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Sparse �1-Optimal Multiloudspeaker Panning and Its
Relation to Vector Base Amplitude Panning
Andreas Franck, Member, IEEE, Wenwu Wang, Senior Member, IEEE, and Filippo Maria Fazi

Abstract—Panning techniques, such as vector base amplitude
panning (VBAP), are a widely used practical approach for spatial
sound reproduction using multiple loudspeakers. Although limited
to a relatively small listening area, they are very efficient and offer
good localization accuracy, timbral quality, as well as a graceful
degradation of quality outside the sweet spot. The aim of this paper
is to investigate optimal sound reproduction techniques that adopt
some of the advantageous properties of VBAP, such as the sparsity
and the locality of the active loudspeakers for the reproduction of
a single audio object. To this end, we state the task of multiloud-
speaker panning as an �1 optimization problem. We demonstrate
and prove that the resulting solutions are exactly sparse. More-
over, we show the effect of adding a nonnegativity constraint on the
loudspeaker gains in order to preserve the locality of the panning
solution. Adding this constraint, �1 -optimal panning can be formu-
lated as a linear program. Using this representation, we prove that
unique �1 -optimal panning solutions incorporating a nonnegativ-
ity constraint are identical to VBAP using a Delaunay triangulation
for the loudspeaker setup. Using results from linear programming
and duality theory, we describe properties and special cases, such
as solution ambiguity, of the VBAP solution.

Index Terms—Amplitude panning, compressive sampling, lin-
ear programming, �1 optimization, spatial sound reproduction,
sparsity, VBAP.

I. INTRODUCTION

SOUND reproduction over multiple loudspeakers aims at
recreating plausible spatial sound scenes, often consisting

of multiple audio objects, for either a single listener or over
extended listening areas. As summarized in the review paper
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[1], this is an area with a long history but also of very active
research. Spatial sound reproduction approaches can be broadly
classified into physically and perceptually motivated techniques.
The methods that attempt to physically recreate an acoustic field
are referred to as sound field synthesis in [1]. Examples of sound
field synthesis techniques include wave field synthesis (WFS),
e.g., [2]–[6], Higher Order Ambisonics (HOA) [5], [7], [8], and
sound field control techniques [9]–[14]. For a more thorough
review, the reader is referred to [1] and the references therein.

While the former approaches are based on analytic descrip-
tions of the acoustic field, sound field control generally employs
an optimization approach to minimize the difference between
the desired and the synthesized field, most often using an �2
(least-squares) error norm.

In contrast to physical reproduction techniques, perceptually
motivated techniques attempt to achieve a plausible spatial per-
ception by providing the relevant psychoacoustic cues at the
listener’s ears. Panning laws, which apply amplitude changes or
time delays to the audio object’s signal [15], [16], form impor-
tant classes of perceptually motivated reproduction techniques.
Vector-base amplitude panning (VBAP) [17] is likely the most
widely used perceptually motivated method for two- and three-
dimensional multi-loudspeaker reproduction. It is an extension
of amplitude panning for stereophonic reproduction, and its sub-
jective properties have been evaluated extensively [18]–[20].
Although localization is accurate only in a small listening area,
the sweet spot, VBAP has advantageous properties for practi-
cal application, including a low computational complexity, ab-
sence of destructive interference in the sweet spot, high timbral
quality, e.g., [21], and a gradual degradation of sound quality
outside the sweet spot. For these reasons, VBAP is used in
numerous current transmission standards and reproduction sys-
tems for object-based audio, including reference rendering in
the ISO/IEC MPEG-H 3D Audio standard [22], [23].

An objective comparison between optimization-based physi-
cal and perceptually motivated reproduction techniques is hin-
dered by the conceptual gap between these approaches. The
design of the VBAP algorithm, which consists of a geometric
criterion to select a set of loudspeakers and a panning law to
calculate their amplitude weights, further impedes a comparison
to physical approaches. An objective of this paper is to establish
a link between VBAP and optimization-based physical repro-
duction techniques.

Most of the advantageous properties of VBAP can be di-
rectly linked to properties of the loudspeaker driving signals,
specifically the small number (i.e., one to three) of nonzero
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amplitude gains for each audio object. This corresponds to
a sparse solution. Recent years have seen major advances in
sparsity-promoting optimization and signal processing tech-
niques, including the Lasso method [24], matching pursuit [25],
orthogonal matching pursuit [26], basis pursuit [27], sparse
reconstruction using the focal underdetermined system solver
(FOCUSS) [28], sparse Bayesian learning [29], and compressed
sensing [30], [31]. In particular, the use of the �1 norm to achieve
sparse approximate or exact solutions has led to very efficient
algorithms and significant improvements in several signal pro-
cessing fields.

This paper considers the application of �1 optimization tech-
niques to amplitude panning for two specific reasons. Firstly, �1-
optimal amplitude panning problems can be efficiently solved
using convex optimization methods because the underlying ob-
jective function is convex for static loudspeaker configurations.
Secondly, in amplitude panning a minimal �1 norm corresponds
to a maximally localized or “sharp” reproduction of an audio
object, as described in Section II-D.

Several research publications investigate the application of
�1 minimization and/or compressive sensing to the analysis and
reconstruction of spatial sound fields. Epain et al. [32] con-
sider the use of an �1 minimization for the loudspeaker gains
subject to a least-squares constraint on the reproduction gain,
where the Lasso method [24] is used to analyze and reproduce
sound fields consisting of a small number of plane wave sources.
In [33], this technique is extended to time-domain sound field
reconstruction. Lilis et al. [34] propose the use of the Lasso op-
erator to sound field control over multiple, spatially distributed
sampling points. This technique generates optimized complex-
valued loudspeaker gains over a grid of frequencies and enables
superior reproduction quality for undersampled sound fields as
well as a judicious selection of loudspeaker positions. Koyama
et al. [35] consider sparse decomposition of a sound field within
a recording area to achieve wave field reconstruction with re-
duced aliasing artifacts. Radmanesh et al. [36] propose a two-
stage Lasso least-squares method to optimize loudspeaker loca-
tions and weightings for multizone reproduction. A method for
joint optimization of loudspeaker placement and weights using
a constrained matching pursuit approach is described in [37].

In [38], authors of the present paper consider the applica-
tion of convex optimization techniques to listener-centric sound
field control, and demonstrate the similarity between �1-optimal
and amplitude panning methods by means of numerical exam-
ples. However, these approaches generally involve a numerical
optimization step to calculate the sparse loudspeaker driving
functions, hence they are significantly more complex than es-
tablished techniques such as VBAP.

In contrast, the main contribution of the present paper is to
express multi-loudspeaker amplitude panning in the framework
of �1 optimization. More specifically, we use this framework
to characterize �1-optimal solutions of the amplitude panning
problem, for instance their exact sparsity and conditions for
solution uniqueness. Here we use “exact” to denote sparse so-
lutions that have only a few nonzero values and are exactly zero
otherwise [31]. Based on these properties, we show that VBAP is
identical to the �1-optimal solution if three basic requirements

are fulfilled: a) the �1 approach incorporates a nonnegativity
constraint on the panning gains, b) the loudspeaker selection of
the VBAP algorithm is based on a Delaunay triangulation, and
c) this Delaunay triangulation is unique. Most practical VBAP
implementations meet these conditions. The results are then
generalized to �1-optimal solutions without the nonnegativity
constraint. In this way we demonstrate that �1-optimal ampli-
tude panning, with and without nonnegativity constraints for the
panning gains, can be computed with basically the same effort
as VBAP.

The second main result of this paper is that the interpretation
of amplitude panning as an �1 optimization problem enables new
insight into real-world problems of current VBAP algorithms.
For example, it is shown later that asymmetries or ambiguities
reported in [22], [39], [40] correspond to nonunique solutions
of the �1 optimization problem. This reveals that they are not
implementation problems, but are inherent to the design ob-
jective underlying amplitude panning. Although resolving this
ambiguity remains an open research question, the present paper
provides a full characterization of the set of optimal solutions,
which is a valuable starting point to further improve panning
algorithms.

