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Abstract

Dictionary learning has found broad applications in signal and image process-

ing. By adding constraints to the traditional dictionary learning model, dictio-

naries with discriminative capability can be obtained which can deal with the

task of image classification. The Discriminative Convolutional Analysis Dictio-

nary Learning (DCADL) algorithm proposed recently has achieved promising

results with low computational complexity. However, DCADL is still limited

in classification performance because of the lack of constraints on dictionary

structures. To solve this problem, this study introduces an adaptively ordinal

locality preserving (AOLP) term to the original model of DCADL to further

improve the classification performance. With the AOLP term, the distance

ranking in the neighborhood of each atom can be preserved, which can improve

the discrimination of coding coefficients. In addition, a linear classifier for the

classification of coding coefficients is trained along with the dictionary. A new

method is designed specifically to solve the optimization problem corresponding

to the proposed model. Experiments are performed on several commonly used

datasets to show the promising results of the proposed algorithm in classification

performance and computational efficiency.
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Analysis dictionary learning, Image classification

1. Introduction

Sparse representation and dictionary learning have been successfully applied

to various tasks in signal processing and computer vision, e.g. signal declip-

ping [1], image super-resolution [2], [3], image denoising [4], [5], [6], and pattern

recognition [7], [8]. In sparse representation, the signals of interest are repre-

sented using a small number of atoms, i.e., signal components, chosen from a

dictionary. The objective of dictionary learning is to determine the dictionary

based on a set of training data. As dictionaries learned from training exam-

ples tend to represent signals more accurately as compared with pre-defined

dictionaries [9], [10], dictionary learning has gained much attention in the past

decade.

A well-known dictionary learning method is the synthesis model based dic-

tionary learning (SDL), which learns an over-complete synthesis dictionary so

that signals can be decomposed as linear combinations of dictionary atoms. The

SDL model is originally proposed for signal recovery [9], [11], and it has been

adapted to classification and recognition tasks by considering labels of train-

ing samples and imposing additional constraints to improve the ability of the

learned dictionaries in discriminating classes. For example, Ramirez et al. [12]

and Sun et al. [13] both added an incoherence promoting term to the traditional

SDL model to improve the incoherence between dictionaries corresponding to

different classes. In addition, Sun et al. [13] imposed a discriminative fidelity

term to encourage each sub-dictionary associated with a specific category to

sparsify the samples in the corresponding class. In [14], a new label consistency

constraint is proposed to guarantee the discrimination of sparse coefficients dur-

ing the dictionary learning process. These methods have obtained encouraging

classification results due to the employment of additional constraints. However,

as the estimation of sparse coefficients in SDL has relatively high computational

complexity, the efficiency of the SDL-based classification methods needs to be
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further improved.

Different from SDL, the model of analysis dictionary learning (ADL) rep-

resents signals as sparse vectors by multiplying an analysis dictionary matrix

with the vectors representing the signals. ADL has been widely used in image

and signal reconstruction [15], [10], [1], however, its applications in classification

have not attracted much attention due to the relatively limited discrimination

capability of the original model. The computational efficiency of ADL in sparse

coding may help reduce the time complexity of dictionary-learning-based clas-

sification methods, it is worth studying the potential of discriminative ADL

for classification problems. Tang et al. [16] imposed structural information on

ADL and developed a structural analysis dictionary learning (SADL) approach.

To integrate the advantages of ADL and SDL, a novel approach named pro-

jective dictionary pair learning (DPL) [17] was proposed, which attempts to

learn an analysis dictionary and a synthesis dictionary simultaneously with im-

proved discrimination ability and computational efficiency. Some methods have

been developed to further improve the original DPL algorithm. For example, a

discriminative DPL algorithm [18] was developed by learning a linear classifier

together with the dictionary. Chen et al. [19] learned relaxed block-diagonal

representations of signals by imposing a locality constraint and proposed a struc-

tured version of DPL named as relaxed block-diagonal DPL (RBD-DPL). In [20],

a low-rank analysis-synthesis dictionary learning (LR-ASDL) approach was pro-

posed, where a regularizer based on the rank of the synthesis dictionary is ap-

plied and an adaptively ordinal locality preserving (AOLP) term was developed

to preserve the distance ranking of dictionary atoms.

Different from the algorithms mentioned above, Tang et al. [21] regarded

atoms of an analysis dictionary as convolutional filters and proposed a Discrimi-

native Convolutional Analysis Dictionary Learning (DCADL) algorithm. This

algorithm learns the analysis dictionary which leads to sparse feature maps for

signals. A linear classifier based on the feature maps is also trained simultane-

ously. To improve the efficiency of optimization, DCADL reshapes the input

signal to multiple segments each having same dimension as the dictionary atom
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and then converts the convolution operation in the original model to matrix mul-

tiplication. This algorithm achieves competitive results for image classification

with low training and testing time costs.

Although DCADL [21] achieves promising results while greatly reducing the

computational complexity, the lack of consideration on the dictionary structure

information limits its classification performance. As the employment of dis-

crimination constraints has been shown effective in increasing the classification

accuracies obtained by dictionary learning algorithms, complementing the lack

of additional constraints in the model of DCADL may improve its discrimination

capability and classification performance. Therefore, in this study we propose

to introduce structural constraints on dictionary atoms to the model of DCADL

to further improve its discrimination capability.

In particular, it has been shown in LR-ASDL [20] that the AOLP term is ef-

fective in preserving the locally structural information of the learned dictionary.

Inspired by this idea, we apply the AOLP term to complement the lack of struc-

ture constraints for the dictionary in DCADL. In this way, the discriminative

capability of the dictionary and sparse coefficients could be improved, which

can potentially improve the classification performance of the trained classifier.

