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Abstract: Accurately estimating the ocean’s interior structures using sea surface data is of vital
importance for understanding the complexities of dynamic ocean processes. In this study, we
proposed an advanced machine-learning method, the Light Gradient Boosting Machine (LightGBM)-
based Deep Forest (LGB-DF) method, to estimate the ocean subsurface salinity structure (OSSS)
in the South China Sea (SCS) by using sea surface data from multiple satellite observations. We
selected sea surface salinity (SSS), sea surface temperature (SST), sea surface height (SSH), sea surface
wind (SSW, decomposed into eastward wind speed (USSW) and northward wind speed (VSSW)
components), and the geographical information (including longitude and latitude) as input data to
estimate OSSS in the SCS. Argo data were used to train and validate the LGB-DF model. The model
performance was evaluated using root mean square error (RMSE), normalized root mean square
error (NRMSE), and determination coefficient (R2). The results showed that the LGB-DF model had a
good performance and outperformed the traditional LightGBM model in the estimation of OSSS. The
proposed LGB-DF model using sea surface data by SSS/SST/SSH and SSS/SST/SSH/SSW performed
less satisfactorily than when considering the contribution of the wind speed and geographical
information, indicating that these are important parameters for accurately estimating OSSS. The
performance of the LGB-DF model was found to vary with season and water depth. Better estimation
accuracy was obtained in winter and autumn, which was due to weaker stratification. This method
provided important technical support for estimating the OSSS from satellite-derived sea surface data,
which offers a novel insight into oceanic observations.

Keywords: machine learning; ocean subsurface salinity structure; South China Sea; satellite remote
sensing data

1. Introduction

Ocean salinity, a vital parameter of seawater, plays a significant role in understanding
marine ecosystems, ocean dynamics, and climate changes [1–5]. For example, ocean salinity
can be used as an indicator for the hydrologic cycle, which provides valuable insights
into the understanding of global water cycle features [6–8]. Changes in ocean salinity may
also play a role in the formation of water masses [9–11]. To better understand the role of
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ocean salinity in dynamic ocean processes and climate changes, it is necessary to clarify the
vertical structure of ocean salinity.

As the largest marginal sea of the Western Pacific, the South China Sea (SCS) has
several straits along its border that connect to the Sulu Sea, the Java Sea, and the Indian
Ocean (Figure 1a). The deepest water (around 5000 m) is found in the Eastern part of
the SCS, while extended continental shelves (less than 200 m) have been found in the
Western and Southern regions [12]. In the climatological mean, the sea surface salinity
(SSS) in the SCS is north-south oriented: the SSS decreases from 34.0 psu in the north to
32.7 psu in the south (Figure 1b). The maximum SSS is in the Northern part of the SCS,
which is related to the intrusion of the Kuroshio water through the Luzon Strait from the
Pacific [13–15]. A low salinity tongue extends from the Southern part of the SCS, reaching
as far as 10◦N, which is closely related to the freshwater discharge from the Mekong and
Rajang Rivers. Due to its special geographical location, the spatial distribution of the
salinity in the SCS has significant features which are closely related to El Niño–Southern
Oscillation (ENSO) [16–19], Asian monsoons, and the Pacific Western boundary current
system [15,20]. Previous studies have suggested that the variability of the salinity in the SCS
has a significant influence on the regional circulation and climate changes [21–23]. However,
due to the lack of observations, little is known about the spatial and temporal variability of
the salinity in the SCS. This has greatly limited the research on the thermohaline structures
in the SCS. Therefore, it is of great importance to accurately retrieve the ocean subsurface
salinity structure (OSSS), which remains a challenging problem for researchers.
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Figure 1. (a) Bathymetry (m) and geography of the SCS and (b) spatial distribution of long-term
mean SSS (from January 2010 to December 2019) from Argo in the SCS. The three black boxes denote
the study regions used in this study. The red line represents the location of transect used in this study.

Early studies on the estimation of ocean thermohaline structures in the SCS were usually
based on numerical modeling and data assimilation [24–28]. For example, Chao et al. [24]
modeled the interannual variations of thermal structure in the SCS by a three-dimensional
primitive equation and found warming of the upper ocean during El Niño in the 1980s.
Chu et al. [25] used the Princeton Ocean Model (POM) to investigate the seasonal variation
of the thermal structure in the SCS. As researchers realized that the decreasing of dissolved
oxygen was likely associated with the slowdown of thermohaline circulation, Li and Qu [26]
analyzed the thermohaline circulation in the SCS on the basis of the available historical
oxygen data. In order to provide better initial and boundary conditions for numerical
simulations, assimilation methods have been used. Xiao et al. [27] performed an assimila-
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tion experiment for the Southern SCS, and the altimeter data were assimilated into POM.
Shu et al. [28] focused on correcting temperature in the mixed layer by projecting sea surface
temperature (SST) onto subsurface observations based on the optimal interpolation in the
SCS using the POM. Although numerical ocean models offer important tools for estimating
ocean thermohaline structures, these dynamical models are computationally expensive, as
simulating physical governing equations demands intensive computational resources.