The remainder of this paper is outlined as follows. Section II
reviews amplitude panning techniques for multi-loudspeaker re-
production, in particular VBAP. The proposed idea of expressing
amplitude panning as a global �1 optimization problem is pre-
sented in Section III. An additional nonnegativity constraint is
introduced in Section IV, and conditions for equivalence be-
tween this formulation and VBAP are established. Based on
this result, Section V characterizes the �1 optimal panning so-
lution without this nonnegativity constraint. Different panning
methods are evaluated and compared in Section VI using objec-
tive and psychoacoustic performance measures, and Section VII
summarizes the main outcomes of this paper.

II. MULTICHANNEL AMPLITUDE PANNING TECHNIQUES

This section reviews amplitude panning techniques, their ob-
jectives and properties. In particular, it describes VBAP [17],
the predominantly used technique for panning virtual sources
in three-dimensional loudspeaker setups. This description also
establishes the nomenclature used to derive the novel sparse,
optimal panning techniques in the subsequent sections.

A. Amplitude Panning

Panning is one of the principal and most widely used tech-
niques for spatial sound reproduction. It creates phantom images
in the direction of the virtual source by providing auditory cues
to a listener within a confined sweet spot [18], [21]. The main
auditory cues used in panning are the interaural level difference
(ILD) and the interaural time difference (ITD). To this end, the
source signal is reproduced over multiple loudspeakers, whereby
level differences and/or different time delays are applied to the
loudspeaker signals. These techniques are referred to as ampli-
tude, level, or intensity panning and delay/time-delay panning,
respectively. The computation of the amplitude or delay values
is governed by panning laws such as the law of sines or the
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Fig. 1. Basic elements of spherical geometry.

tangent law [15], [16], [20]. While in amplitude panning level
differences translate to reliable ITD cues in the frequency range
relevant for ITD localization [1], [18], the localization perfor-
mance of time delay panning is more frequency-dependent [20],
[41].

B. Spherical Geometry Preliminaries

Throughout this paper, we make extensive use of geometric
relations on sphere surfaces to describe 3D amplitude panning
techniques as well as �1-optimal panning approaches. There-
fore, here we briefly outline the necessary concepts of spherical
geometry and the notation used within this paper. For more
detail, the reader is referred to textbooks such as [42].

Spherical geometry describes geometric relations on the two-
dimensional surface of a three-dimensional sphere. Without loss
of generality, the radius of the sphere is assumed to be 1. Thus,
any 3D unit vector, denoted

v =
[
xv yv zv

]T
with ‖v‖2 = 1 ,

corresponds to a point on the sphere. In Fig. 1, they are rep-

resented as a,b, . . .. An arc
�

ab is a segment of a great circle
connecting the points a and b. On a unit sphere the arc length,
denoted here as � (a,b), equals the angle between the vectors
a and b and is related to their dot product 〈a,b〉 by

�(a,b) = cos−1 〈a,b〉 . (1)

A spherical polygon is a connected, closed chain of arcs formed
of three or more points. Fig. 1 shows a spherical triangle abc
and a polygon abdef consisting of five points. A circle on
the sphere surface that passes through all points of a spherical
polygon is denoted as its circumcircle, and polygons that have
a circumcircle are termed cyclic polygons. While all spheri-
cal triangles are cyclic, this does not generally hold for poly-
gons consisting of four or more points. The circumcircle of a
cyclic polygon is determined by its circumcenter pk , a unit vec-
tor, and its radius rk such that the arc length between pk and
each polygon point equals rk . Note that there are two points on

Fig. 2. Exemplary 3-D amplitude panning configuration. The active loud-
speaker triangle selected by VBAP is marked in red.

the opposite sides of the sphere fulfilling this property. Unless
stated otherwise, we refer to pk corresponding to the smaller
radius rk . Fig. 1 depicts the circumcircles of the cyclic polygons
abc and abdef .

Given a set of points on a surface, a triangulation is a sub-
division of that surface into triangles formed by edges between
these points such that the triangles are not intersecting, e.g.,
[43]. While often defined for straight-line edges, it is straight-
forwardly extended to sphere surfaces and spherical triangles.
Triangulations form a subset of tessellations, i.e., subdivisions of
a surface into a set of nonoverlapping geometric shapes. Among
the various existing triangulation strategies, the Delaunay tri-
angulation is of particular importance for the panning methods
considered here. Delaunay triangulations maximize the mini-
mum angle over all triangles. The defining condition for the
Delaunay triangulation is the circumcircle condition, e.g., [44]:

Definition 1 (Circumcircle condition for Delaunay
triangulations): A triangulation T is a Delaunay triangu-
lation if and only if no triangle of T contains any other point
within its circumcircle.

This implies that the Delaunay triangulation is nonunique if
there is a circumcircle passing through more than three points
with no other points in the interior of the circumcircle. In this pa-
per, we consider triangulations on the unit sphere, i.e., spherical
triangles and circumcircles on the sphere surface.

C. Vector Base Amplitude Panning (VBAP)

VBAP [17] expresses the tangent law for amplitude pan-
ning in a vector formulation and extends it to three-dimensional
source directions and 3D loudspeaker setups. In the classifica-
tion of [1], VBAP is considered as a local panning technique,
because it only drives a small number of loudspeakers (at most
three) close to the source direction, as opposed to global pan-
ning techniques such as Ambisonics amplitude pannning, e.g.,
[45], which activates loudspeakers all over the setup.

A 3D VBAP configuration is shown in Fig. 2. In VBAP, audio
objects are modeled as plane waves. They are represented by
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the source direction vector p which is a unit vector pointing
to the intended location of the audio object. The loudspeaker
locations, represented by unit vectors

ll =
[
xl yl zl

]T
with ‖ll‖2 = 1 for l = 1, 2, . . . , L , (2)

are assumed to lie on the unit sphere. In case of non-spherical
configurations, the vectors ll are determined by projecting the
actual positions onto the unit sphere, and appropriate gain and
delay compensations are applied to the loudspeaker signals. The
direction vectors of all L loudspeakers of a setup are compactly
represented by the loudspeaker direction matrix

L =
[
l1 l2 · · · lL

]
∈ Rd×L , (3)

where d denotes the dimension of the panning configuration,
i.e., d = 3 for 3D VBAP.

1) Panning Gain Calculation: The VBAP method com-
prises two distinct stages: Firstly, three active loudspeakers,
denoted by indices i, j, and k, are selected. To this end, the unit
sphere is partitioned into a set of nonoverlapping spherical tri-
angles whose vertices are formed by the loudspeaker direction
vectors. Then the active loudspeakers are chosen such that the
corresponding spherical triangle contains the source p. These
steps are described in more detail in Section II-C2 and II-C3. In
the second stage, the panning gain vector gijk =

[
gi gj gk

]T

for the three active loudspeakers li , lj , and lk is obtained as

gijk = L−1
ijkp with Lijk =

[
li lj lk

]
, (4)

where the matrix Lijk is formed of the loudspeaker direction
matrix L defined in (3) by selecting the columns corresponding
to the loudspeaker indices i, j, and k. The global gain vector g ∈
RL×1 for the complete loudspeaker setup contains the weights
gi , gj , gk at the indices i, j, and k, respectively, and zeros
otherwise.