The multi-variable optimization problem formulated from this model is solved

using an alternating optimization framework. Due to the fast coding capability

of ADL and enhanced intra-class compactness provided by the AOLP term, the

proposed algorithm can obtain higher classification accuracies than DCADL

with relatively low time complexity. Experiments on standard databases, in-

cluding Extended YaleB [22], UCF-50 [23], Caltech101 [24] and Scene15 [25],

show that the proposed model generally performs better than several classical

and state-of-the-art methods, e.g., DPL [17], SADL [16] and RBD-DPL [19].

The remaining sections are organized as follows. Section 2 presents some

related work including the general model for discriminative ADL, the DCADL

algorithm and the AOLP term. Section 3 introduces the proposed formulation

and the corresponding optimization framework. Section 4 analyzes the time

complexity of the proposed algorithm. Section 5 presents experimental results
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as compared with other algorithms and Section 6 draws the main conclusions

of the study.

2. Related Work

2.1. Discriminative ADL

To learn an analysis dictionary leading to sparse coefficients with discrimi-

native ability, discriminative ADL usually adds additional discrimination terms

or constraints to the model of traditional ADL. Let X denote the training sig-

nals and Y denote the corresponding labels. Discriminative ADL is generally

formulated as

arg min
Ω,U

1

2
‖ΩX−U‖2F + λ‖U‖p + f(Ω,U,Y), (2.1)

where the first term ‖ΩX−U‖2F models the reconstruction error obtained us-

ing the learned analysis dictionary Ω, and ‖ · ‖F denotes the Frobenius norm.

‖ · ‖p denotes the `p-norm (0 < p ≤ 1), and ‖U‖p promotes the sparsity of the

coefficient matrix U, and λ represents the regularization parameter. The last

term f(Ω,U,Y) denotes the constraint function to improve the discriminative

capability of Ω and U by considering the label information Y. For example, in

[14], a label consistency matrix and a linear transformation of the coefficient ma-

trix are employed as the constraint function. In [20], a structured discriminant

term is used as the constraint function, which can enhance the discriminative

ability of analysis sub-dictionaries. Discriminative ADL algorithms have been

widely used to deal with tasks in pattern recognition/classification, such as tar-

get recognition in synthetic aperture radar (SAR) images [26], facial expression

recognition [27], and physical activity recognition [28].

2.2. DCADL

Tang et al. [21] introduced a convolutional mapping to the framework of the

conventional discriminative ADL and proposed the DCADL model as follows
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arg min
ωi,ui

j ,W

n∑
j=1

m∑
i=1

(
1

2

∥∥ωi ∗ xj − uij
∥∥2
2

+ λ1
∥∥uij∥∥1)+

λ2
2
‖Y −WŨ‖2F ,

s.t. ‖ωi‖22 ≤ 1,∀i = 1, . . . ,m; Ũ =


u1
1 · · · u1

n

...
. . .

...

um1 · · · umn

 ,
(2.2)

where ∗ denotes the convolution operator, ωTi ∈ Rs2 represents the i-th atom

(row) of the analysis dictionary, xj denotes the j-th training sample, uij denotes

the i-th response map of xj corresponding to the convolution of ωi and xj , and

W denotes a linear classifier to be learned. λ1 and λ2 are penalty parameters.

This framework considers the atoms of the analysis dictionary as linear filters

and assumes the response maps of signals to be approximately sparse. The linear

classifier W is jointly learned based on the response maps and label information.

It should be noted that DCADL takes dictionary atoms as filters and obtains

the response maps of signals via convolution operations, rather than employing

the matrix multiplication of the dictionary and signal matrices as in traditional

ADL models. In this way, the dictionary can learn global features of input signal-

s, rather than redundant local features like the traditional dictionary. To solve

the obtained optimization problem, the original formulation is converted to a

simplified form without the convolution operation by reshaping the data matrix

and coefficient matrix [21]. Matrix reshaping operators are also employed to up-

date related variables in the optimization procedure. This formulation and the

corresponding optimization method have been shown effective for classification

tasks with low time complexity.

2.3. Adaptively Ordinal Locality Preserving

The AOLP term proposed in [20] is based on the work of ordinal locality

preserving (OLP) [29] for feature selection, where an OLP loss function is de-

veloped to maintain the ordinal locality of original data in selected features.

Related works on locality preserving can be also found in works for clustering

[30], [31], [32], where local manifold information is preserved using local cen-
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troids or graph regularization. In particular, the OLP in feature selection is

constructed as follows [29].

Definition 1. Given a triplet (yi,yu,yv) with yu and yv being the neighbors

of yi, let (f i,fu,fv) denote their corresponding features. The feature selection

process is considered to be ordinal locality preserving when the following condi-

tion is satisfied: if dist (yi,yu) ≤ dist (yi,yv), then dist (f i,fu) ≤ dist (f i,fv),

where dist (., .) denotes a distance metric.

Based on the above definition, the OLP loss function is defined as

max
F

n∑
i=1

∑
u∈Ni

∑
v∈Ni

Siuv [dist (f i,fu)− dist (f i,fv)] , (2.3)

where F = {f1,f2...,fn} is the set consisting of all feature vectors, the set Ni
contains the indices of k nearest neighbors of yi, and Si is an anti-symmetric

matrix, where its (u, v)-th element is Siuv = dist (yi,yu)− dist (yi,yv).

