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a b s t r a c t

Discriminative dictionary learning (DDL) aims to address pattern classification problems via learning
dictionaries from training samples. Dictionary pair learning (DPL) based DDL has shown superiority
as compared with most existing algorithms which only learn synthesis dictionaries or analysis
dictionaries. However, in the original DPL algorithm, the discrimination capability is only promoted
via the reconstruction error and the structures of the learned dictionaries, while the discrimination
of coding coefficients is not considered in the process of dictionary learning. To address this issue,
we propose a new DDL algorithm by introducing an additional discriminative term associated with
coding coefficients. Specifically, a support vector machine (SVM) based term is employed to enhance
the discrimination of coding coefficients. In this model, a structured dictionary pair and SVM classifiers
are jointly learned, and an optimization method is developed to address the formulated optimization
problem. A classification scheme based on both the reconstruction error and SVMs is also proposed.
Simulation results on several widely used databases demonstrate that the proposed method can
achieve competitive performance as compared with some state-of-the-art DDL algorithms.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, sparse representation and dictionary learning
ave been widely used in a variety of problems, including signal
rocessing (Dong et al., 2017; Rencker, Bach, Wang, & Plumbley,
019; Xu, Xu, & Quan, 2021), multi-view clustering (Zhao, Li,
hen, Zheng, & Xie, 2022), key frame extraction (Li, Li, Tan, Ding,
Xie, 2022), and pattern recognition (Jiang, Lin, & Davis, 2013;

ang, Panahi, Krim, & Dai, 2019). Sparse representation refers
o representing signals as sparse coefficients using dictionaries
ith over-complete bases. As dictionaries learned from signals
f interest tend to represent the signals better than pre-defined
ictionaries, dictionary learning has attracted much attention.
According to the different ways of coding signals, dictionar-

es used in sparse representation could be divided into analysis
ictionary (Li et al., 2021; Rubinstein, Peleg, & Elad, 2013) and
ynthesis dictionary (Aharon, Elad, & Bruckstein, 2006; Dai, Xu,
Wang, 2012; Zhao et al., 2022). Therefore, dictionary learning

an be further divided into analysis dictionary learning, syn-
hesis dictionary learning and analysis–synthesis dictionary pair
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learning. In synthesis dictionary learning, a linear combination
of dictionary atoms is used to reconstruct a signal. As obtain-
ing representation coefficients based on synthesis dictionaries
involves addressing NP-hard (Pati, Rezaiifar, & Krishnaprasad,
1993; Tropp & Gilbert, 2007) or large-scale convex optimization
problems (Chen, Donoho, & Saunders, 1998), the computational
complexity is high. To address this problem, dictionary learning
based on the sparse analysis model (Nam, Davies, Elad, & Gri-
bonval, 2013) has been studied. In this model, the representation
coefficients can be obtained by multiplying the dictionary and
the signal, which greatly reduces the computational complex-
ity of representation (Dong et al., 2016; Ravishankar & Bresler,
2013). However, sparse synthesis model can better model the
complex local structures of images in general and it leads to
many state-of-the-art results in many image processing tasks.
To leverage the advantages of both synthesis dictionaries and
analysis dictionaries, an analysis–synthesis dictionary model is
proposed (Rubinstein & Elad, 2014). In this model, analysis coding
coefficients can be computed efficiently via linear projections
and original signals can be reconstructed using the synthesis
dictionary and analysis coding coefficients.

Dictionary learning has been widely applied to pattern clas-
sification and is referred to as discriminative dictionary learning
(DDL) (Cai, Zuo, Lei, Feng, & Ping, 2014; Jiang et al., 2013). In
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he past few years, deep learning has drawn significant atten-
ion and achieved promising performance in classification tasks.
mong these deep-learning-based methods, convolutional neural
etwork (CNN) based models (He, Zhang, Ren, & Sun, 2016;
rizhevsky, Sutskever, & Hinton, 2012; Szegedy et al., 2015) have
ecome the most popular ones for classification. However, most
eep learning methods including CNN-based methods usually
eed training sets of large size to achieve satisfactory results.
lthough transfer learning can be applied to improve the perfor-
ance by pre-training the models on a generic large-scale dataset
nd then fine-tuning them to the small-sized target dataset, this
ould not help much when the content of the base and target
atasets are very different. In addition, when enough training
amples are not available, complex models such as CNNs tend
o overfit the training set and may not provide good results for
he test set. As compared with deep learning, DDL algorithms can
chieve promising results on small datasets.
In DDL algorithms, label information of training data is intro-