Eq. (4) implies that the panning weights are determined such
that the weighted sum of the active loudspeakers’ direction vec-
tors matches the source direction vector

p =
∑

l∈{ijk}
gl ll . (5)

2) Triangulation: As described above, the selection of the
active loudspeakers is based on a triangulation of the unit sphere
into spherical triangles formed by the direction vectors ll . In the
original description of VBAP [17], triangulation is performed
manually based on empirical criteria: a) the triangles should not
intersect and b) they should be selected such that the localization
accuracy in every direction is maximized. The latter objective
can be interpreted as minimizing the size of the individual tri-
angles. An automated algorithm to generate such triangulations
is proposed in [46]. As described in [20], this algorithm aims
at minimizing the length of the triangle edges, although it does
not specify whether this refers to the length of individual edges
or the sum of edge lengths. It also states that this algorithm is
similar to a greedy triangulation, e.g., [47], which is an approx-
imation of a minimum-weight triangulation that minimizes the
sum of the lengths of the triangle edges [43]. Current VBAP
implementations, for instance [22], [40], [45] typically use a
Delaunay triangulation, e.g., [43], owing to its properties (see

Section II-B) and the availability of efficient algorithms and
implementations such as Quickhull [48]. The Delaunay trian-
gulation is another approximation of the minimum-weight tri-
angulation. Its property of maximizing the minimum angle over
all triangles effectively prevents triangles with long sides and
acute angles.

If the Delaunay triangulation is nonunique, i.e., if it contains
a cyclic polygon with more than three loudspeakers, standard
VBAP implementations select an arbitrary valid triangulation.
As reported in [22], [39], [40], this may lead to artifacts as
reproduction asymmetries or uneven virtual source movements.

3) Loudspeaker Selection: The active loudspeaker triangle
{i, j, k} is selected such that the source position p lies within
the spherical triangle spanned by li , lj , and lk . This corresponds
to the triangle for which p in (5) can be formed as a conical
combination of the active loudspeakers ll

p =
∑

l∈{ijk}
gl ll with gl ≥ 0 , (6)

that is, a linear combination with nonnegative gains gl . In prac-
tical implementations, the selection of the active triangle is per-
formed by evaluating the unnormalized panning gains according
to (4) for all triangles of the triangulation, and selecting the tri-
angle that fulfills the nonnegativity condition (6), e.g., [17], [46].
That is, the computational effort is determined by a solution of
a 3 × 3 linear system for each triangle of the setup. Thus the
complexity of the VBAP gain calculation is linear with respect
to the number of triangles, which is proportional to the number
of loudspeakers, i.e., O(L).

Fig. 2 depicts the active loudspeaker triangle {l1 , l2 , l4} for an
exemplary source position p. For audio object positions strictly
in the interior of a triangle, this criterion is unambiguous if
the triangles of the triangulation are not overlapping. Special
cases occur if an object p lies on a triangle edge or coincides
with a loudspeaker location. In these cases, only two or one
loudspeakers are active, respectively. This also means that either
the two triangles sharing this edge or all triangles containing the
given loudspeaker meet the selection criterion (6). However,
this ambiguity is not critical, because the gains calculated for
all triangles fulfilling (6) are identical.

4) Gain Normalization: To maintain a constant loudness at
the listener position independent of the source direction, the
panning gains g are normalized [17], [49]

g′ =
1

‖g‖p
g (7)

to obtain the final panning weightsg′. Here ‖·‖p represents the �p

norm ‖x‖p = p
√∑

|xi |p . The present paper uses the �2 norm,
i.e., power normalization, in accordance with [17]. Because
normalization is applied uniformly to the complete gain vector
g, it does not change the properties of the panning solution apart
from the total sound pressure.

D. Properties of VBAP

As the psychoacoustic attributes of VBAP are extensively
described, e.g., in [17], [19], [20], we focus on the objective
properties and their links to perceptive features.
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1) Preservation of Velocity Direction: The source direction
p and the loudspeaker direction vectors ll are proportional to
the particle velocity vectors of the source object and the loud-
speaker wave fronts, respectively. Thus, (5) implies that VBAP
synthesizes the correct particle velocity direction by a weighted
superposition of the particle velocity vectors of the active loud-
speakers. This provides a good localization at low frequencies
(up to ≈ 700Hz), e.g., [16], [50], [51].

2) Locality: By construction, the loudspeaker triangulation
ensures that only loudspeakers close to the source direction p
are active. This ensures a graceful degradation of directional
quality for listener outside the reference position [20].

3) Sparsity: By construction, VBAP uses the minimal num-
ber of nonzero panning gains to correctly synthesize the velocity
direction of the virtual source p, that is, at most three for a gen-
eral position in a 3D setup, and two or one loudspeakers if p
coincides with a triangle edge or loudspeaker direction, respec-
tively. Combined with locality, this implies that a sound source
is reproduced as “sharp”, i.e., with minimal directional spread,
as possible with the given loudspeaker configuration, as dis-
cussed in [17]. For low frequencies, this spread is quantified by
the velocity vector magnitude, also termed velocity magnitude
[16], [50] or velocity factor [51]

rv =
1

∑L
l=1 gl

(8)

if (6) is met. For nonnegative panning gains, rv is also the
reciprocal of ‖g‖1 , thus establishing a relation between the
properties of g and the source spread. Large values of rv cor-
respond to sharp image localization, whereas low values of rv
yield less localized, spatially spread sound images. Thus, the
spread of a virtual sound source depends on its position relative
to the loudspeakers, leading to a nonuniform spread distribution
[45], [52].

4) Nonnegativity: Because VBAP synthesizes the desired
source direction as a conical representation of loudspeaker di-
rection vectors (6), all loudspeaker gains are nonnegative. As
described in Section II-C3, most VBAP implementations utilize
this nonnegativity property to select the active triangle. The non-
negativity constraint has also a positive impact on the perceived
quality, as it avoids anti-phase signals resulting in destructive
interference at the listener position, which degrades spatial fi-
delity. For the same reasons, nonnegative panning gains are
enforced by in-phase Ambisonic decoders [7], [51].

III. �1-OPTIMAL AMPLITUDE PANNING

In the preceding section we characterized VBAP as a practi-
cal approach to multichannel sound reproduction. In particular,
VBAP is a combination of a geometric approach to determine
the triangle of active loudspeakers and an algebraic solution
to compute the panning gains such that the velocity vector of
the synthesized sound field matches the direction of the virtual
source. In the following we consider amplitude panning as a
global optimization problem to generate panning gain vectors
g without resorting to an intermediate loudspeaker selection
step. Nonetheless, we aim to retain the advantages of amplitude

panning techniques as VBAP, such as a correct particle velocity
direction at the listener position, minimal spread of the source
image, and a small number of active loudspeakers close to the
source direction.

A. The �1 Optimization Problem

Because of the sparsity-promoting nature of the �1 norm,
see e.g., [31], we formulate the multi-loudspeaker amplitude
panning problem as an �1 optimization problem

argmin
g

‖g‖1 (9a)

subject to Lg = p , (9b)

which is an equality-constrained convex optimization problem
(e.g., [53]). Here, the equality constraint (9b) ensures the de-
sired particle velocity direction analogous to (4) but applied to
the complete loudspeaker direction matrix L, while (9a) ensures
sparsity of the panning gain vector. Alternatively, the objective
(9a) can be considered as to maximize the velocity vector mag-
nitude (8), which can be interpreted as creating the sharpest
possible sound image at low frequencies.

Problem (9) follows from the Basis Pursuit optimization prin-
ciple proposed in [27]. It can also be considered as a limiting
case of the Lasso method [24], [31]

argmin
g

‖g‖1 subject to ‖Lg − p‖2 ≤ ε (10)

for lim ε → 0, which can always be met in case of an under-
determined problem such as amplitude panning.

B. Characterization of the �1-Optimal Solution

The framework of �1 minimization and compressive sampling
enables us to describe the solution of the optimization problem
(9), in particular its uniqueness and sparsity properties, e.g, [30],
[54]–[57]. Here we focus on a recent result that establishes
necessary and sufficient conditions for the solution uniqueness
of �1 minimization problems:

Theorem 1 (�1 uniqueness [58]): Let g∗ denote a solution
to (9). Also, let I denote the index set of the nonzero elements
of g∗, and s = sgn (g∗

I) the signs of the nonzero elements of
g∗. Then g∗ is the unique solution if and only if the following
conditions hold:

1) The submatrix LI containing the columns corresponding
to the index set I has full column rank.