As Si is an antisymmetric matrix, we have Siuv = −Sivu. Based on this, the

original loss function of OLP, i.e., equation (2.3), can be rewritten as

max
F

(
−

n∑
i=1

∑
u∈Ni

∑
v∈Ni

Sivu dist (f i,fu)−
n∑
i=1

∑
v∈Ni

∑
u∈Ni

Siuv dist (f i,fv)

)
(2.4)

Inspired by [33], we define a weighting matrix C ∈ Rn×n whose (i, j)th

element is defined as

Cij =


∑
u∈Ni

Siuj , j ∈ Ni,

0, j /∈ Ni.
(2.5)

By substituting the weighting matrix C to (2.4), the loss function of OLP

is rewritten as

max
F

(
−

n∑
i=1

n∑
u=1

Ciu dist (f i,fu)−
n∑
i=1

n∑
v=1

Civ dist (f i,fv)

)
, (2.6)

which is equivalent to [29]

min
F

n∑
i=1

n∑
j=1

Cij dist
(
f i,f j

)
. (2.7)
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In [20], Li et al. adapted the OLP concept [29] to dictionary learning, and

proposed adaptively ordinal locality preserving (AOLP). In particular, they have

proved that if analysis dictionary atoms ωi and ωj are similar enough, their

corresponding profiles pi = ωiX and pj = ωjX, i.e., rows of the coefficient

matrix, should be similar. Based on this, the definition of OLP can be adapted

to maintain the local structural information of the learned dictionary. As both

the dictionary and profiles are updated in the learning process, the OLP term is

also updated adaptively. Specifically, AOLP in ADL has the following definition

[20].

Definition 2. For a triplet of analysis dictionary atoms (wi,wu,wv) with wu

and wv being the neighbors of wi, let (pi,pu,pv) denote the corresponding pro-

files of data X, i.e., pi = wiX, pu = wuX, and pv = wvX. The analysis dic-

tionary learning process is considered to be adaptively ordinal locality preserving

when the following condition is satisfied: if dist (wi,wu) ≤ dist (wi,wv), then

dist (pi,pu) ≤ dist (pi,pv), where dist (., .) denotes a distance metric.

According to Definitions 1 and 2, AOLP can be developed by adapting the

loss function of OLP, i.e., equations (2.5) and (2.7). Specifically, the loss function

of AOLP can be formulated as [20]

m∑
i=1

m∑
v=1

Biv dist (pi,pv) , (2.8)

where

Biv =


∑
u∈Zi

V iuv, v ∈ Zi,

0, v /∈ Zi,
(2.9)

and Zi denotes a list indicating the k nearest atoms of the i-th atom wi. The

(u, v)-th element of the antisymmetric matrix V i is defined as

V iuv = dist (ωi,ωu)− dist (ωi,ωv) . (2.10)

The employment of AOLP in ADL can be seen as applying additional con-

straints to the dictionary and the coefficient matrix, where the update of these
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two variables is enforced to be consistent in terms of ordinal locality. The LR-

ASDL algorithm proposed in [20] employs the AOLP term in dictionary learn-

ing, which has improved the discrimination capability of the obtained dictionary.

However, LR-ASDL has high computational complexity and is time-consuming

to run in the training stage, as an analysis dictionary and a low-rank synthesis

dictionary are learned simultaneously.

DCADL [21] achieves promising performance on classification tasks with rel-

atively low time complexity. However, local structures of the analysis dictionary

are not considered in DCADL, which may limit the accuracies of classification.

AOLP [20] can maintain the ordinal locality of the dictionary which is helpful

to improve the discrimination ability. Therefore, such a term could also be used

with DCADL to exploit the dictionary structure information while maintaining

a low level of computational complexity, as shown in our work discussed next.

3. Proposed Algorithm

The proposed model is introduced first and then converted to an optimiza-

tion problem that is easier to solve. After that, the detailed procedure of opti-

mization is presented.

3.1. Proposed formulation

We introduce the AOLP term to the formulation of DCADL, and propose

the following formulation:

arg min
ωi,ui

j ,W

n∑
j=1

m∑
i=1

(
1

2

∥∥ωi ∗ xj − uij
∥∥2
2

+ λ1
∥∥uij∥∥1)+ µ

m∑
i=1

m∑
v=1

Biv dist (pi,pv)

+
λ2
2
‖Y −WŨ‖2F +

λ3
2
‖W‖2F +

λ4
2
‖Ω‖2F ,

s.t. ‖ωi‖22 ≤ 1,∀i = 1, . . . ,m; Ũ =


u1
1 · · · u1

n

...
. . .

...

um1 · · · umn

 ,
(3.1)
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where dist (., .) denotes the squared Euclidean distance. The vector ωTi ∈ Rs2

is the i-th atom/row of Ω, and xj ∈ Rr denotes the j-th image. The vector

uij ∈ Rp denotes the i-th feature map of the j-th image extracted using the i-th

atom, and pi = wiX is the i-th profile of data X corresponding to the atom

wi. Matrix Y ∈ Rc×n denotes the label matrix, and W ∈ Rc×mp denotes the

linear classifier to be learned simultaneously. The definition of the AOLP term∑m
i=1

∑m
v=1Biv dist (pi,pv) is based on equations (2.9)-(2.10). The regulariza-

tion parameters λ1, λ2, λ3, λ4 and µ are chosen empirically. Detailed discussions

about parameter selection are given in Section 5.3.

In the proposed formulation, each atom of the dictionary acts as a convolu-

tional kernel, and the response maps are assumed to be sparse, which correspond

to the first two terms in equation (3.1). As compared with the formulation of

DCADL, i.e., equation (2.2), three terms have been introduced in the proposed

formulation (3.1), namely, the AOLP term, ‖Ω‖2F and ‖W‖2F . The AOLP term

is to improve the consistency between the ordinal locality of dictionary atom-

s and that of coefficient profiles. The terms ‖Ω‖2F and ‖W‖2F can limit the

values of W and Ω, and enhance the generalization ability of the model via

regularizations [34]. As compared with LR-ASDL [20] which also employs the

AOLP term, the proposed formulation only learns an analysis dictionary while

the formulation of LR-ASDL attempts to learn an analysis dictionary and a low-

rank synthesis dictionary simultaneously. The proposed algorithm is named as

Discriminative Analysis Dictionary Learning with AOLP (DADL-AOLP).

