranged from 65% to 95%.
In Table 1, we have listed the comparison of seven algorithms
on the color image that are recovered at 10%, 20%, and 30%
sampling rate (SR), i.e. missing rate at 90%, 80%, and 70%
respectively. Each value in the table is the average based on
the seven images. It can be seen that LogDet and TmacTT
algorithms behave similarly and they are better than FaLRTC
and HLRTC at 20% and 30% sampling rate, but their perfor-
mances are worse than STDC and LRTC-TV-I. However, our
proposed model is superior to the other baselines. In particu-
lar, when the sampling rate is 10%, the RSE of the proposed
model is only 0.1085. In order to intuitively show the recov-
ery performance of our method, Figure 1 presents the recov-
ery results of five algorithms on two color images with 95%
missing rate. We can see that LogDet has better performance

1http://www.sandia.gov/tgkolda/TensorToolbox/



Table 1. Comparison of different algorithms on color image

SR(%) Metrics FaLRTC HaLRTC LogDet TmacTT STDC LRTC-TV-I Proposed

10
RSE 0.1894 0.1847 0.1739 0.1467 0.2052 0.1361 0.1085

PSNR 19.6037 19.8018 20.3600 21.7721 18.6976 22.3243 24.3231
SSIM 0.4573 0.4670 0.4218 0.6072 0.5054 0.7091 0.7609

20
RSE 0.1320 0.1302 0.1157 0.1112 0.1069 0.1010 0.0910

PSNR 22.7397 22.8598 24.0388 24.0812 24.7263 24.9529 25.8891
SSIM 0.6281 0.6333 0.6268 0.7135 0.7250 0.7969 0.8159

30
RSE 0.1010 0.1003 0.0852 0.0970 0.0838 0.0825 0.0789

PSNR 25.1087 25.0649 26.7999 25.2472 26.8640 26.7656 27.1592
SSIM 0.7412 0.7431 0.7528 0.7684 0.7963 0.8525 0.8586

Original Observations HaLRTC LogDet STDC LRTC-TV-I ProposedOriginal Observations HaLRTC LogDet STDC LRTC-TV-I ProposedOriginal Observations HaLRTC LogDet STDC LRTC-TV-I Proposed

Fig. 1. Recovery results for different algorithms. The first column lists the original image, and the second column lists the
image with a missing rate at 95%. The other columns are the recovery results of various methods.

than HaLRTC because the non-convex function approximates
tensor rank better than the tensor nuclear norm. However, it
does not exploit the local smoothing properties of data, re-
sulting in much worse performance than the LRTC-TV-I. Our
method utilizes the S-norm to make full use of the neighbor-
hood information and has better performance than the other
baseline methods.

3.2. Medical data completion

In the second experiment, we used medical MRI images,
which can be obtained from the OsiriX website2. We select
an MRI dataset, namely BRAINIX. The dataset contains 22
slices each of 512× 512 pixels, so we build a 512× 512× 22
tensor. We randomly remove many pixels from the BRAINIX
dataset, with the missing rate ranging from 50% to 95%. Fig-
ure 2 shows all the simulation results on the BRANIX dataset.
Although the BRANIX dataset is bigger than the color image
dataset, the performance obtained on this dataset for all the
tested algorithms is much better. We observe that STDC has
a slight fluctuation, its performance achieved for the missing
rate between 70% to 85% is better than LRTC with TV con-
straint, but it performs worse at the 90% missing rate. As the
missing rate increases, our method is more stable than STDC,

2http://www.osirix-viewer.com/datasets/

and it gives better performance.
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Fig. 2. Comparison of different methods on MRI dataset.

4. CONCLUSION

We have presented a tensor completion method for visual
data by utilizing the local spatial structure of data. We
defined a new tensor spatial regularization S-norm, which
further smooths low rank visual data, and added it to the
tensor completion model based on a non-convex LogDet
function. We introduced the ADMM framework to optimize
the proposed model. Our empirical study demonstrates that
our method gives better recovery performance than several
baseline tensor completion methods.
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