2) There exists a vector y ∈ Rd such that LT
I y = s and

∥
∥LT

Ic y
∥
∥
∞ < 1 , (11)

where LIc denotes the submatrix containing the columns
of L corresponding to the zero entries of g.

Several properties of �1-optimal amplitude panning solutions
follow directly from Theorem 1. The column rank of the matrix
LI , corresponding to the number of active, linearly independent
loudspeakers, cannot exceed the maximum row rank d of this
matrix because L ∈ Rd×L . That is, if a unique solution exists,
it contains at most d nonzero weights, i.e., at most three active
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loudspeakers for a 3D setup. Therefore, the global �1-optimal
panning solution preserves the sparsity properties of VBAP.

While it is possible to completely characterize the solution of
(9), including the selection of active loudspeakers, in terms of
Theorem 1 and the proofs in [58], we choose a different, more
intuitive approach here that is based on the features of amplitude
panning. To this end, the following section considers problem
(9) with an additional nonnegativity constraint on the panning
gains. After describing the optimal solution of this restricted
problem, a generalization to unconstrained panning gains is
established in Section V.

IV. � +
1 : �1-OPTIMAL PANNING WITH NONNEGATIVE GAINS

As discussed in Section II-D4, the limitation to nonnegative
panning gains is an important feature of VBAP, but also other
sound reproduction techniques. Adding this constraint to the
�1-optimal panning problem (9) leads to the following convex
optimization problem

argmin
g

‖g‖1 (12a)

subject to Lg = p (12b)

g ≥ 0 . (12c)

This is referred to as � +
1 -optimal amplitude panning in the

following. In this section, we use the framework of linear pro-
gramming (LP) to study the solution of this problem, first in
terms of the original (primal) LP and later, in Section IV-B,
using the corresponding dual LP. Based on these results, the
equivalence between VBAP and the � +

1 problem is proven in
Section IV-C.

A. Representation as a Linear Program

LP is a widely used framework for modeling and solving
optimization problems with a linear objective function subject
to linear equality and inequality constraints, see, e.g., [59]–[61].
With this framework, problem (12) can be expressed as an LP
in the so-called standard form as follows

argmin
g

cT g (13a)

subject to Lg = p (13b)

g ≥ 0 , (13c)

where c = [1, . . . , 1]T = 1L×1 is a column vector of ones. In
this way, the objective function reduces to the sum of the el-
ements of g, which is equivalent to the �1 norm due to the
nonnegativity condition. Because

∑L
l=1 gl represents the sound

pressure at the listener position, (13) can be interpreted as mini-
mizing the sound pressure while synthesizing a desired particle
velocity vector p. It is worth noting that the representation of
(12) as (13) differs from the standard transformation of an �1
optimization problem into an LP, e.g., [27], [58]. While the lat-
ter essentially doubles the number of variables and constraints,
(13) has the same dimensions as (12).

In the following, we use basic concepts of the LP framework
to interpret the solutions of the nonnegative panning problem.

1) Existence of the Solution: A vector g is a feasible, i.e.,
valid, solution of problem (13) if all equality constraints (13b)
and inequality constraints (13c) are satisfied. A problem is fea-
sible if at least one feasible solution exists. The optimal value
is the minimum value of the objective function (13a) over all
feasible solutions. The set of feasible solutions for which the
objective function attains the optimal value forms the set of
optimal solutions of (13), whose elements are denoted as g∗.
If the minimum and maximum objective values over the set of
feasible solutions are finite, the problem is bounded below or
bounded above, respectively. Obviously, the nonnegativity con-
straint (13c) establishes a trivial minimum lower bound cT g ≥ 0
for the panning problem (13).

For general LP problems, the decision whether it is feasible
and bounded has a complexity comparable to the solution of
the LP itself (e.g., [61]). Thus, no general rules for solution
existence can be deduced from (13). However, as shown in
Section IV-B3, feasibility conditions for the panning problem
can be established by using the dual linear program.

2) Vertex Solutions and Number of Nonzero Panning Gains:
The number of active loudspeakers of the optimal panning so-
lution can be directly linked to the property of the LP. Vertex
solutions (e.g., [61]), also termed vertices, basic solutions [59],
or basic feasible solutions [60] are a basic concept in the LP
framework. A vertex solution is a feasible solution g for which
at least L linearly independent constraints are active. Each row
of the vector-valued inequality constraint (13c) for which the
“≥” relation holds with equality “=” forms an active constraint.
For problem (13), this number is identical to the number of
zero-valued gains gl . In case of equality constraints, each row
of the matrix (13b) represents an active constraint, resulting in
d active equality constraints in case of problem (13). Therefore,
a vertex solution of (13) contains at least L − d zeros, i.e., g
has at most d active loudspeakers, for instance d = 3 for a 3D
setup.

A vertex solution is termed nondegenerate if there are ex-
actly L active constraints, and degenerate if more than L con-
straints are active, that is, less than three active speakers. This
distinction bears a close resemblance to 3D VBAP, where a so-
lution contains either d = 3 or fewer active loudspeakers (see
Section II-D3).

3) Optimal Solution Set: The fundamental theorem of linear
programming, e.g., [60], establishes a relation between vertices
and optimal solutions:

Theorem 2 (Fundamental theorem of linear programming):
If a LP is bounded and feasible, it has an optimal solution. In
this case, it has at least one vertex solution. Furthermore, the
optimal value is attained at at least one vertex solution.

Such a vertex is termed an optimal vertex. That is, a
feasible LP has either one or multiple optimal vertices. In the
former case, the optimal panning problem is unique, and the
corresponding gain vector g∗ has at most d nonzero entries. In
the latter case, there are multiple optimal vertices {g∗

1 , . . . ,g
∗
S},

and the set of optimal panning gain vectors consists of all
convex combinations of these vectors, which is a corollary of
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Theorem 2, e.g., [61]

g∗ =
S∑

s=1

αsg∗
s with

S∑

s=1

αs = 1 and αs ≥ 0 . (14)

In this case, an optimal solution can have more than d nonzero
gains. Applied to 3D amplitude panning, this implies that if a
valid solution exists, there is an optimal solution with at most
three active loudspeakers. Optimal solutions with more than
three active loudspeakers exist only if the LP is nonunique.

B. Solution Properties Based on the Dual LP Problem

Further insight into the �1 optimal panning problem can be
gained by considering the dual LP of (13) [53], [59]–[61]. For
the LP (13), termed the primal problem, the dual program is

argmax
π

pT π (15a)

subject to LT π ≤ c , (15b)

where π ∈ Rd is the dual solution. The optimal (maximum)
value of the objective function (15a) is identical to the optimal
value of the primal problem, i.e.,

pT π∗ = cT g∗ = ‖g∗‖1 , (16)

where π∗ and g∗ denote optimal solutions of the dual and primal
problem, respectively. The elements of the dual solution π relate
to the Lagrange multipliers of the inequality constraint (13c) of
the primal problem [61].

There are numerous connections between the primal and the
corresponding dual problem, see, e.g, [60], [61]. Here we intro-
duce two relations that are used throughout this paper.

Theorem 3 (Dual degeneracy and primal nonuniqueness):
If the optimal solution of the dual is degenerate, then the
solution of the primal problem is nonunique, provided that the
primal is nondegenerate.

Theorem 4 (Primal feasibility and dual boundedness): If
the primal problem is feasible, the dual is feasible if and only if
the primal is bounded.

LP duality is a symmetric relation, that is, the dual of a dual
problem is the primal. In this way, the same properties can be
inferred from the dual to the primal.