3.2. Optimization strategy

The proposed formulation (3.1) is reformulated by simplifying the objective

function which is then addressed with an optimization method.

3.2.1. Simplified objective function

To address the proposed formulation (3.1) efficiently, we reformulate the

problem by converting the convolution calculation and the AOLP term in-

to matrix operations. Each image is segmented into patches of size s × s,
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which is the same as the size of dictionary atoms. Let xip ∈ Rs2 denote

the p-th patch of the i-th sample, and all image patches can be denoted by

X =
[
x11 , . . . ,x1p , . . . ,xn1

, . . . ,xnp

]
∈ Rs2×np. The feature maps of all image

patches are denoted by

U =


u111 · · · u11p · · · u1n1

· · · u1np

...
. . .

...
. . .

...
. . .

...

um11 · · · um1p · · · umn1
· · · umnp

 ∈ Rm×np. (3.2)

Note that U ∈ Rm×np and Ũ ∈ Rmp×n are composed of the same elements

but with different arrangements, and the transformation between them can be

realized using the matrix reshaping operator defined as follows.

Definition 3. Assuming a matrix U ∈ Rm×np is represented as a block matrix

by grouping every p columns as a block, that is U = [U1,U2, . . . ,Un] where

Ui ∈ Rm×p for i = 1, . . . , n. By stacking the columns of Ui as one column

vector ui ∈ Rmp, U can be reshaped to a matrix Ũ = [u1,u2, . . . ,un] ∈ Rmp×n.

The matrix reshaping process from U to Ũ is defined as an operator R, and the

inverse process is defined as R−1, i.e., Ũ = R(U), and U = R−1(Ũ).

Inspired by [20], with some computation, the AOLP term

m∑
i=1

m∑
v=1

Biv dist (pi,pv) (3.3)

can be converted to

Tr
(
U
T
LU
)
, (3.4)

where L denotes the Laplacian matrix defined by

L , M− B + BT

2
, (3.5)

and the (i, i)-th element of M is

Mii =

m∑
v=1

Biv +Bvi
2

(3.6)
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Thus, the original model (3.1) is reformulated as

arg min
Ω,U,Ũ
W,L

1

2
‖ΩX−U‖2F + λ1‖Ũ‖1 +

λ2
2
‖Y −WŨ‖2F + µ tr

(
U
T
LU
)

+
λ3
2
‖W‖2F +

λ4
2
‖Ω‖2F

s.t. Ũ =


u111 · · · u1n1

...
. . .

...

um1p · · · umnp

 ,U =


u111 · · · u11p · · · u1n1

· · · u1np

...
. . .

...
. . .

...
. . .

...

um11 · · · um1p · · · umn1
· · · umnp

 ,
‖ωi‖22 ≤ 1,∀i = 1, . . . ,m,

(3.7)

where Ω ∈ Rm×s2 denotes the analysis dictionary. Note that both Ũ ∈ Rmp×n

and U ∈ Rm×np contain the feature maps of all image patches, and Ũ is obtained

by reshaping U as given in Definition 3.

3.2.2. Optimization method

To address the reformulated problem (3.7), we alternatively update each

variable while keeping the remaining variables fixed. As a result, the problem is

converted to five subproblems and each subproblem is addressed alternatively.

The analysis dictionary Ω is randomly initialized and the detailed optimization

steps in each iteration are as follows.

(1) Update Laplacian matrix L:

Given an analysis dictionary Ω, the indices of k nearest neighbors of each

atom wi, i.e., Zi, are decided by computing the squared Euclidean distances

between wi and the other atoms with k = 2. The matrix B can be updated

based on equations (2.9) and (2.10), and then the Laplacian matrix L can

be updated using equations (3.5) and (3.6).

(2) Update coefficients U:

Ignoring other unrelated variables, the cost function is simplified as

arg min
U

1

2
‖ΩX−U‖2F + µ tr

(
U
T
LU
)
. (3.8)
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The optimal solution to this subproblem can be obtained by calculating the

gradient of the objective function and setting it to zero, i.e.,

U−ΩX + 2µLU = 0, (3.9)

which gives the solution

U = (I + 2µL)−1ΩX, (3.10)

where I denotes the identity matrix and (·)−1 returns the inverse of a matrix.

(3) Update coefficients Ũ:

Ũ can be updated based on the update of U using the matrix reshaping

operator R defined in Definition 3, i.e., Ũ = R(U). By removing other

unrelated variables in (3.7), Ũ is then further optimized by addressing the

subproblem as follows

arg min
Ũ

λ2
2
‖Y −WŨ‖2F + λ1‖Ũ‖1. (3.11)

Let f(Ũ) = λ2

2 ‖Y−WŨ‖2F . According to [35], the solution can be obtained

using an iterative shrinkage-thresholding algorithm, that is

Ũ = proxρλ1
(Ũ− ρ∇f(Ũ))

= Tρλ1

(
Ũ− ρλ2WT

(
WŨ−Y

))
,

(3.12)

where ρ is a step size, and Tα(·) is the shrinkage operator defined by

Tα(x) = (|x| − α)+ sgn (x) (3.13)

where α is the soft-threshold, and sgn(x) returns the sign of x.

(4) Update classifier W:

Ignoring the other variables, W is optimized by solving the optimization

problem

arg min
W

λ2
2
‖Y −WŨ‖2F +

λ3
2
‖W‖22. (3.14)

Set the gradient of (3.14) as zero, and the analytical solution can be written

as

W = λ2YŨT
(
λ2ŨŨT + λ3I

)−1
(3.15)
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(5) Update dictionary Ω:

Before updating the dictionary, we need to use the inverse matrix reshaping

operator R−1 defined in Definition 3 to transform the coefficient Ũ to U,

i.e., U = R−1(Ũ). The subproblem for the update of Ω is as follows

arg min
Ω

1

2
‖ΩX−U‖2F +

λ4
2
‖Ω‖2F

s.t. ‖ωi‖22 ≤ 1,∀i = 1, . . . ,m.