In recent decades, remote sensing technology has experienced a remarkable and rapid
advancement that has provided large amounts of useful satellite-derived sea surface data,
such as SSS, SST, and sea surface height (SSH). These well-sampled surface observations
have significantly improved our understanding of upper ocean dynamic processes. Al-
though satellite observations have been confined to the surface, they can be used to infer
information about the vertical structures of the ocean, such as temperature and salinity
structures [29–34]. Previous studies suggested that many oceanic subsurface phenomena
have surface manifestations [35–40]. For example, the SSH was determined by the seawater
density field, and the overall integrated effect of thermohaline is constrained by the SSH, ac-
cording to observations [36]. There was a high correlation between temperature and salinity
variables in the ocean; that is, the vertical distribution of the salinity could be deduced from
the SST [37]. The thermocline was associated with the warming or cooling of surface ocean
water through seasonal warming and the surface stratification or upwelling in deeper wa-
ters caused by offshore seawater transport [38]. Vernieres et al. [39] and Lu et al. [40] have
demonstrated that there is a close link between the SSS and subsurface salinity structures.
A number of methods, such as linear regression of variables, and statistical and dynamic
methods, have been used to estimate vertical ocean temperature and salinity structures
using satellite-derived sea surface data [41–44]. For example, Carnes et al. [41] inferred
the global subsurface thermohaline structure using SSH and SST through a least-squares
regression method. Based on the empirical orthogonal function (EOF) method, Maes and
Behringer [45] estimated the vertical salinity structure in the Western Pacific Ocean by
using sea level anomaly (SLA) and SST. Chu et al. [46] proposed a parametric model based
on a layered structure that successfully reproduced the subsurface thermal structure in
the SCS using SST. A coupled pattern reconstruction (CPR) method was proposed for
estimating the subsurface temperature profiles from SSH and SST, which was shown to
provide a substantial improvement [47]. Guinehut et al. [44] successfully reconstructed
global temperature and salinity fields at a high resolution based on sea surface data and
in situ measurements through a linear regression method. Yang et al. [48] developed a
new method based on a transfer function and a neural network to estimate vertical profiles
of the salinity in the global ocean from the SSS observed by the Soil Moisture and Ocean
Salinity (SMOS) satellite, which was reasonable in contrast with climatology. Considering
the spatial non-stationarity feature, a satellite-based geographically weighted regression
model was proposed to estimate the subsurface temperature anomaly (STA) of the Indian
Ocean by combining satellite-derived sea surface data and Argo in situ data, which has
a significant improvement over the linear regression model [34]. Although the estima-
tion accuracy of subsurface thermohaline structures based on satellite-derived sea surface
data was much better than that of the numerical model-based data assimilation, further
improvements are possible.

With the rapid development of machine-learning technology, it has been extensively
employed in the fields of ocean and atmosphere [49–52]. A number of machine-learning
approaches, such as the artificial neural networks (ANN) [53–55], self-organization map-
ping (SOM) [56,57], support vector machine (SVM) [58,59], random forests (RF) [34,60,61],
and extreme gradient boosting (XGBoost) [62], have been widely used to retrieve vertical
thermohaline structures of the ocean. Ali et al. [53] used an ANN method to estimate the
vertical thermal structure from SST, SSH, wind stress, net radiation, and net heat flux data.
This model could successfully reconstruct the ocean subsurface thermal structure. The
SOM neural network has been applied to SST, SSH, and SSS data to estimate the STA [56].
Considering the data space correlation, Chen et al. [57] combined the SOM method with
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an EOF analysis to reconstruct the subsurface thermal structure by using the SST, the
SSH, the longitude (LON), the latitude (LAT), and the month in the North-Western Pacific
Ocean. Furthermore, machine-learning algorithms such as SVM, RF, and XGBoost were
used to estimate the STA from surface remote sensing observations, which proved that
the SSS and sea surface wind (SSW) were helpful in improving the accuracy of the estima-
tions [34,58,60,62]. K-means clustering and feed-forward neural network were combined
to estimate the subsurface temperature and achieve promising results in the deep ocean by
taking the distribution of the ocean fields into consideration [63]. Based on a stacked long
short-term memory (LSTM) neural network method, Buongiorno Nardelli [64] developed
a model to estimate the ocean hydrographic profiles in the North Atlantic Ocean using
surface remote sensing observations. Recently, Jiang et al. [65] proposed a bidirectional
long short-term memory (Bi-LSTM) framework to estimate and analyze the subsurface
temperature and salinity in the global ocean. A back-propagation neural network (BPNN)
method was used to estimate the thermal structure in the North Pacific Ocean from sea
surface data, such as SSH, SST, SSS, SSW, and sea surface velocity (SSV) [66].