1) Geometric Interpretation of the Dual Solution π: Without
loss of generality, the dual solution vector π can be separated
into a unit vector pπ and a nonnegative factor cπ provided that
π = 0, namely

π = cπpπ with ‖pπ‖2 = 1 , cπ > 0 . (17)

Dividing (15) by cπ , the dual problem can be expressed as

argmax
pπ

pT pπ (18a)

subject to LT pπ ≤ 1
cπ

c . (18b)

Each row i of the inequality constraint (18b) is a dot product
(1) of the unit vectors li and pπ

lTi pπ = 〈li ,pπ 〉 = cos � (li ,pπ ) ≤ 1
cπ

, (19)

which can be interpreted as a minimum angle constraint

� (li ,pπ ) ≥ rπ with rπ = cos−1 1
cπ

. (20)

Thus, condition (20) corresponds to a circle on the unit sphere
with center (or axis [42]) pπ and radius rπ , such that there are
no loudspeakers within the surface area enclosed by the circle,
but potentially on its boundary.

Here we use “radius” to denote the angular distance from pπ

to a point on the circle, which is identical to the angle between
the corresponding direction vectors in case of a unit sphere.

2) Vertex Solutions: According to Theorem 2, the optimal
value of an LP is attained at at least one vertex. As the solution
vector π of the dual problem has d components, i.e., d = 3 for
3D setups, the active constraint matrix LT

I must have d linearly
independent rows for an optimal solution. It is readily verified
that the active constraint matrixLT

I attains the maximum column
rank d for every possible combination of loudspeaker vectors
li , i ∈ I. Matrix LT

I can be rank-deficient only if at least d = 3
loudspeaker vectors lie on a common plane. As all vectors li ,
i ∈ I lie on a common circle, these vectors span a space with
a dimension lower than d only if at least two direction vectors
coincide. Consequently, a vertex solution of the dual LP defines
a circle with center pπ and radius rπ = cos−1

(
1/cπ

)
such that

there are no loudspeakers inside the circle and at least three
loudspeakers on the boundary.

Only loudspeakers li on the circumcircle correspond to
nonzero gains gi in the primal problem. This follows from the
condition of complementary slackness, e.g., [61], which states
that a solution variable can be nonzero only if the Lagrange
multiplier corresponding to the respective element of the dual
solution is zero, i.e., if the corresponding inequality is active.

3) Solution Existence: The dual problem enables a direct
geometric interpretation of the existence of a panning solution
in form of an angle limit

rπ < π
2 . (21)

Assume a loudspeaker setup such that rπ ≥ π /2 for some center
pπ and a source position p such that � (p,pπ ) < π /2 . In this
case, all dot products 〈ll , π〉 of the inequality constraint (15b)
are negative, and therefore these constraints are never active.
This means that the dual solution π and thus the objective value
pT π can be made arbitrarily large without violating these con-
straints. Thus, the dual problem is unbounded, and Theorem
4 implies that the corresponding primal problem is infeasible.
This means that if the 3D setup contains a zone such that the
minimum loudspeaker distance from a central point is greater or
equal to π /2 , then there is no nonnegative �1 panning solution
for virtual sources in this zone. In a way, this provides a quan-
titive interpretation to the qualitative statement for VBAP [45]
which states that the loudspeaker aperture should not exceed
roughly 90◦.
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C. Equivalence to VBAP

In the previous section we described the optimal dual solution
and related it to geometrical conditions on the unit sphere. In the
following we extend this to a full geometrical characterization
of the � +

1 -optimal solution and derive conditions under which
this solution is equivalent to VBAP.

1) Delaunay Tessellation Imposed by Dual Vertex Solutions:
In a first step we demonstrate that the dual vertex solutions cor-
respond to a Delaunay triangulation, or, more general, a tessel-
lation of the sphere surface. As shown in Section IV-B2, a vertex
π can be interpreted as a circle on the unit sphere surface with
center pπ and radius rπ such that there are no loudspeaker vec-
tors within in the interior of the circle and at least d loudspeakers
on the boundary. This condition is equivalent with the circum-
circle condition of the Delaunay triangulation (Definition 1),
with the exception that it allows general cyclic polygons instead
of only triangles. Thus, this construction can be regarded as
the tessellation conforming to the Delaunay circumcircle con-
dition. If all cyclic polygons have exactly d = 3 points, this
tessellation is identical to the unique Delaunay triangulation for
this setup. In case of cyclic polygons consisting of more than
three loudspeakers, a Delaunay triangulation can be constructed
by adding nonintersecting arcs between loudspeaker vectors on
the circumcircle. As remarked in Section II-B, this renders the
Delaunay triangulation nonunique. In this way, the dual vertex
solutions partition the unit sphere surface into a finite number
of cyclic polygons, each associated with a center pπ . This par-
titioning depends only on the loudspeaker configuration L, but
not on the source position p.

2) Optimal Dual Vertex Solution: In a second step we show
that the optimal vertex solution of the dual problem is attained
when the source position p is located within the cyclic polygon
corresponding to this vertex. The objective function of the dual
LP (15a), which is to be maximized, can be expressed using
(17) and (20) as

pT π =
cos � (p,pπ )

cos rπ
. (22)

In order to find the global maximum of this function we con-
sider two vertex solutions, represented by center vectors pm

π and
pn

π such that corresponding cyclic polygons share a common

arc
�

li lj . This configuration is depicted in Fig. 3. For a source

position p on the spherical arc
�

lilj the value of the objective
function for a vertex πk , k ∈ {m,n} is

pT πk = cos � (li ,p) − sin � (li ,p)
sin� (li , lj )

[cos � (li , lj ) − 1] ,

(23)
as derived in Appendix VIII. It is apparent that the objective
function is independent of the chosen vertex πk . Consequently,
the vertex solutions have identical objective values for sources

on the arc
�

lilj .

Next we consider a source position p not on
�

lilj . For a given
vertex πk , the dual objective value (22) decreases monotonically
with increasing distance between p and the circumcenter pk

π .
Combined with (23), this implies that the objective value for

Fig. 3. Construction of the objective of the dual LP for a source direction p
on an arc between two loudspeaker directions.

a source position p is larger for a vertex πk that lies on the

same side of the arc
�

lilj as p. Applying this argument to all arcs
of the cyclic polygon enclosing p, it follows that the objective
function reaches its optimum for the vertex π∗ if p lies inside
the cyclic polygon defined by circumcenter pπ ∗ and radius rπ ∗ .
Thus, the selection of active loudspeakers is identical to VBAP
except that the � +

1 method facilitates not only triangles, but also
cyclic polygons with more than three loudspeakers. This case is
discussed in Section IV-C5 below.

As described in Section II, VBAP solutions can be distin-
guished into three cases. In the following we characterize these
cases in terms of the corresponding dual LP to show their equiv-
alence to � +

1 -optimal panning.
3) Unique Panning Solutions With Three Active Loudspeak-

ers: The VBAP panning weights are unique if the Delaunay
triangulation around the source direction p is unambiguous,
i.e., no circumcircle contains more than three loudspeakers. Ap-
plied to the dual LP, this means that there are exactly d = 3
active constraints corresponding to the same active loudspeak-
ers as for VBAP. That is, the dual LP is nondegenerate. Con-
sequently, Theorem 3 implies that the primal LP has a unique
solution. Thus, the equality constraint (12b) reduces to the same
uniquely solvable linear system (4) as for VBAP. This confirms
the equivalence of both methods for this case.