(3.16)

The solution to the above problem can be estimated by considering the

corresponding unconstrained problem and then enforcing the constraints

on atoms of the dictionary by normalizing the atoms. In particular, by

setting the gradient to zero, one can get

Ω = UXT
(
XXT + λ4I

)−1
. (3.17)

To satisfy the constraints ‖ωi‖22 ≤ 1,∀i = 1, . . . ,m, the atoms of Ω that do

not meet the constraints are further normalized, that is

wi =
wi

‖wi‖2
, if ‖wi‖22 > 1, ∀i = 1, . . . ,m. (3.18)

The iteration of the algorithm is terminated when either the maximum number

of iterations is reached or the change of the loss function between two consecutive

iterations is lower than a pre-defined threshold. The proposed algorithm DADL-

AOLP is summarized in Algorithm 1. The optimal analysis dictionary Ω∗ and

the classifier W∗ are trained using the algorithm. In the test stage, the coeffi-

cient matrix U
∗

of the testing data Xtest can be calculated as U
∗

= Ω∗Xtest,

and then the classification results can be obtained via Y∗ = W∗R(U
∗
) where

Y ∗ij gives the response of the j-th image to the i-th category. Each testing sample

is classified to the category corresponding to the maximum response.

4. Time Complexity

Each iteration of the proposed algorithm consists of the update of five vari-

ables, which are the Laplacian matrix L, the coefficient matrices U and Ũ, the
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Algorithm 1 DADL-AOLP

Input: Training set X, regularization parameters λ1, λ2, λ3, λ4, µ, step size ρ,

and maximum number of iterations T .

Output: Ω and W

Initialization: The initial Ω is set as a random matrix. The iteration index is

initialized as t = 1.

while not converged and t < T do

Update Laplacian matrix L via (2.9), (2.10), (3.5), and (3.6);

Update U via (3.10);

Ũ = R(U);

Update Ũ via (3.12) and (3.13);

Update W via (3.15)

U = R−1(Ũ)

Update Ω via (3.17) and (3.18);

t = t+ 1;

end while

classifier W, and the analysis dictionary Ω. For convenience, these five steps

are denoted as update-L, update-U, update-Ũ, update-W, and update-Ω, re-

spectively. The update of these variables mainly involves matrix multiplication

and matrix inversion. The time complexity of update-L is O(m2s2). Update-U

consumes O
(
m3
)

+ O
(
mnps2

)
+ O

(
m2np

)
. Update-Ũ consumes O (mnpct)

with t being the iteration number of the inner-loop of this step. Update-W

costs O
(
m2p2n

)
+O

(
m3p3

)
+O (mnpc) +O

(
m2p2c

)
, and update-Ω consumes

O
(
mnps2

)
+O

(
nps4

)
+O

(
s6
)
+O

(
ms4

)
. Based on this, the total time complex-

ity of the proposed algorithm is O(m2s2)+O
(
mnps2

)
+O

(
m2np

)
+O (mnpct)+

O
(
m2p2n

)
+O

(
m3p3

)
+O

(
m2p2c

)
+O

(
nps4

)
+O

(
s6
)
+O

(
ms4

)
, after omitting

higher-order terms.
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5. Experimental Results

Experiments are performed to evaluate the proposed algorithm. The databas-

es and settings used in the experiments are presented in Section 5.1, and the

convergence of the algorithm is demonstrated in Section 5.2. Experiments in

Sections 5.3 and 5.4 aim to investigate the influence of algorithm parameters on

the classification performance. Section 5.5 illustrates the classification effect of

the proposed algorithm, and Section 5.6 visualizes the effect of the AOLP term.

Section 5.7 compares the proposed algorithm with existing related methods to

demonstrate the advantages of the proposed algorithm4.

5.1. Databases and settings

Four widely used classification databases are utilized in the experiments:

Extended YaleB [22], UCF-50 [23], Caltech101 [24], and Scene15 [25]. The

detailed settings of the databases in the experiments are as follows.

1) Extended YaleB: This database contains face images captured under dif-

ferent illumination conditions. There are 2414 face images of 38 people, and the

size of the images is 48 × 42 pixels. In the experiments, each image is project-

ed to a vector of 504 dimensions via a random matrix. In all experiments, 32

images randomly selected from the samples of each person are used as training

data and the remaining as the test data.

2) UCF-50: UCF-50 is a challenging database for action recognition, which

contains 50 categories of human actions and each category has 6, 680 videos

from YouTube. The videos corresponding to each category are divided into

25 groups, and there are more than 4 action clips in each group. The action

bank features [36] are extracted and then reduced to the 5, 000 dimension via

principal component analysis (PCA) [37]. In the experiments, the samples of

each category are randomly divided into five parts. Four of them are employed

as the training set and the remaining part is used as the testing set.

4The code of the proposed algorithm is available from https://github.com/

wk-image-code/DADL_AOLP.
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3) Caltech101: Caltech101 consists of 9, 144 images belonging to 101 object

classes and a background class, and there are 31 to 800 images in each class.

In the experiments, features are extracted via the standard methods of bag-of-

words and spatial pyramid matching [25], and then reduced to the dimension of

3, 000 by PCA. For each class, 30 images are used for training, and the remaining

samples are utilized as test data.

4) Scene15: Scene15 has 4, 485 images from 15 classes and each class con-

tains at least 200 images. The features are extracted in the same way as for

Caltech101. 100 images of each category are randomly chosen as the training

set with the remaining images as the test set.

Table 1: Parameter settings of DADL-AOLP for each database.