As compared to temperature, relatively few attempts have been made to estimate OSSS
from satellite-derived sea surface data using machine-learning methods [62,67,68]. For
example, Gueye et al. [67] proposed a neural network model-based SOM for reconstructing
salinity profiles of the tropical Atlantic Ocean from satellite-derived sea surface data.
Salinity profiles in the Pacific Ocean can be estimated from satellite-derived sea surface data
using a generalized regression neural network with the fruit-fly-optimization algorithm
(FOAGRNN) [68]. Su et al. [62] proposed XGBoost for retrieving subsurface thermohaline
anomalies of the global ocean, including the STA and the subsurface salinity anomaly (SSA).
These existing studies focused on large-scale ocean regions or the global ocean.

To the best of our knowledge, in the SCS, there are no related studies conducted to
estimate the OSSS from satellite-derived sea surface data using machine-learning methods.
In this study, we proposed a Light Gradient Boosting Machine (LightGBM)-based Deep
Forest (LGB-DF) method to estimate OSSS in the SCS from satellite-derived sea surface
data, including SSS, SST, SSH, SSW (decomposed into eastward wind speed (USSW)) and
northward wind speed (VSSW) components), and the geographical information (LON and
LAT). To evaluate the performance of the LGB-DF model, another popular machine-learning
model, LightGBM, was also used to estimate the OSSS in the SCS.

The rest of the paper is organized as follows. The data and methods are presented
in Section 2. The evaluation of the model performance in estimating OSSS in the SCS is
presented in Section 3. Finally, the discussion and conclusions are provided in Section 4.

2. Data and Method
2.1. Data

As an important part of the Indian–Western Pacific Ocean warm pool, salinity changes
in the SCS play an important role in regulating the regional and global climate system [69].
Therefore, we selected the SCS (105◦E–121◦E and 5◦N–23◦N) as our study area.

In this study, we used two sources of ocean observational data: the sea surface data
from satellite observations, such as SSS, SST, SSH, and SSW, combined with geographical
information (LON and LAT); and gridded Argo data. The SSS data were obtained from the
SMOS with a spatial resolution of 0.25◦ latitude × 0.25◦ longitude [70]. The SST data were
obtained from the National Oceanic and Atmospheric Administration (NOAA), which
consisted of optimal interpolated data observed by the satellite radiometer with a spatial
resolution of 1◦ latitude × 1◦ longitude [71]. The SSH data were obtained from the Archiv-
ing, Validation, and Interpretation of Satellite Oceanographic data (AVISO) project with
a spatial resolution of 0.25◦ latitude × 0.25◦ longitude [72]. The SSW data were obtained
from Cross-Calibrated Multi-Platform (CCMP) gridded data, which are combined with
multi-source data using a variational analysis method (VAM) to produce high-resolution
(0.25◦ latitude× 0.25◦ longitude) gridded analyses [73]. The subsurface salinity data were
obtained from the new version of the Roemmich–Gilson Argo Climatology (RG-Argo) data
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with a spatial resolution of 1◦ latitude × 1◦ longitude [74], which includes 58 vertical levels,
but only 44 levels were used as training labels as well as to evaluate the model performance
on the estimation of the OSSS.

Considering the differences in data resolution and time period between the input and
output data available in the SCS, all data used in this study were processed into monthly
averaged data and interpolated to a resolution of 0.5◦ latitude × 0.5◦ longitude with the
same coverage of the SCS and the time period from January 2010 to December 2019. It
should be noted that, in order to ensure uniformity, data points were deleted if any variable
was null at the same point. All the data used in this paper are shown in Table 1.

Table 1. Summary of the data used in this study.

Index Input Variable Data Source Output Variable Data Source Time Range Time/Spatial Resolution

Data

SSS SMOS
Salinity

(2.5–1000 m)
Argo 2010–2019

Monthly
0.5◦ × 0.5◦

SST NOAA
SSH AVISO
SSW CCMP

2.2. Method
2.2.1. The LGB-DF Model

Deep Forest (DF) is an advanced decision-tree ensemble algorithm based on random
forest, proposed by Zhou and Feng in 2017 [75,76]. Recently, the DF model has been widely
used in many fields to prove its robustness in classification and prediction tasks [77–82].
A DF model would have great potential if it could go deeper. The LightGBM method has
been shown to have the ability to estimate the ocean’s subsurface information [83–87]. This
inspired us to propose an improved DF model based on LightGBM (LGB-DF) method
to estimate the OSSS in the SCS using satellite-derived sea surface data. In this study,
the estimators (random forest and completely-random tree forests) of the DF model were
replaced with the LightGBM to increase the accuracy of the model. The model code was
based on the code of the open-source DF. The LGB-DF model was implemented and tested
for all cases using Python programming on an Intel(R) Core(TM) I9-9940X CPU.