4) Panning Solutions With Less Than Three Active Loud-
speakers: As shown in Section II-C3, VBAP uses only one or
two active loudspeakers if the source direction p coincides with
a loudspeaker position or lies on an arc of the triangulation, re-
spectively. Section IV-A2 explained that such cases correspond
to degenerate vertices of the primal LP. Theorem 3 implies, by
interchanging the role of primal and dual LP, that the corre-
sponding dual LP is nonunique. This case is depicted in Fig. 3,
where the source position p lies on the spherical arc between the
two loudspeakers li and lj . Thus, both πm and πn , correspond-
ing to the loudspeaker-free triangles {li , lj , lm} and {li , lj , ln}
with cirumcenters pm

π and pm
π , respectively, are vertex solu-

tions of the dual LP. According to (23), in this case the objective
value of a vertex solution depends neither on pk

π nor on rk
π , and

thus the objective values of the two vertex solutions πm and
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πn are identical. Theorem 2 confirms that these vertices are the
optimal vertex solutions of the dual LP. It also implies that the
set of optimal solutions of the dual LP consists of all convex
combinations of πm and πn .

This characterization is straightforwardly extended to cases
where the source direction p coincides with a loudspeaker di-
rection vector li . In this case, all cyclic polygons that contain the
loudspeaker li on its boundary are vertex solutions of the dual
LP. As the distance between the circumcenter pk

π of this polygon
to li equals the radius rk

π of this polygon, (22) implies that all
these dual vertex solutions have the same objective value 1. Thus
they are identical and therefore all vertices of this set are optimal
vertex solutions of the dual LP. The vertex solutions of the dual
LP correspond to the multiple valid VBAP triangle selections if
the source direction lies on a loudspeaker or an arc connecting
loudspeakers, i.e., they completely contain the VBAP solution.
Furthermore, this implies that all these solutions have the same
objective value.

5) Nonunique Panning Solutions: As described in Sec-
tion II-C2, the VBAP panning gains are nonunique if the un-
derlying triangulation is ambiguous. In case of the Delaunay
triangulation, this corresponds to configurations with more than
three loudspeakers on a common circumcircle. In the LP frame-
work, this implies that more than three inequality constraints
(15b) are active for the optimal solution π∗ of the dual LP (15).
Thus, the optimal solution of the dual is degenerate. As reasoned
above, this implies that the � +

1 panning problem, i.e., the cor-
responding primal LP, is nonunique provided that the primal is
nondegenerate. The latter condition holds because a degenerate
optimal vertex solution of the primal would mean that less than
d = 3 loudspeakers were active, i.e., that the source direction is
a linear combination of two or less loudspeaker directions. This
case has already been handled in the preceding section.

Theorem 2 ensures that there is at least one optimal
vertex solution. As reasoned above, these vertex solutions are
nondegenerate. At the same time, the nonuniqueness property
implies that there are multiple optimal vertex solutions. These
are denoted as g∗

1 , g∗
2 ,...g∗

S , and each of these S solutions g∗
s has

exactly d = 3 nonzero elements. All optimal vertex solutions
g∗

s of the primal have the same (degenerate) dual solution π∗.
Consequently, the optimal vertex solutions are formed by all
subsets of d = 3 loudspeakers on the circumcircle that attain
the optimal objective value. As shown in Section IV-C, the
optimal solution of the dual is attained if the polygon spanned
by the active loudspeakers includes the source direction
p. Thus, the set of optimal vertex solutions consists of all
three-element sets of active loudspeakers on the circumcircle
such that the spherical triangle formed by these loudspeakers
contains the source p. This is illustrated in Fig. 4 for a cyclic
polygon formed by five loudspeakers l1 , . . . , l5 . In this case
each optimal vertex g∗

s corresponds to the selected triangle of
a valid Delaunay triangulation of this polygon.

Moreover, as expressed by (14), the set of optimal solutions
is formed by all convex combinations of the optimal vertices
g∗

1 , g∗
2 ,...,g∗

S . Thus the VBAP solutions are a strict subset of the
valid � +

1 solutions for nonunique cases. It is worth noting that
some practical panning algorithms apply convex combinations

Fig. 4. Nonunique �1 panning with five loudspeakers l1 , . . . , l5 on a com-
mon circumcircle. The loudspeaker triangles corresponding to optimal vertex
solutions for the source direction p are marked by patterns.

of the vertex solutions. For instance, [39] averages the VBAP
gains of all valid triangulations to improve the smoothness of
the panning for ambiguous loudspeaker setups.

V. OPTIMAL �1 PANNING WITHOUT NONNEGATIVITY

As shown in the previous section, a nonnegativity constraint
imposed on the panning gains enables the �1 panning prob-
lem to be expressed as a linear program which yields identical
solutions to VBAP, thus preserving the beneficial sparsity and
locality properties of amplitude panning techniques. In this sec-
tion, we demonstrate how the same LP framework can be used
to solve the �1 problem without the nonnegativity constraint,
and characterize the resulting panning solutions.

The �1 optimization problem (9) can be translated into an LP
in standard form [27], [58] as follows

argmin
g±

cT g± subject to L±g± = p and g± ≥ 0 (24a)

where

g± =
[
g + g − ]

∈ R2L×1 (24b)

L± =
[
L −L

]
∈ Rd×2L (24c)

cT =
[
1 1 · · · 1

]
∈ R1×2L , (24d)

which doubles the sizes of the optimization variable g± and the
constraint matrix L±. This can be interpreted as augmenting
the loudspeaker setup represented by the direction matrix L by
a set of mirror loudspeakers l −i = −li , 1 ≤ i ≤ L pointing in
the opposite directions to form the complete loudspeaker direc-
tion matrix L± and the corresponding gain vector g± ∈ R2L×1 ,
g± ≥ 0. The final panning gains for the physical loudspeaker
configuration, that is, problem (9), are obtained from g± through

g = g + − g − . (25)

Fig. 5 shows an augmented tetrahedral loudspeaker setup con-
taining real and mirror loudspeakers.
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Fig. 5. Augmented loudspeaker setup for �1 optimal panning without non-
negativity constraints. Virtual loudspeakers l −i are dashed, and the active loud-
speaker triangle in red.

Using this construction, we can apply the results for � +
1 -

optimal panning derived in the preceding section to the �1 pan-
ning problem without a nonnegativity constraint. Firstly, the �1
solutions preserve the same sparsity properties as in � +

1 pan-
ning, i.e., there always exists an optimal solution with at most
d nonzero gains. Secondly, the optimal solution can be found
using the same geometric construction based on the dual LP
described in Section IV-B1. That is, the active loudspeakers
are selected based on a Delaunay triangulation of the complete
augmented direction matrix L± containing both real and mir-
ror loudspeakers. This is exemplified in Fig. 5. For the source
direction p, the �1-optimal solution corresponds to the loud-
speaker triangle {l1 , l3 , l −4 }, including the mirror loudspeaker
l −4 . Using (25) to translate this solution into the gain vector
of the real setup, this means that loudspeaker l4 is activated
with a negative gain. This construction demonstrates that with-
out a nonnegativity constraint, �1 optimal panning does not
maintain the locality property of VBAP. Instead, loudspeakers
close to the opposite of the source direction might become ac-
tive with negative panning gains, creating antiphase sound field
components from these directions. As argued in Sections II-D2
and II-D4, such contributions typically degrade the quality of
panning-based reproduction methods. Thirdly, augmentation by
a set of mirror loudspeakers may lead to special cases caused by
nonunique or degenerate VBAP solutions as described above.
For instance, the optimization problem becomes ambiguous if
the real setup contains diametrical loudspeakers, because in
this case a mirror loudspeaker coincides with the opposite real
loudspeaker.

Notwithstanding these potential drawbacks of omitting the
nonnegativity constraint, this construction also represents an ef-
ficient algorithm to compute the globally optimal �1 panning
solution. That is, the VBAP algorithm is applied to the aug-
mented loudspeaker matrix (24c), and (25) is used to obtain
the panning gains g. That is, the algorithm does not require an

Fig. 6. Example 3D loudspeaker setup according to Layout 15 in MPEG-H 3D
audio [23], also showing the loudspeaker labels and the Delaunay triangulation
for use with VBAP and source positions p1 , p2 , and p3 .

explicit optimization step and its complexity is comparable to
the very efficient VBAP algorithm.