Parameters
Extended

YaleB
UCF-50 Caltech101 Scene15

λ1 1e-4 1e-4 1e-4 1e-2

λ2 1e-1 1e-3 1e-2 1e-1

λ3 1e-1 1e-5 1e-2 1e-4

λ4 1e-2 1e-2 1e-3 1e-1

µ 1e-4 1 1e-1 1

m 75 50 300 50

The parameter settings of the proposed algorithm including the regulariza-

tion parameters λ1, λ2, λ3, λ4, µ and the number of atoms m are given in Table

1. The maximum numbers of iterations are determined empirically accord-

ing to the change of the objective function values in two consecutive iterations.

When the change of the objective function values in two consecutive iterations is

smaller than a pre-defined threshold, i.e., ε = 0.001, the algorithm is considered

as having converged and the current iteration number is set as the maximum

iteration number. Based on this, the maximum iterations for the experiments

with the datasets Extended YaleB, UCF-50, Caltech101, and Scene15 are set as

45, 20, 50, and 25, respectively.
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5.2. Convergence of DADL-AOLP

The UCF-50 and Caltech101 databases are used as examples to illustrate

the convergence of DADL-AOLP. The change of the objective function value

versus the number of iterations is presented in Fig. 1. For both databases the

values of objective function decrease with the increase of the iteration number

and converge to stable values after dozens of iterations. It can be seen that, for

the UCF-50 dataset, the objective function tends to converge when the itera-

tion number is greater than 15, while for the Caltech101 dataset, the objective

function tends to converge when the number of iterations is greater than 35.

This demonstrates the convergence of the DADL-AOLP.
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(a) Convergence on UCF-50.
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(b) Convergence on Caltech101.

Figure 1: Convergence curves of DADL-AOLP5.

5.3. Experiments with different regularization parameters

To evaluate the effect of the regularization parameters on the performance

of the proposed method, we take Scene15 as an example and test the algorithm

with different settings of the regularization parameters. Specifically, we use

different values of λ1, λ2 and µ with the other regularization parameters fixed

5In the vertical axis of the figure, a logarithmic scale is employed for large values to show

the objective function value in the first iteration, and a linear scale is used for the remaining

values to show subtle changes of the objective function values in the following iterations.
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as λ3 = 1e−4 , λ4 = 1e−1, and the number of atoms m fixed as 50. The results

with only one of λ1, λ2 and µ fixed as the values in Table 1 are illustrated in Fig.

2 (a)-(c)6. From Fig. 2 (a), it can be seen that the proposed algorithm does not

perform well when λ1 = 1, and when λ1 ≤ 1e − 1, the obtained classification

accuracies are improved with the increase of λ2. Fig. 2 (b) shows that the

proposed DADL-AOLP algorithm is relatively insensitive to the settings of λ1

and µ, and the algorithm achieves the best result when µ = 1. From Fig. 2 (c),

we can see that proper settings of λ2 should be greater than 1e− 4.

We test the results with different settings of λ3, λ4, and µ respectively by

fixing the remaining parameters to the values in Table 1, and the results are

summarized in Fig. 2 (d)-(f). The results in these sub-figures show that the

obtained results are relatively stable when λ3 and λ4 are in the range of 1e− 6

and 1. In Fig. 2 (f), we can see that proper settings of µ can improve the

classification accuracy effectively, and the proposed algorithm reaches the best

performance when µ = 1, which demonstrates the effectiveness of the AOLP

term in improving the performance.

5.4. Experiments with different atom numbers

To demonstrate the impact of dictionary size on the results of the proposed

algorithm, different numbers of atoms are tested. In particular, the atom num-

bers are selected from the set {25, 50, 75, 100}. The settings of the other

parameters are the same as in Table 1. For comparison, the DCADL algorithm

[21] is also tested using different atom numbers, where the other parameters

of DCADL are selected according to the original paper. Taking the Scene15

and Extended YaleB databases as examples, the results of DADL-AOLP and

DCADL with different atom numbers are shown in Fig. 3.

As can be seen from Fig. 3, in most cases, DADL-AOLP outperforms the D-

CADL algorithm, which demonstrates the effectiveness of introducing the AOLP

6In Fig. 2 (a)-(c), the changing ranges of the varying parameters are determined to show

the change of classification accuracies clearly.
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Figure 2: Classification accuracies obtained by DADL-AOLP with different settings of λ1, λ2,

λ3, λ4 and µ on the Scene15 databse.
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(b) Results on Extended YaleB.

Figure 3: Classification accuracies obtained by DADL-AOLP and DCADL with different atom

numbers.

term. As compared with DCADL, the proposed algorithm is more sensitive to

the change of atom numbers. This may be because the AOLP term used in

DADL-AOLP is based on the distances between atoms and is closely related to

the number of atoms.

5.5. Visualization of classification effect

In our algorithm, a linear classifier W∗ and an analysis dictionary Ω∗ are

learned jointly in the training stage, and they are used together to classify test-

ing samples Xtest in the testing stage. The analysis dictionary Ω∗ is utilized to

calculate the coding coefficients of Xtest and the classifier returns the classifi-

cation results, i.e. Y∗ = ‖W∗R(Ω∗Xtest)‖2F where Y ∗ij denotes the response of

the j-th image to the i-th category. Fig. 4 visualizes the elements of Y∗ cor-

responding to Extended YaleB and Scene 15, where the horizontal axis refers

to the indices of testing samples and the vertical axis refers to the indices of

classes. One can see that for both databases the classification response matrix

Y∗ shows a block diagonal structure, which demonstrates that the proposed

algorithm has a good classification effect.

The confusion matrices of the proposed algorithm on Extended YaleB and

Scene15 are also visualized in Fig. 5 to illustrate the classification performance.
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Figure 4: Visualization of classification response matrix Y∗ = W∗R(Ω∗Xtest).
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Figure 5: Visualization of confusion matrices obtained by DADL-AOLP.