The flowchart for the proposed LGB-DF model is shown in Figure 2. The LGB-DF
model had an important procedure: cascade structure, which could enhance the repre-
sentational learning ability. In this study, the cascade structure of the LGB-DF model was
constructed using two LightGBM (Figure 2). The number of trees in each forest was set to
150, and the maximum depth of each tree was set to 6. Having almost no adjustable hyper-
parameters was also one of the advantages of the LGB-DF model. As shown in Figure 2,
the LGB-DF model processed the variables, layer by layer, in the cascade structure. In
detail, the variables were input into the first layer, and each subsequent layer of input was
spliced from the output of the preceding layer and the initial variable until the last layer to
estimate the OSSS. To reduce the risk of overfitting, the vector produced by each estimator
was generated by k-fold cross validation. Subsequently, the information in the last layer
would be averaged as the estimation result. As compared to exiting machine-learning
algorithms, the LGB-DF algorithm has the following advantages: fast speed, high accuracy,
strong robustness, and simple implementation.

2.2.2. Experimental Setup

The flowchart of applying the LGB-DF model to estimate the OSSS is shown in Figure 3.
The model setup was divided into three steps. The first step was the building of the training
datasets. The satellite-derived sea surface data, such as SSS, SST, SSH, SSW (USSW and
VSSW), and the geographical information (LON and LAT) were selected as input data for
the LGB-DF model. The Argo data were used as training and testing labels. The second
step was to train the model. The training data (from January 2010 to December 2018) were
input into the LGB-DF model to obtain the output. Here, we used the grid search method
to determine the optimal parameter combination for the LGB-DF model. Finally, with the
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optimal parameter combination of the LGB-DF model, we estimated the OSSS in the SCS
using sea surface data from the testing set (from January 2019 to December 2019).
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In addition to the LGB-DF model, we also set up a traditional machine-learning model
(LightGBM) as a comparison to the LGB-DF model. Since the selection of input variables
has an important impact on the performance of the model, three different combinations of
sea surface parameters (three, five, and seven parameters) were used as LGB-DF model
inputs to estimate the OSSS in the SCS. In this study, we evaluated the performance of
the LGB-DF model through statistical metrics, such as root mean square error (RMSE),
normalized root mean square error (NRMSE), and determination coefficient (R2).

3. Results
3.1. Validation of Satellite-Derived SSS and SST

The accuracy of a machine-learning model is sensitive to the original input data [65].
Before utilizing the LGB-DF model to estimate OSSS in the SCS, the satellite-derived
SSS and SST data were briefly validated by comparing them with the Argo data. As
shown in Figure 4a, the seasonal variation of the satellite-derived SSS averaged over the
SCS had good agreement with the Argo-derived SSS. For example, both of them showed
that the maximum SSS value (>33.5 psu) occurred in April, and the minimum SSS value
(<33.1 psu) occurred in November. The difference between the Argo SSS and satellite SSS
varied from −0.02 psu to 0.14 psu. As for SST, the satellite-derived SST also showed good
agreement with the Argo SST data on a seasonal scale (as shown in Figure 4b). In the SCS,
the maximum SST value (>29.8 ◦C) occurred in May, whereas the minimum SST value
(<26.3 ◦C) occurred in February. The difference between the Argo SST and satellite SST
varied from −0.2 ◦C to 0.2 ◦C. Although the satellite data showed good agreement with the
Argo observed data, some discrepancies were still observed, which may be due to different
depths of measurement.
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3.2. Identification of Input Variables

Previous studies had suggested that sea surface data could be used to infer ocean
subsurface information with surface manifestations [37,55,62,86]. To determine the optimal
combination of input variables for the LGB-DF model, a correlation analysis was con-
ducted. Here, we only considered the absolute value of Pearson’s correlation coefficients
and focused on the magnitude of the correlation coefficients. The OSSS has a correlation
with the sea surface variables at 50m, 100m, 500m, and 1000m of depth (Figure 5). The
correlation coefficient between the OSSS and the SSS was relatively high at each depth, up
to approximately 0.6. The correlation coefficients between the OSSS and SST/SSH/USSW
(individually) were relatively small, approximately 0.2, while the VSSW was the lowest. As
shown in Figure 5, the correlation coefficients between the OSSS and SSS/SSH/VSSW (indi-
vidually) gradually decreased with depth, suggesting that SSS, SSH, and VSSW could play
more important roles in the upper ocean. SST played a greater role in shallow and deeper
layers, while the USSW performed better in the mid-ocean layers. The correlation analysis
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between the OSSS and sea surface parameters at different depths elucidated the impact of
SSS, SST, SSH, and SSW on OSSS and explained the reasons for the selected variables.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 4. Comparison of the Argo (dashed black line) and satellite (solid blue line) for (a) the 
monthly mean SSS and (b) SST in the SCS from January 2010 to December 2019. 