VI. EVALUATION

In this section, we evaluate the properties of the �1 and
� +
1 amplitude panning techniques and their equivalence to

VBAP, and compare it to VBAP extensions to resolve nonunique
triangulations, specifically an averaging technique proposed in
[39] and a strategy using additional virtual loudspeakers that
are downmixed to neighboring speakers specified in MPEG-H
[22], [23]. These methods aim at a more symmetric reproduc-
tion and smoother source movements. Objective performance
metrics are presented in Section VI-A while ITD and ILD lo-
calization cues are used to estimate the subjective localization
performance in Section VI-B.

To this end, we choose a practical 3D loudspeaker layout
defined as Layout 15 in [23] and shown in Fig. 6. It consists of a
total of ten loudspeakers in a spherical configuration, seven in the
horizontal plane and three at an elevation angle of θ = 35◦. The
loudspeaker labels have the form “CH_{M,U}_{R,L}NNN”,
where “M” and “U” denote a position in the horizontal (middle)
and upper layer, respectively, “L” and “R” represent angles to the
left and right, and “NNN” is the azimuth angle in degree. In the
following, the panning solutions of the different algorithms are
shown for three source positions that highlight different cases
of 3D multichannel amplitude panning. The CVX modeling
framework [62], [63] is used for the proposed �1 and � +

1 panning
methods.

A. Objective Performance Measures

For the objective evaluation, we evaluate the loudspeaker gain
distribution and measures such as the �1 norm, the deviation
of the velocity vector direction � (p,p′), the velocity vector
magnitude rv , and the number of nonzero gains, i.e., the �0
norm ‖g‖0 . These results are summarized in Table I.
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TABLE I
OBJECTIVE PERFORMANCE MEASURES FOR AMPLITUDE PANNING EXAMPLES

p1 = (0◦, 12.5◦) p2 = (155◦, 12.5◦) p3 = (100◦, 12.5◦)

Method ‖g‖1 ‖g‖0 � (p, p ′) rv ‖g‖1 ‖g‖0 � (p, p ′) rv ‖g‖1 ‖g‖0 � (p, p ′) rv

VBAP 1.135 3 0◦ 0.881 1.192 3 0◦ 0.839 1.281 3 0◦ 0.781
�1 1 1.135 3 0◦ 0.881 1.091 3 0◦ 4.998 1.281 5 0◦ 1.615
� +

1 1.135 3 0◦ 0.881 1.192 3 0◦ 0.839 1.281 4 0◦ 0.781
Averaging [39] 1.135 3 0◦ 0.881 1.192 3 0◦ 0.839 1.281 4 0◦ 0.781
Virtual loudspeakers [23] 1.135 3 0◦ 0.881 1.192 3 0◦ 0.839 1.406 4 4.351◦ 0.818

Fig. 7. Panning weights for the loudspeaker configuration of Fig. 6 for source

directions (φ, θ). : VBAP, : �1 -optimal, : � +
1 -optimal, : Averaging [39],

: Virtual loudspeaker [23]. (a) p1 = (0◦, 12.5◦). (b) p2 = (155◦, 12.5◦).
(c) p3 = (100◦, 12.5◦).

1) Unique Panning Solutions: As a first example, a source
with direction p1 = (φ1 , θ1) = (0◦, 12.5◦) is chosen, where φi

and θi denote source azimuth and elevation, respectively. VBAP
reproduces this direction with the active loudspeaker triangle
{CH_M_000, CH_U_L045, CH_U_R045}. The correspond-
ing panning gains are shown in Fig. 7(a). This figure also shows
that the gains obtained by the �1-optimal panning technique
are identical to the VBAP case, both with respect to the ac-
tive loudspeaker selection and gains. In fact, the maximum

differences are in the order of < 1 · 10−15 , which is within
the accuracy of the numerical optimization algorithm (precision
setting cvx_precision best). Thus, the �1-optimal solu-
tion retains the advantageous sparsity and locality properties of
VBAP. Because the �1 panning gains are nonnegative in this
case, it is clear that the results of the � +

1 method are identi-
cal to the �1 and VBAP cases. Likewise, the methods based on
averaging and virtual loudspeakers are identical to all these so-
lutions, since they differ from these methods only for nonunique
panning cases. Table I summarizes the performance measures
for the different methods. For p1 , the velocity direction of the
panned source matches the desired direction, i.e., � (p,p′) = 0◦

for all methods. Likewise, since the panning gains are identical,
the �1 norms ‖g‖1 and the velocity factors rv are equal.

2) Nonnegativity Constraints: The panning weights for a
second source direction p2 = (155◦, 12.5◦) are displayed in
Fig. 7(b). In this case, the �1 solution differs from the VBAP
panning weights in that it contains a negative weight, namely
from loudspeaker CH_M_R090. As reasoned in Section V,
the corresponding mirror loudspeaker vector CH_M_R030 −

is included in the triangle {CH_M_L135, CH_M_R030 − ,
CH_U_L180} which fulfills the Delaunay circumcircle con-
dition (Definition 1). For this reason, this triangle is cho-
sen over the VBAP solution {CH_M_L135, CH_M_R135,
CH_U_180}. As in the previous example, the averaging and
virtual loudspeaker downmix solutions are identical to VBAP,
because the panning is unique. The performance measures
for this case are summarized in the second column block of
Table I. With the exception of the �1 solution, all measures are
identical. The latter method achieves a smaller �1 norm, which is
due to the selection of the mirror loudspeaker CH_M_R135 − .
At the same time, the velocity vector magnitude is increased
significantly because of the effect of negative gains on the de-
nominator of (8). While larger values of rv in theory indicate
sharper image locations at low frequencies, this does not corre-
spond with perception (see Section VI-B).

3) Nonunique Panning Solutions: To demonstrate the be-
havior of the panning methods for a nonunique configuration,
a third source direction p3 = (100◦, 12.5◦) is chosen. This di-
rection lies within the cyclic loudspeaker-free spherical poly-
gon {CH_M_L090,CH_M_L135,CH_U_180,CH_U_L045}.
In the VBAP case, the triangle {CH_U_L045, CH_M_L135,
CH_U_180} has been selected arbitrarily, resulting in a vertex
solution with three active loudspeakers. For the other methods,
all four loudspeakers of this cyclic quadrilateral are active. In
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Fig. 8. Simulated ITD and ILD values for freefield conditions and ITU-R BS.1116-3 listening room. : Ideal freefield source, : VBAP, : �1 -
optimal, : � +

1 -optimal, : Averaging [39], : Virtual loudspeakers [23]. (a) ITD freefield. (b) ILD freefield. (c) ITD listening room. (d) ILD listening
room.

case of the �1 and � +
1 methods, the solutions generated by CVX

are displayed, that is, arbitrary elements of the nonunique so-
lution sets. As they are formed by a linear combination of two
distinct vertex solutions, they have four nonzero gains. In case
of the �1 approach, the cyclic polygon also contains the mir-
ror loudspeaker CH_M_R090 − , which results in five nonzero
loudspeaker gains. As observed in the third column block of
Table I, the �1 norm of VBAP, �1 , � +

1 , and the averaging method
are identical. This means that the solutions are contained in the
optimal solution set of the panning problem, i.e., they synthesize
the correct velocity direction with the minimum objective value
for the �1 norm. In contrast, the virtual loudspeaker downmix
algorithm inserts a loudspeaker at the center of the cyclic poly-
gon, and distributes the gain assigned to this virtual loudspeaker
to the neighboring real speakers. As observed in Table I, this
results in a lower �1 norm, but also in a deviation from the target
velocity direction of about 4.4◦.