In the confusion matrix, the horizontal and vertical coordinates denote the in-

dices of classes in the dataset, and the element in the i-th row and j-th column

denotes the number of samples of class i that are classified to class j. It can be

seen from Fig. 5 that our proposed algorithm has a good classification effect.

5.6. Effect of the AOLP term

Based on Definition 2, the effect of the AOLP term is to enhance the con-

sistency of dictionary atoms and the corresponding profiles (i.e., rows of the

coefficient matrix) in terms of ordinal locality. To show this effect intuitively,

the adjacency matrices of the dictionary atoms and the profiles are constructed
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and visualized, respectively. Specifically, the adjacency matrix of the dictionary

atoms is constructed as

Aij =

 1, j ∈ Zi,

0, otherwise,
(5.1)

where Aij denotes the (i, j)-th element of the adjacency matrix A, and Zi
denotes the set of indices of the k nearest atoms of the i-th atom ωi based on

the Euclidean distance with k = 2. The adjacency matrix of the coefficient

profiles is also constructed in the same way. The adjacency matrices of the

dictionary atoms and the profiles are then visualized using undirected graphs,

where the nodes correspond to the atoms or the profiles and the edges connect

the nodes with their nearest neighbors.
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atoms by DADL-AOLP.
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Figure 6: Local adjacency graphs by DCADL and DADL-AOLP on UCF-50.
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The adjacency graphs of the dictionary atoms and the coefficient profiles

by DCADL or the proposed algorithm on UCF-50 are shown in Fig. 6. Note

that for clarity, we only visualize the upper triangular matrix of the adjacency

matrix. We mark the nodes in the local adjacency graphs with red if they have

the same nearest neighbors of the dictionary atoms as those of the coefficient

profiles. In the adjacency graphs by the proposed algorithm, i.e., Fig. 6 (c)-

(d), the nearest neighbors of most nodes in the local adjacency graphs of the

dictionary atoms are the same as those of the coefficient profiles, e.g., nodes

{7, 34, 37}, {15, 18, 20}, and {9, 14, 43}. In contrast, in the adjacency graphs

by DCADL, the connections among the nodes vary greatly. This demonstrates

that using AOLP in the proposed algorithm can improve the consistency of

dictionary atoms and coefficient profiles in terms of the ordinal locality.

5.7. Comparison with other methods

We choose the following algorithms as competing algorithms: DPL [17],

SADL [16], RBD-DPL [19], LR-ASDL [20], and DCADL [21]. Among these

algorithms, DPL [17] greatly reduces the computational complexity of dictionary

learning and can be used to verify the efficiency of the proposed algorithm.

SADL [16] is an improved version of the traditional ADL. LR-ASDL [20] and

DCADL [21] are the baselines of the proposed method, and RBD-DPL [19] is a

recently proposed method.

All experiments adopt the same selection rules for the training and testing

data as presented in Section 5.1. The results of DADL-AOLP are obtained

based on the parameters shown in Table 1. The classification results of the

competing algorithms are from the original papers or obtained based on the

released implementation. In particular, for the experiments that have been

conducted in the original papers using the same settings as in this paper, we

present the results reported in the original papers. For other experiments, we

tune the parameters of the competing algorithms and show the best results.

The overall accuracy, recall, precision, and F1-score are used to evaluate the

classification performance of algorithms. As datasets used in the experiments
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contain multiple classes, the weighted macro-average method is employed to

calculate the overall results of the precision, recall, and F1-score over multiple

classes [38], [39]. Given a dataset, let c denote the number of classes, and ni

the number of samples of class i. The number of samples of class i that are

classified to class j is denoted as C(i, j). The overall accuracy over all classes

and the weighted recall, precision, and F1-score for each class i are defined as

follows:

Accuracy =

∑c
i=1 C(i, i)∑c
i=1 ni

,

Recall(i) = hi
C(i, i)∑c
j=1 C(i, j)

,

Precision(i) = hi
C(i, i)∑c
j=1 C(j, i)

,

F1-score (i) =
2× Precision(i)× Recall(i)

Precision(i) + Recall(i)
,

(5.2)

where the weight value hi represents the ratio of the number of samples of class

i to the total number of samples in the dataset, i.e.,

hi =
ni∑c
i=1 ni

. (5.3)

The overall recall, precision, and F1-score for a dataset are defined as the sum of

the corresponding weighted results of all classes in the dataset. Based on these

definitions, it can be seen that the overall recall is equal to the overall accuracy.

Therefore, we only present the overall accuracy and omit the overall recall.

5.7.1. Results on Extended YaleB

The recognition rates for Extended YaleB are reported in Table 2. The pro-

posed algorithm obtains the highest classification accuracy among all algorithm-

s. The recognition accuracy obtained by the proposed algorithm is 0.35% higher

than that of DCADL and about 2% to 5% higher than the results obtained by

the other methods. As compared with DCADL, the proposed algorithm offers

performance that is 0.33% higher on precision and 0.36% higher on F1-score.

The training time of DADL-AOLP is comparable to DCADL but much shorter

than LR-ASDL.
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Table 2: Classification results (%) on Extended YaleB.

Algorithms Accuracy Precision F1-score Train / Test Time (s)

DPL [17] 97.50 97.71 97.48 7.6 / 5.37e-3

SADL [16] 94.91 96.26 94.30 47.58 / 3.28e-2

RBD-DPL [19] 97.28 97.67 97.18 2.67 / 1.32e-4

LR-ASDL [20] 97.90 98.24 97.83 218.46 / 6.16e-1

DCADL [21] 99.57 99.60 99.56 4.00 / 2.24e-2

DADL-AOLP 99.92 99.93 99.92 10.85 / 2.71e-2

5.7.2. Results on UCF-50

The classification results for the UCF-50 database are summarized in Table

3. As compared with DCADL, the proposed algorithm obtains a 0.3% greater

classification accuracy while the training time increases slightly. DADL-AOLP

outperforms the remaining competing algorithms significantly in terms of clas-

sification performance and is competitive in terms of training and testing time.