3.2. Identification of Input Variables 
Previous studies had suggested that sea surface data could be used to infer ocean 

subsurface information with surface manifestations [37,55,62,86]. To determine the opti-
mal combination of input variables for the LGB-DF model, a correlation analysis was con-
ducted. Here, we only considered the absolute value of Pearson’s correlation coefficients 
and focused on the magnitude of the correlation coefficients. The OSSS has a correlation 
with the sea surface variables at 50m, 100m, 500m, and 1000m of depth (Figure 5). The 
correlation coefficient between the OSSS and the SSS was relatively high at each depth, 
up to approximately 0.6. The correlation coefficients between the OSSS and 
SST/SSH/USSW (individually) were relatively small, approximately 0.2, while the VSSW 
was the lowest. As shown in Figure 5, the correlation coefficients between the OSSS and 
SSS/SSH/VSSW (individually) gradually decreased with depth, suggesting that SSS, SSH, 
and VSSW could play more important roles in the upper ocean. SST played a greater role 
in shallow and deeper layers, while the USSW performed better in the mid-ocean layers. 
The correlation analysis between the OSSS and sea surface parameters at different depths 
elucidated the impact of SSS, SST, SSH, and SSW on OSSS and explained the reasons for 
the selected variables. 

 

Figure 5. Correlation coefficients between the sea surface parameters (SSS, SST, SSH, 
USSW, and VSSW) and the Argo-observed OSSS at 50 m (blue), 100 m (orange), 500 m 
(green), and 1000 m (red) from January 2010 to December 2019. 

As mentioned above, the unique geographical location and sparse observational data 
complicated the estimate of the OSSS in the SCS. Satellite-derived sea surface data cap-
tured most of the important features observed by the Argo surface data, providing an 
unprecedented opportunity to estimate OSSS in the SCS. Moreover, previous studies had 

Figure 5. Correlation coefficients between the sea surface parameters (SSS, SST, SSH, USSW, and
VSSW) and the Argo-observed OSSS at 50 m (blue), 100 m (orange), 500 m (green), and 1000 m (red)
from January 2010 to December 2019.

As mentioned above, the unique geographical location and sparse observational
data complicated the estimate of the OSSS in the SCS. Satellite-derived sea surface data
captured most of the important features observed by the Argo surface data, providing
an unprecedented opportunity to estimate OSSS in the SCS. Moreover, previous studies
had suggested that geographical information could improve the estimation accuracy of
the ocean subsurface information [67,86]. Therefore, we selected SSS, SST, SSH, SSW, and
geographical information (LON and LAT) as the input variables to estimate the OSSS in
the SCS.

3.3. Accuracy Comparison between the LGB-DF Model and LightGBM Model

To illustrate the improved performance of the LGB-DF model, we compared the LGB-
DF model to the LightGBM model in terms of RMSE and R2. For the LGB-DF model and
LightGBM model, the average RMSE and R2 at all depth levels were 0.0320/0.9398 and
0.0398/0.9150, respectively. The OSSS estimated by the LGB-DF model had relatively lower
RMSE and higher R2 values not only on average but also at each depth level (Figure 6),
indicating that the LGB-DF model was more accurate than the LightGBM model for the
estimation of the OSSS in the SCS.
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Another important issue in the estimation of the OSSS is the selection of input vari-
ables for models. Previous studies have suggested that the SSW and the geographical
information could improve the accuracy of subsurface thermohaline estimates [62,67,85].
To further examine the influences of the SSW and the geographical information on the
OSSS estimation in the SCS, we designed three sets of experiments with different input
parameter combinations (Case 1, Case 2, and Case 3). In Case 1, we selected SSS, SST, and
SSH as input parameters. In addition to the above parameters, we also selected SSW as
an input parameter for Case 2. In Case 3, the geographical information (LON, LAT) was
added as well as SSW.

The comparisons showed that both the SSW and the geographical information im-
proved the estimation accuracy of the LGB-DF model in the SCS. The vertical mean RMSE
and R2 of the 7-parameter model in Case 3 were 0.0320 and 0.9398, respectively. For the
5-parameter model in Case 2, the vertical mean RMSE and R2 were 0.0520 and 0.7569,
respectively. For the 3-parameter model in Case 1, the vertical mean RMSE and R2 were
0.0615 and 0.7150, respectively. The LGB-DF model in Case 3 (SSS, SST, SSH, USSW, VSSW,
LON, and LAT) produced significantly lower RMSE values than the LGB-DF models in
Case 1 (SSS, SST, and SSH) and Case 2 (SSS, SST, SSH, USSW, and VSSW) at all depths,
while the R2 values were higher than other cases (Figure 7). All these indicated that adding
SSW and the geographical information significantly improved the estimation accuracy of
the OSSS in the SCS using the LGB-DF model.
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3.4. Evaluation of the LGB-DF Model