uced into dictionary learning models or classification schemes to
nhance the capability of the model for class discrimination. One
opular strategy used in DDL algorithms is to learn a common
ictionary shared by all classes while enforcing the coding coeffi-
ients corresponding to different classes to be discriminative (Cai
t al., 2014; Jiang et al., 2013; Mairal, Ponce, Sapiro, Zisserman,
Bach, 2009). For example, Mairal et al. (2009) proposed to

ointly learn a single dictionary adapted to all classes and a
inear classifier. The support vector machine guided dictionary
earning algorithm (SVGDL) proposed in Cai et al. (2014) learns a
ingle dictionary shared between all classes and promotes the dis-
rimination capability of coding coefficients using the weighted
um of the squared distances of the coefficients. Label consistent
-SVD (LC-KSVD) algorithm (Jiang et al., 2013) learns a single
vercomplete dictionary and a linear classifier jointly based on
label consistency constraint where samples from the same

lass have similar coding coefficients. Zhao et al. (2022) pro-
osed to learn a partially shared dictionary using a differentiable
cale-invariant function as the sparsity regularizer to address
ulti-view clustering tasks.
Another popular strategy in DDL methods attempts to learn

lass-specific sub-dictionaries for different classes (Ramirez,
prechmann, & Sapiro, 2010; Yang, Zhang, Feng, & Zhang, 2011).
he algorithm proposed by Ramirez et al. (2010) introduces an
ncoherence promoting term to encourage dictionaries associ-
ted with different classes to be independent. Yang et al. (2011)
earned a structured dictionary consisting of sub-dictionaries cor-
esponding to different classes, and imposed the Fisher crite-
ion on coding coefficients to minimize within-class scatter and
nlarge between-class scatter. Class-aware analysis dictionary
earning (CADL) (Wang, Guo, Guo, Luo, & Kong, 2017) learns
lass-specific analysis dictionaries and imposes a max-margin
egularization term on coding coefficients to further improve
he discrimination ability. It achieves better performance than
revious state-of-art methods by making full use of the discrim-
nation ability of class-specific dictionaries and representation
oefficients.
However, the DDL algorithms mentioned above are all based

n the sparse synthesis model which results in high computa-
ional complexity in the coding stage. To address this issue and
lso explore the discrimination of the sparse analysis model, some
DL algorithms based on analysis dictionary learning have been
roposed (Guo, Guo, Kong, Zhang, & He, 2016; Shekhar, Patel, &
hellappa, 2014; Tang et al., 2019). These algorithms learn anal-
sis dictionaries from training data and adopt the discrimination
f the corresponding analysis coefficients. Shekhar et al. (2014)
earned a full rank analysis dictionary from the training data and

rained an additional SVM classifier on the coefficients over the
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learned dictionary. Guo et al. (2016) introduced a code consis-
tent term and a local topology preserving term and proposed a
correntropy induced formulation to improve discrimination with
analysis coefficients. Tang et al. (2019) enhanced the discrimi-
nation of coefficients by applying a structure constraint to the
analysis dictionary.

To integrate the advantages of both synthesis and analysis
dictionary learning, DDL algorithms based on synthesis–analysis
dictionary pair learning have been also developed (Gu, Zhang,
Zuo, & Feng, 2014). The projective dictionary pair learning (DPL)
algorithm (Gu et al., 2014) learns a structured synthesis dic-
tionary together and a structured analysis dictionary jointly to
achieve the goal of signal representation and better discrimina-
tion capability. This framework can also increase the efficiency
of the sparse coding step in conventional DDL models. Based on
DPL, a semi-coupled DPL method (Chen et al., 2019) is specifi-
cally designed to address the classification problem of polarimet-
ric synthetic aperture radar images. DPL has also been adapted
to classify electroencephalogram signals in Ameri, Pouyan, and
Abolghasemi (2016).