Table 3: Classification results (%) on UCF-50.

Algorithms Accuracy Precision F1-score Train / Test Time (s)

DPL [17] 62.90 62.97 60.01 52.67 / 1.72

SADL [16] 70.51 70.91 68.31 431.26 / 1.24

RBD-DPL [19] 67.30 68.32 65.27 47.26 / 0.14

LR-ASDL [20] 68.37 69.87 65.89 624.34 / 3.14

DCADL [21] 76.06 74.85 74.39 56.34 / 0.01

DADL-AOLP 76.31 75.01 74.46 61.14 / 0.01

5.7.3. Results on Caltech101

The classification results for Caltech101 are shown in Table 4. The proposed

DADL-AOLP algorithm obtains the best result. As compared with DCADL,

the proposed algorithm achieves nearly 1% improvement in accuracy, 0.27%

improvement on precision, and 0.69% improvement on F1-score. The training

and testing time required by the proposed DADL-AOLP algorithm is slightly
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longer than that of DCADL and much shorter than that of the other compared

algorithms.

Table 4: Classification results (%) on Caltech101.

Algorithms Accuracy Precision F1-score Train / Test Time (s)

DPL [17] 73.90 79.25 73.42 104.33 / 8.13e-1

SADL [16] 72.36 78.37 73.53 936.71 / 8.34e-1

RBD-DPL [19] 72.76 76.84 71.46 67.13 / 9.61e-3

LR-ASDL [20] 65.20 74.31 63.52 871.64 / 8.39e-1

DCADL [21] 74.17 79.87 73.57 32.25 / 6.62e-2

DADL-AOLP 75.13 80.14 74.26 33.60 / 6.87e-2

5.7.4. Results on Scene15

Table 5 shows the classification results on Scene15. As can be seen from the

table, LR-ASDL obtains a slightly better result than the proposed algorithm,

but its training time is about 55 times of that of DADL-AOLP. The proposed

algorithm outperforms the other compared algorithms with relatively shorter

training and testing time.

Table 5: Classification results (%) on Scene15.

Algorithms Accuracy Precision F1-score Train / Test Time (s)

DPL [17] 98.10 98.16 98.09 35.22 / 8.10e-2

SADL [16] 98.16 98.23 98.16 202.46 / 1.71e-1

RBD-DPL [19] 98.14 98.20 98.12 17.62 / 1.34e-3

LR-ASDL [20] 98.60 98.63 98.59 381.40 / 5.20e-1

DCADL [21] 98.41 98.49 98.42 5.51 / 1.72e-2

DADL-AOLP 98.49 98.56 98.50 6.92 / 1.44e-2

5.8. Significance test

To compare DCADL and the proposed DADL-AOLP algorithm more com-

pletely, we run the algorithms for 10 times using different training sets randomly
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selected according to the same allocation ratios as mentioned before. Paired t-

test on accuracy, precision, and F1-score is then performed, and the results are

presented in Table 6.

Table 6: Average results and paired t-test results on accuracy (A), precision (P) and F1-score

(F) between DADL-AOLP and DCADL.

Datasets

Average

Results (%)

DADL-AOLP

/ DCADL

Average

Improvement

(%)

Standard

Deviation
t-value p-value

Extended

YaleB

A 99.72 / 99.57 0.15 0.1464 3.2952 4.70e-3

P 99.70 / 99.51 0.19 0.0984 6.1278 8.66e-5

F 99.68 / 99.49 0.19 0.1002 6.1725 8.21e-5

UCF-50

A 75.94 / 75.31 0.63 0.8107 2.4548 1.82e-2

P 74.99 / 74.44 0.55 0.5344 3.2588 4.90e-3

F 74.57 / 74.30 0.27 0.4232 2.0412 3.58e-2

Caltech101

A 74.65 / 74.48 0.17 0.1328 3.9919 1.60e-3

P 80.07 / 79.69 0.38 0.2475 4.8462 4.56e-4

F 74.00 / 73.38 0.62 0.2051 9.5078 2.72e-5

Scene15

A 98.34 / 97.94 0.40 0.1584 8.0158 1.09e-5

P 98.40 / 98.22 0.18 0.0765 7.2629 2.37e-5

F 98.25 / 98.07 0.18 0.0730 7.7101 1.48e-5

Note that the critical t-value for the one-tailed t test with 95% level of

confidence and 10 independent tests is 1.8331. The results in Table 6 show

that the t-values corresponding to the databases are all larger than 1.8331, and

the obtained p-values are all smaller than 0.05. This observation indicates that

there is strong evidence that the DADL-AOLP algorithm outperforms DCADL

on average and it provides a significant improvement over DCADL.

6. Conclusions and Future Work

A novel discriminative ADL algorithm has been proposed by introducing an

AOLP term to the original DCADL model. The AOLP term can enhance the
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discrimination capability of coding coefficients by preserving the ordinal local-

ity of dictionary atoms in the learning of dictionary. The proposed algorithm

jointly learns a convolutional analysis dictionary together with a linear classifier,

and the corresponding optimization has been addressed by updating variables

alternatively. The proposed algorithm has been compared with several state-

of-the-art dictionary learning methods on four widely used datasets. Experi-

mental results have demonstrated that the AOLP term plays an important role

in improving the performance of the discriminative analysis dictionary learning

model, and the proposed algorithm performs better than other discriminative

dictionary learning algorithms.

One limitation of the proposed algorithm is that it cannot address classifi-

cation problems in distributed or online settings. This could be an interesting

direction for future work. Another limitation is that the parameters are select-

ed empirically, and more sophisticated strategies could be developed in a future

work.
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