Based on the optimal parameter combination, the LGB-DF model was employed to
estimate OSSS in the SCS. Next, we evaluated the performance and stability of the LGB-DF
model from different aspects. Figure 8 shows the comparison of the LGB-DF-estimated
OSSS and Argo-observed OSSS at depths of 50, 100, 500, and 1000 m in 2019; there were
no significant differences between them. The LGB-DF model estimated OSSS showed
good agreement with the Argo-observed OSSS at all depths. Most salinity features could
be effectively reconstructed via sea surface data using the LGB-DF model. For example,
at 50 m depth, both showed that there was a relatively high salinity tongue (>34.2 psu)
in the northeast SCS. Relatively low salinity (<33.5 psu) was observed in the southeast
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SCS (Figure 8a,e). The spatial distributions of the salinity at 100 m depth were similar
to those at 50 m depth (Figure 8b,f). With increased depth, salinity tended to be stable.
Below 500 m depth, the salinity varied from 34.4 psu to 34.6 psu. These spatial distribution
features were well reconstructed by the LGB-DF model. From a horizontal point of view,
the LGB-DF model had good performance in the estimation of OSSS in the SCS. More
detailed descriptions of the LGB-DF model performance are discussed in the next section.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 8. Argo-observed (a–d) and LGB-DF-estimated (e–h) yearly mean salinity at different depths 
(50, 100, 500, and 1000 m) in 2019. 

Table 2. Vertical distributions of RMSE (psu) and R2 for the LGB-DF model at different depths in 
2019. 

Depth (m) RMSE R2 
30 0.0547 0.9893 
50 0.1269 0.9181 
70 0.1533 0.7526 

100 0.0841 0.7919 
200 0.0310 0.9418 
300 0.0249 0.9043 
400 0.0153 0.8829 
500 0.0112 0.9645 
600 0.0100 0.9788 
700 0.0087 0.9789 
800 0.0066 0.9792 
900 0.0047 0.9818 
1000 0.0044 0.9744 

To improve the comparability of the model accuracy at different depths, we normal-
ized the RMSE values to the relative error, i.e., NRMSE, dividing RMSE by the standard 
deviation of the Argo salinity at that depth. As shown in Figure 9, the NRMSE values 
increased from the surface to approximately 70 m, and then decreased from 70 m to 150 
m, and then increased from 150 m to approximately 350 m, finally decreased from 350 m 
to 500 m, and stabilized from 500 m to 1000 m depth; whereas an opposite trend was 
observed in R2. At approximately 70 m depth, the NRMSE value was the highest, while 

Figure 8. Argo-observed (a–d) and LGB-DF-estimated (e–h) yearly mean salinity at different depths
(50, 100, 500, and 1000 m) in 2019.

To further evaluate the validity of the LGB-DF model, the accuracy of the OSSS es-
timation was quantitatively evaluated using the performance measures of RMSE and R2

at different depths (Table 2). The RMSE could visually reflect the true errors at different
depths. We employed the Argo-observed salinity at the same depth levels to validate the
estimation results. As shown in Table 2, the RMSE value of the LGB-DF model exhibited dif-
ferences at different depths; for example, RMSE = 0.1269 psu and R2 = 0.9181 at 50 m depth,
RMSE = 0.0841 psu and R2 = 0.7919 at 100 m depth, RMSE = 0.0112 psu and R2 = 0.9645 at
500 m depth, and RMSE = 0.0044 psu and R2 = 0.9744 at 1000 m depth. The RMSE of the
LGB-DF model decreased with depth due to the decreased range and standard deviation of
the OSSS at deeper depths.

To improve the comparability of the model accuracy at different depths, we normalized
the RMSE values to the relative error, i.e., NRMSE, dividing RMSE by the standard deviation
of the Argo salinity at that depth. As shown in Figure 9, the NRMSE values increased
from the surface to approximately 70 m, and then decreased from 70 m to 150 m, and
then increased from 150 m to approximately 350 m, finally decreased from 350 m to 500 m,
and stabilized from 500 m to 1000 m depth; whereas an opposite trend was observed
in R2. At approximately 70 m depth, the NRMSE value was the highest, while the R2

was the lowest. This indicated that the estimation accuracy of the LGB-DF model was
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lowest at approximately 70 m depth. This was likely due to 70 m being approximately
the depth of the thermocline layer in the SCS [64], where the temperature and salinity
changed more drastically with depth than in the layers above or below. This led to the
difficulty of reconstructing the OSSS in the SCS. Although the estimation accuracy at
approximately 70 m was relatively low, the LGB-DF model was generally satisfactory. This
also suggested that the LGB-DF model could accurately estimate the OSSS of the SCS using
satellite-derived sea surface data with satisfactory performance.

Table 2. Vertical distributions of RMSE (psu) and R2 for the LGB-DF model at different depths
in 2019.