Although DPL is fast and effective for pattern classification
tasks, it only considers the structures of the learned dictionaries
and does not exploit the discrimination capability of coding coef-
ficients in the process of dictionary learning. To address this issue,
a discriminative analysis–synthesis dictionary learning method is
proposed in this paper. It emphasizes the discrimination ability
of both dictionary atoms and coding coefficients and learns a
pair of structured dictionaries by promoting the discrimination of
coding coefficients. In particular, support vector machine (SVM)
classifiers associated with coding coefficients are embedded in
the model of dictionary pair learning so that the discriminative
capability of the coefficients can be further improved. The result-
ing optimization problem is addressed with multi-variable opti-
mization, and an alternating optimization method is developed
to solve the problem. In addition, a new classification scheme
which merges the residual error based on the learned dictionary
pair and the discrimination of the trained classifiers is proposed.
The proposed algorithm is referred to as SVM embedding dis-
criminative dictionary pair learning (SVM-DDPL). To verify the
effectiveness of the proposed method, extensive experiments on
several widely used databases for pattern classification were per-
formed. Experimental results show that the proposed algorithm
can improve the accuracy of classification as compared with pre-
vious algorithms. As compared with deep learning approaches,
the proposed method does not rely on large-scale training sets
and can obtain promising results for datasets of small sizes with-
out pre-training. By learning dictionary pairs and SVM classifiers
simultaneously, the proposed algorithm can achieve a balance
between the data representation and discrimination ability. The
main contributions of this work are summarized as follows.

• A discriminative analysis–synthesis dictionary pair learning
model is proposed to exploit the discrimination ability of
both dictionary pair and coding coefficients.

• An alternating optimization method is developed to address
the optimization problem formulated from this model.

• A classification scheme that considers both reconstruction
error over the learned dictionary pair and SVM responses is
proposed.

• Experiments on several widely used databases are per-
formed to compare the proposed algorithm with several
state-of-the-art dictionary-learning-based algorithms and
well-known deep learning methods.

The remainder of this paper is organized as follows. Section 2
introduces the projective dictionary pair learning algorithm. Sec-

tion 3 presents the proposed algorithm including the proposed
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ormulation, the corresponding optimization framework, and the
lassification scheme. Experimental results are given in Section 4,
nd Section 5 concludes the paper.

. Related work

.1. Classical discriminative dictionary learning

By introducing label information of training data, DDL al-
orithms can promote the discriminative capability of repre-
entation coefficients to address classification tasks. Let X =

X1, . . . ,Xk, . . . ,XK ] ∈ Rp×n denote a set of n training samples
from K classes, where Xk ∈ Rp×nk is the subset of X. Xk ∈

Rp×nk denotes the training samples from the kth class where
the total number of all training samples satisfies n =

∑K
k=1 nk.

he formulations of most classical DDL algorithms can be written
s (Tang et al., 2019; Wang et al., 2017)

rgmin
D,A

R(X,D,A) + λ1∥A∥p + λ2f (A,Y), (2.1)

here A represents the coefficient matrix of X over a learned
ynthesis dictionary D, and Y denotes the class label matrix of
raining samples. R(X,D,A) is the reconstruction residual ob-
ained by approximating X using the dictionary D and coefficients
. ∥A∥p is the ℓp norm regularizer to enforce A to be sparse,
nd typical choices are ℓ1-norm or ℓ0-norm. f (A,Y) denotes the
erm for promoting the discrimination ability of the model based
n A and labels Y. A typical DDL algorithm following this for-

mulation is SVGDL (Cai et al., 2014), where the discrimination
promoting term is based on the weighted sum of the squared
distances between all pairs of coding vectors. However, learning
a shared dictionary for all classes ignores the intrinsic variability
of dictionaries between different classes.