B. Psychoacoustic Localization Cues

To assess the subjective performance, we simulate the ITD
and ILD as the predominant localization cues. Fig. 8 shows
these measures for a varying azimuth angle, that is, a simulated
circular horizontal movement of a virtual source at an elevation
of 12.5◦ around the center of the setup. In this way, the gener-
ated data also covers the source positions p1–p3 investigated
above. The ITD is calculated as the time of the maximum of
the interaural cross correlation (IACC) of the synthesized bin-
aural impulse reponses [64]. As the ITD cue is relevant for low
frequencies, the impulse responses are lowpass filtered with a
cutoff frequency of 1 kHz. ILDs are computed by averaging
octave-band sound pressure level differences.

Fig. 8(a) and (b) show the ILD and ITD values for both the
ideal virtual source and the panning methods under freefield
conditions. This simulation uses head related transfer functions

(HRTFs) measured with a Neumann KU 100 dummy head [65].
The ITD and ILD trajectories of all methods except �1 pan-
ning without nonnegativity are very similar to those of the
ideal virtual source. If the panning problem is unique (azimuth
range approx. φ ∈ {0◦ · · · 80◦, 140◦ · · · 220◦, 280◦ · · · 360◦}),
these methods are equivalent and therefore the ITDs and
ILDs match exactly. For the remaining azimuth range (ap-
prox. φ ∈ {90◦ · · · 130◦, 230◦ · · · 270◦}, the panning problem
is nonunique and therefore the resulting ITDs and ILDs vary
slightly, either due to the strategies used by the VBAP, the aver-
aging, and the virtual loudspeaker downmix methods to resolve
that ambiguity, or due to the arbitrary choice of one optimal
solution returned by CVX in case of the � +

1 method. However,
all cues are qualitatively similar and consistent with the ideal
virtual source. Assessing the differences between these choices
and designing perceptually optimal resolution strategies is a
topic for future research.

In contrast, the ITD and ILD cues generated by the �1
approach differ significantly from the ideal values. In cases
where the panning gains contain negative values as described in
Section VI-A2 (azimuth range approx. φ ∈ {35◦ · · · 45◦,
150◦ · · · 210◦, 315◦ · · · 325◦}, ITD/ILD values differ signifi-
cantly or are reversed compared to the ideal virtual source.
For the ILD, this extends to directions that contain a nega-
tive gain contribution due to nonuniqueness (φ ∈ {50◦ · · · 145◦,
215◦ · · · 315◦}). This is likely because of the sound energy from
the opposing loudspeaker, which is significant at mid and high
frequencies due to head shadowing.

To assess the performance of the proposed methods within
a real room, the ITD/ILD evaluation is repeated using binau-
ral room impulse responses (BRIRs). We use the BRIR dataset
[66] of a multichannel reproduction system installed in a lis-
tening room (RT60 ≈ 0.22 s) [67] that complies to the ITU-R
BS.1116-3 standard. The resulting ITD and ILD trajectories are
shown in Fig. 8(c) and (d). It is observed that the qualitative
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behavior is very similar to the freefield case. That is, the
ITD/ILD cues of VBAP, � +

1 , the averaging, and the virtual
loudspeaker method are similar to those of the ideal virtual
source, while the �1-optimal solution without a nonnegativity
constraint yields fluctuating or reversed ILD and ITD values. It
is noted that reference ITD/ILD trajectories of the ideal virtual
source are obtained from the freefield case, because the BRIR
dataset used does not allow for arbitrary source positions. In
contrast, the synthesized binaural impulse responses of the pan-
ning methods contain the reverberant field of the room. This
might explain the lower absolute values of the ITD and ILD
cues compared to the freefield reference.

The subjective sound localization performance of the dif-
ferent algorithms has been informally evaluated in a practical
reproduction system and was found consistent with the ITD/ILD
measures. While the �1 method without nonnegativity yields a
fluctuating source localization, the other methods deliver con-
tinuous, consistent source movements, and are very similar also
in case of nonuniqueness. Binaural sound examples rendering
based on both freefield HRTF data and BRIRs of a real listening
room are provided as supplemental multimedia content.

VII. CONCLUSION

In this paper we have considered sparse, globally optimal
solutions for multi-loudspeaker sound reproduction based on
amplitude panning. To this end, we have proposed to formulate
amplitude panning as an �1 optimization problem in order to
retain the advantageous sparsity of amplitude panning methods
as VBAP. We show that if the obtained solutions are unique,
then they are exactly sparse with at most three nonzero loud-
speaker gains, similar to the VBAP solution. It is shown that the
�1 approach is in fact equivalent to VBAP if two conditions are
fulfilled: 1) a nonnegativity constraint on the panning weights,
and 2) the VBAP algorithm uses a Delaunay triangulation to
determine the active speaker triangle. While the first condition
is inherent to VBAP, the second is very close to the triangulation
described in the original VBAP description, and actually used
in the majority of existing implementations. By expressing this
panning problem as a linear program, we utilize optimality con-
ditions for LPs to characterize the optimal panning solutions.
We show that the vertex solutions of the dual LP correspond to
a Delaunay tessellation of the unit sphere surface. In particular,
we prove that nonuniqueness of the panning solution results
from degenerate vertex solutions of the dual LP, corresponding
to more than three loudspeakers on a common circumcircle. We
describe the shape of the solution set for these cases.

Utilizing the LP formulation, we show how the relaxation
of the nonuniqueness constraint affects the full �1 solution by
applying negative gains to loudspeakers opposite to the source
direction, which contradicts the advantageous locality and con-
structive interference properties of amplitude panning methods.
While such solutions are not desirable in most applications,
we propose algorithms to solve the unconstrained �1-optimal
panning problem by an inexpensive modification of the VBAP
algorithm. In this way, we show that globally �1-optimal ampli-
tude panning, with or without nonnegativity constraints, can be

efficiently performed without run-time numerical optimization.
This enables a linear complexity of O(L) comparable to VBAP
as opposed to O(L3) to O(L3.5) for general-purpose �1 convex
optimization methods [53], [68].

On a more conceptual level, this paper reduces the gap be-
tween perceptually motivated panning techniques (cf. [1]) and
optimization-based physical sound field synthesis approaches.
From a practical standpoint, we provide insight into the work-
ings of VBAP-type algorithms. Specifically, we show how the
properties of the Delaunay triangulation are linked to the op-
timality of the resulting panning solution, and that the ambi-
guities observed in practical VBAP implementations originate
from the nonuniqueness of the solution of the underlying de-
sign objective. In this way, the present paper facilitates a better
understanding of amplitude panning techniques, and thus paves
the way to the development of more sophisticated and efficient
panning algorithms.

APPENDIX A
OBJECTIVE VALUE OF THE DUAL ON A SPHERICAL ARC

BETWEEN LOUDSPEAKERS

In this appendix we derive the objective value

pT πk = cos � (li ,p) − sin � (li ,p)
sin � (li , lj )

[cos � (li , lj ) − 1] (26)

of the dual problem (22) for a source position p on a spherical
arc connecting the loudspeakers li and lj and a vertex πk . The
spherical law of cosines. e.g., [42]

cos (a) = cos (b) cos (c) − sin (b) sin (c) cos (A) (27)

relates the arc lengths a, b, and c of a spherical triangle to the
angle A opposite to a. Applied to the geometry of Fig. 3, the
cosine of angle γk is determined as

cos γk = cos rk
π

cos � (li , lj ) − 1
sin rk

π sin� (li , lj )
. (28)

Using this result, cos �
(
pT pk

π

)
can be found by applying the

law of cosines a second time

cos �
(
pT pk

π

)
= cos rk

π cos � (li ,p)

− sin rk
π sin � (li ,p) cos γk

= cos rk
π

(
cos � (li ,p)

− sin� (li ,p)
sin � (li , lj )

[cos � (li , lj ) − 1]
)

. (29)

Inserting into (22) yields the final result (26).
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