Depth (m) RMSE R2

30 0.0547 0.9893
50 0.1269 0.9181
70 0.1533 0.7526

100 0.0841 0.7919
200 0.0310 0.9418
300 0.0249 0.9043
400 0.0153 0.8829
500 0.0112 0.9645
600 0.0100 0.9788
700 0.0087 0.9789
800 0.0066 0.9792
900 0.0047 0.9818

1000 0.0044 0.9744
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Next, to further evaluate the vertical performance of the LGB-DF model, we also com-
pared the model estimated vertical salinity profiles with the Argo-observed salinity profiles
in typical regions. Based on the characteristics of bathymetry and salinity distributions, we
selected three typical boxes with a size of 2◦ × 2◦, namely, Boxes A, B, and C (Figure 1).
Box A (116◦E~118◦E and 19◦N~21◦N) was located along the continental slope south of
China. Box B (110.5◦E~112.5◦E and 15◦N~17◦N) was situated in the region of the East
Vietnam eddy. Box C (114◦E~116◦E and 9◦N~11◦N) was located in the Southern SCS. The
vertical salinity profiles estimated by the LGB-DF model generally coincided with the Argo-
observed profiles (Figure 10a–c). The vertically averaged RMSE and R2 values between
the LGB-DF estimation and the Argo observation were 0.0131 psu and 0.9950 for Box A,



Remote Sens. 2022, 14, 3494 12 of 19

0.0228 psu and 0.9942 for Box B, and 0.0594 psu and 0.9820 for Box C, respectively. Our
comparison showed that the salinity difference between the LGB-DF estimation and the
Argo observation for Box C was larger than those for Box A and Box B, and the maximum
difference reached as high as 0.2 psu at approximately 70 m depth (Figure 10d). Although
there were some differences, the LGB-DF model estimated salinity profiles were in good
agreement with the Argo-observed salinity profiles. This result also demonstrated that the
LGB-DF model was reliable and performed well in the estimation of OSSS in the SCS.
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Figure 10. Comparison of the LGB-DF-estimated and Argo-observed salinity profiles averaged
at different depths in Boxes (A–C) in 2019 (a–c) and their differences (d); Box A (116◦E~118◦E,
19◦N~21◦N), Box B (110.5◦E~112.5◦E, 15◦N~17◦N), and Box C (114◦E~116◦E, 9◦N~11◦N).

In addition, we selected a transect passing through the SCS from the southwest to
the northeast to further evaluate the performance of the LGB-DF model. Figure 11 shows
the comparison of the Argo-derived OSSS and LGB-DF model estimated OSSS in this
transect. The results showed that the spatial distribution of OSSS from the LGB-DF model
estimation was in good agreement with the Argo observations. Most of the observed
significant features of the OSSS in this transect could be accurately reconstructed by the
LGB-DF model. For example, in the upper 100 m, both of them showed that the salinity
changed dramatically with depth, ranging from 33.1 psu at the surface to 34.5 psu at 100 m.
The maximum salinity occurred between 100 m and 150 m in depth. Below 150 m, the
salinity changed slightly but tended to be stable, ranging from 34.4 psu at 300 m depth to
34.6 psu at 1000 m depth. Figure 11c shows the salinity differences between Argo-observed
and LGB-DF model estimated data (namely, Argo observation minus LGB-DF estimation).
The results showed that the major differences (exceeding 0.25 psu) were present at a depth
from 40 m to 150 m, between 9◦N and 14◦N, with Argo values less than the estimated
salinity value; whereas Argo values more than the estimated salinity value were present at
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a depth from 40 m to 150 m, between 16◦N and 19◦N. Overall, the spatial distribution of
the salinity from the LGB-DF model estimation had a very similar pattern as compared to
the Argo observations, further indicating that the LGB-DF model had good performance in
the estimation of the OSSS in the SCS.
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Figure 11. Argo-observed OSSS, LGB-DF-estimated OSSS and the differences between them, along a
transect passing through the SCS from southwest to northeast. The black contours are, from top to
bottom, 33.5 psu, 34.0 psu, and 34.5 psu, respectively.

The accuracy of the estimation by the model could also be evaluated directly using a
density scatter plot. Therefore, we also calculated density scatter plots of the salinity from
the Argo observations and LGB-DF model estimations to evaluate the performance of the
LGB-DF model. The scatter distribution of the salinity from the LGB-DF estimation and
the Argo observations at different depths for all geographical locations in 2019 is shown
in Figure 12. Most of the scatter points were distributed evenly and densely along the
line near 1:1 with a low RMSE. The RMSE values between the Argo-observed salinity and
LGB-DF model estimated salinity were 0.0809 psu at 50 m depth, 0.0449 psu at 100 m depth,
0.0023 psu at 500 m depth, and 0.0012 psu at 1000 m depth. These also indicated that the
estimated results by the LGB-DF model were reliable.

As previously discussed, the LGB-DF model had good performance in the yearly mean
OSSS estimation in the SCS. However, the question of how it would perform in different
seasons remained. In this study, we selected February, May, August, and November, all in
2019, to represent the winter, spring, summer, and autumn seasons of the year, respectively.
Our quantitative evaluation of OSSS estimation for different seasons at the different depth
levels (30, 50, 70, 100, 200, 300, 500, 600, 700, 800, 900, and 1000 m) in terms of the NRMSE
and R2 results are shown in Figure 13.