Apart from the discrimination-promoting term, discrimination
can also be enhanced by a using structured dictionary, and this
technique is called the class-specific dictionary learning method.
In class-specific dictionary learning, the learned dictionary D =

D1,D2, . . . ,DK ] consists of several sub-dictionaries, and the sub-
ictionary Dk corresponds to class k. Then the reconstruction

residual R(X,D,A) can be seen as the sum of the reconstruc-
tion error over the sub-dictionaries. This class-specific setting
is effective for improving classification accuracy. For example,
FDDL (Yang et al., 2011) learns a structured dictionary whose dic-
tionary atoms correspond to different classes instead of learning
a shared dictionary for all classes. To enhance the discrimination
ability of coding coefficients achieved by class-specific dictio-
naries, FDDL imposes the Fisher discrimination criterion on the
coding coefficients to obtain small within-class scatter and big
between-class scatter.

2.2. Projective dictionary pair learning

The DPL algorithm (Gu et al., 2014) aims to learn a structured
synthesis dictionary D = [D1,D2, . . . ,DK ] and a structured anal-
ysis dictionary P = [P1; P2; ...; PK ] jointly, which can be written
as

{D∗, P∗
} = argmin

D,P

K∑
k=1

∥Xk−DkPkXk∥
2
F +λ∥PkXk∥

2
F , s.t.∥di∥

2
2 ≤ 1,

(2.2)

where ∥·∥
2
F denotes the Frobenius norm, Xk denotes data samples

from class k, and Xk is the complementary set of Xk in the
hole training set X, i.e., data samples not from class k. Matrices
k ∈ Rp×m and Pk ∈ Rm×p are the synthesis and analysis sub-
ictionaries corresponding to class k, respectively. d represents
i
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he ith atom/column of the synthesis dictionary D. The constraint
∥di∥

2
2 ≤ 1 is used to avoid trivial solutions of Dk and make the

model more stable.
In this model, Pk can project data samples from class k to

a new subspace, meanwhile project data samples from other
classes to a nearly null space, which is formulated via the term
∥PkXk∥

2
F . In other words, the whole coefficient matrix A = PX

is approximately block-diagonal. The reconstruction error term∑K
k=1 ∥Xk − DkPkXk∥

2
F aims to find the synthesis sub-dictionary

Dk that reconstructs the data matrix Xk from its projective coding
matrix PkXk.

Based on the DPL model, the learned analysis sub-dictionary
P∗

k tends to produce small coding coefficients for samples of
classes other than k, and the synthesis dictionary D∗

k is trained
to reconstruct samples of class k from their projective coefficients
P∗

kXk. Therefore, the residual ∥Xk −D∗

kP
∗

kXk∥
2
F will be smaller than

∥Xk −D∗

kP
∗

kXi∥
2
F (i ̸= k) as D∗

k is not trained to reconstruct Xi (i ̸=

k). If the test sample x is from class k, the reconstruction residual
∥x−D∗

kP
∗

kx∥
2
F tends to be much smaller than ∥x−D∗

i P
∗

i x∥
2
F (i ̸= k).

Based on this, the class label of x can be identified using the
following classifier

k∗
= arg min

k∈{1,2,...,K }

∥x − DkPkx∥2
F . (2.3)

3. Proposed algorithm

In this section, the formulation of the proposed algorithm is
presented first, and then the optimization strategy to address the
formulated optimization problem is given in detail. The classifi-
cation scheme is also presented.

3.1. Problem formulation

As mentioned in Section 2.2, the original DPL algorithm learns
a structured pair of analysis dictionary and synthesis dictionary
so that training signals of each class can be approximately recon-
structed by the sub-dictionary pair corresponding to this class.
Based on this formulation, test signals are classified into the class
whose dictionary pair gives the best approximation. However, the
discrimination of coding coefficients is not considered explicitly
in both training and testing processes, which limits the perfor-
mance of classification. To address this issue, additional classifiers
for coding coefficients can be learned in the training process
and also taken into account in the test process. By introducing
a regularizer related to the coding coefficients, we propose the
following formulation

{P∗,D∗,A∗,U∗, b∗
}

= arg min
P,D,A,U,b

K∑
k=1

∥Xk − DkAk∥
2
F + λ1∥PkXk − Ak∥

2
F

+ λ2∥PkXk∥
2
F + λ3f (A, yk,uk, bk) + α∥Pk∥

2
F

s.t. ∥di∥
2
2 ≤ 1,

(3.1)

where Xk ∈ Rp×nk , Pk ∈ Rm×p, Dk ∈ Rp×m, and Ak ∈ Rm×nk

denote the training samples, the analysis sub-dictionary, the syn-
thesis sub-dictionary and the representation coefficient matrix
of the kth class, respectively. P = [P1; P2; ...; PK ] and D =

D1,D2, . . . ,DK ] denote the structured analysis dictionary and
ynthesis dictionary corresponding to all classes. The coding co-
fficients of all samples are represented as A = [A1, . . . ,Ak, . . . ,

AK ]. Samples not from the kth class are denoted as Xk = [X1, . . . ,

k−1,Xk+1, . . . ,XK ]. Parameters λ1, λ2, λ3, and α > 0 are con-
stant scalars to balance the importance of different terms in the
objective function.
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The regularizer f (A, yk,uk, bk) is based on support vector ma-
chine, and attempts to differentiate coding coefficients corre-
sponding to different classes by learning K hyperplanes repre-
sented by U = [u1,u2, . . . ,uK ] and b = [b1, b2, . . . , bK ]

T . In
particular, the regularizer is defined as

f (A, yk,uk, bk) =
1
2
∥uk∥

2
2 + C

n∑
i=1

l(ai, yki ,uk, bk), (3.2)

here l(ai, yki ,uk, bk) is the quadratic hinge loss function (Yang,
u, Gong, & Huang, 2009), C is a fixed constant, and ai is the ith

column of A, i.e., the coding coefficients corresponding to the ith
sample. The vector yk = [yk1, y

k
2, . . . , y

k
n]

T
∈ Rn represents the

abel vector of the kth class. If the training sample xi is from class
, yki = 1, otherwise yki = −1. As coding coefficients are treated

as training samples of SVM explicitly, the discrimination of coding
coefficients can be promoted effectively.

In the proposed formulation (3.1), a structured dictionary pair
and a set of SVM classifiers corresponding to different classes are
jointly learned, which leads to improved discrimination ability of
both dictionaries and coding coefficients.

3.2. Optimization strategy

In this section, we will describe the optimization framework
to find the optimal solution of (3.1) in detail. The dictionary
pair P and D are initialized as random matrices, and then the
optimization problem can be addressed by updating each variable
while keeping the others fixed, i.e., solving the sub-problem with
respect to each variable alternatively as follows.

(1) Fix P, D, U and b, update A:
Ignoring terms unrelated to A, the update of A can be
realized by updating each column ai in parallel, which
corresponds to solving the optimization problems with
respect to ai, for i = 1, . . . , n,

a∗

i = argmin
ai

∥xi − Dai∥2
2 + λ1∥Pxi − ai∥2

2

+ λ3C
K∑

k=1

l(ai, yki ,uk, bk), (3.3)

where xi ∈ Rn is the ith column of the data matrix X,
and the superscript ∗ denotes the estimation of an optimal
variable. The definition of the quadratic hinge loss function
is (Yang et al., 2009)

l(ai, yki ,uk, bk)

=

{
∥1 − yki (u

T
kai + bk)∥2

2, 1 − yki (u
T
kai + bk) > 0,

0, otherwise.
(3.4)

By taking the derivative of (3.3) with respect to ai and
setting it to zero, the closed-form solution of ai can be
obtained. Specifically, when 1 − yki (u

T
kai + bk) > 0,

ai =

[
DTD + λ1I + λ3C

K∑
k=1

ukuT
k

]−1

∗

[
DTxi + λ1Pxi + λ3C

K∑
k=1

uk(yki )
T

− λ3C
K∑

k=1

ukbk

]
.

(3.5)

Otherwise,

a = (DTD + λ I)−1(λ Px + DTx ). (3.6)
i 1 1 i i

501
(2) Fix A, U, b, and D, update P:
The analysis dictionary P is updated by optimizing sub-
dictionaries Pk with k = 1, . . . , K in parallel, and the
update of Pk involves solving the sub-problem as follows

P∗

k = argmin
Pk

λ1∥PkXk − Ak∥
2
F + λ2∥PkXk∥

2
F + α∥Pk∥

2
F .

(3.7)

By setting the derivative with respect to Pk to zero, the
optimal solution for Pk can be directly obtained, that is

Pk = λ1AkXT
k (λ1XkXT

k + λ2XkX
T
k + αI)−1. (3.8)