Generally, the NRMSE values in different seasons showed first an uptrend and then a
downtrend, with a turning point appearing at 70 m. The highest NRMSE values occurred
at 100 m in February and May at 0.3864 and 0.4085, respectively, and at 70 m for August
(0.4603) and November (0.4587). The trend features of R2 were unstable and fluctuated.
They first fluctuated in the upper 500 m layer and then showed an uptrend from 500 m
to 1000 m. The estimation accuracy of the LGB-DF model varied with the seasons. The
average NRMSE (R2) in February and November were 0.2052 and 0.2204 (0.9505 and 0.9377),
respectively, which was lower (greater) than those in May and August. This indicated that
the estimation accuracy in winter and autumn was better. The average NRMSE in May
was 0.2676, and the average R2 was 0.9112, which was the largest (smallest) value in four
seasons. The average NRMSE and R2 in August were 0.2646 and 0.9147, respectively. In
general, the lower accuracy occurred in May and August, and the higher accuracy occurred
in November and February, which could have been related to the different performances
of the salinity at seasonal scales due to changes in the monsoonal circulation system.
Specifically, the monsoon system dominated the summer pattern, and the winter pattern
determined the climate of the SCS. The warm and humid southwest monsoon from the
equator produced heavy precipitation and associated river runoff from mid-May to mid-
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September, resulting in a double circulation pattern [14]. The dynamic ocean process was
significant in May and August, resulting in poor model estimation. The results showed that
there were low NRMSE and high R2 values in all four seasons, indicating that the LGB-DF
model had good seasonal applicability to estimate the OSSS in the SCS.
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4. Conclusions

Accurately estimating the vertical structure of ocean salinity in the SCS is of great
importance for understanding oceanic processes due to its significant role in marine ecosys-
tems, ocean dynamics, and climate changes. However, there is still a great lack of ob-
servational salinity data in the SCS due to the in situ observation being challenging and
expensive. In this study, we proposed an LGB-DF model to estimate OSSS in the SCS. The
developed LGB-DF model was used to reconstruct the OSSS in the SCS using satellite-
derived sea surface data (SSS, SST, SSH, and SSW) and the geographical information
(LON and LAT) as input data and in situ Argo data as label data. The LGB-DF-estimated
results were measured for accuracy and reliability by RMSE, NRMSE, and R2 using the
Argo observational data.

Comparisons showed that the OSSS estimated by the LGB-DF model had relatively
lower RMSE and higher R2 values, not only on average but also at each depth level, as
compared to the LightGBM model, indicating that the LGB-DF model accurately estimated
the subsurface salinity of the SCS and outperformed the LightGBM model. This was at-
tributed to the LGB-DF model combining the characteristics of deep learning and ensemble
models to solve complex problems. In addition to SSH, SST, and SST, SSW and geographical
information were two necessary parameters for accurately estimating the OSSS in the SCS
and significantly improved the estimation accuracy of the LGB-DF model.

The results showed that the LGB-DF model had good performance in the estimation
of the OSSS in the SCS with an area-averaged RMSE value of 0.0320 psu and an area-
averaged R2 value of 0.9398. The estimated salinity by the LGB-DF model and the Argo
observed salinity both showed consistent spatial distribution at various depths in 2019.
The performance measures showed that the performance of the LGB-DF model also varied
with depth, with better performance in shallow layers due to the physical state relative
to the surface being easily described. The performance of the LGB-DF model also varied
with seasons: the average NRMSE (R2) values in winter and autumn were lower (greater)
than those in other seasons, indicating a better estimation accuracy was obtained in winter
(NRMSE = 0.2052, R2 = 0.9505) and autumn (NRMSE = 02204, R2 = 0.9377). Although
complex dynamic processes and the strong monsoon climate increase the difficulty of local
OSSS estimation, our LGB-DF model had good performance in estimating the OSSS in
the SCS according to satellite-derived sea surface data. This study demonstrated that the
reconstruction of the subsurface salinity structure in the SCS using satellite observations
based on the LGB-DF model was reliable and accurate.

Although the LGB-DF model has good applicability to estimate the vertical structure
of the ocean salinity from the satellite-derived sea surface data, some discrepancies were
observed in primarily two aspects. Data errors existed between the observed values and
the true values due to objective factors such as the observation equipment itself and the
environment. In the data processing, we interpolated the remote sensing data and Argo
data to unify the resolution, which also caused errors. The estimation model error was
also noted. The relationship between the sea surface data and the subsurface salinity could
vary due to dynamic processes, such as subsidence and upwelling. Furthermore, as a
data-driven method, the LGB-DF model was highly dependent on training data, which
could underestimate or overlook the signal of some large anomalous events.

In future studies, we will further improve the estimation accuracy by using more
accurate data and more advanced deep-learning methods combined with oceanic dynamic
mechanisms to provide more explanatory results.
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