(3) Fix A, U, b, and P, update D:
The optimization of D is equivalent to updating synthesis
sub-dictionaries Dk for k = 1, . . . , K . When A, U, b and P
are fixed, the optimization sub-problem with respect to Dk
can be written as

D∗

k = argmin
Dk

∥Xk − DkAk∥
2
F s.t. ∥di∥

2
2 ≤ 1. (3.9)

This problem can be addressed effectively via the alternat-
ing direction method of multipliers (ADMM) (Boyd, Parikh,
Chu, Peleato, & Eckstein, 2011; Gu et al., 2014). Specifically,
by introducing an auxiliary variable Sk, the problem can be
reformulated as

{D∗

k, S
∗

k} = argmin
Dk,Sk

∥Xk − DkAk∥
2
F s.t. Dk = Sk, ∥si∥ ≤ 1.

(3.10)

The optimal solution of (3.10) can be obtained by alterna-
tively updating the variables as follows (Gu et al., 2014)⎧⎪⎪⎨⎪⎪⎩
D(r+1)

k = argminDk ∥Xk − DkAk∥
2
F + ρ∥Dk − S(r)k + T(r)

k ∥
2
F

S(r+1)
k = argminSk ∥D(r+1)

k − Sk + T(r)
k ∥

2
F , s.t. ∥si∥2

2 ≤ 1

T(r+1)
k = T(r)

k + D(r+1)
k − S(r+1)

k ,

(3.11)

where r is the iteration number.
(4) Fix P, D and A, update U, and b:

When P, D and A are fixed, the optimization of U and b is a
multi-class SVM problem, which can be divided into K lin-
ear one-against-all SVM subproblems. The gradient-based
optimization method to train linear SVM solvers proposed
in Yang et al. (2009) can be used to estimate uk’s and bk’s.

3.3. Classification scheme

Once the structured analysis dictionary P, structured synthesis
dictionary D and the SVM classifiers defined by < U, b > are
learned, we can perform the classification task as follows. Assum-
ing x denotes a test sample, the reconstruction error ∥x−DkPkx∥2

2
should be small if x is from the kth class based on the first two
terms of the proposed formulation. In addition, the response to
the SVM classifier corresponding to the kth class, i.e., ukz + bk
will be large, where z represents coefficients of x over the whole
analysis dictionary P, i.e., z = Px. By fusing the discrimination of
the reconstruction error and the SVM classifiers, the label of the
test sample x can be determined by

k∗
= arg min β∥x − DkPkx∥2

2 − (uT
k z + bk), (3.12)
k∈{1,2,...,K }
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here β > 0 is a scale parameter to balance the two terms. The
usion of the reconstruction error and SVM response in the classi-
ication scheme aims to make effective use of the discrimination
f both dictionary pairs and coefficients, which is also consistent
ith the formulation of the dictionary pair learning stage. Note
hat, in the proposed formulation (3.1), the signals from each
lass are supposed to be reconstructed by the dictionary pairs
orresponding to that class, and the representation coefficients
end to be discriminative over the hyperplanes defined by the
VM classifiers. By solving the problem above, the test sample
from the ith (i ̸= k) class can be separated from the samples
f the kth class due to larger SVM classifier response and smaller
econstruction residual.

The whole procedure of the proposed SVM-DDPL algorithm
s summarized in Algorithm 1. In particular, Lines 3–8 describe
he operations in each iteration of the training stage of SVM-
DPL, where line 3 updates the coding coefficients A via Eqs. (3.5)
r (3.6), and lines 4–8 updates the analysis sub-dictionary Pk,

synthesis sub-dictionary Dk and SVM classifier parameters uk and
bk corresponding to each class k with k = 1, . . . , K . Line 11 shows
the classification of a given test sample in the test stage.

Algorithm 1 The proposed SVM-DDPL algorithm

Initialization: Training samples X and regularization parameters
λ1, λ2, λ3, α, C, and β . Initialize the iteration counter t = 1,
analysis dictionary P, and synthesis dictionary D as random
matrices. U and b are initialized as the all-zero matrix.

1: // Support vector machine embedding discriminative dictio-
nary pair learning:

2: while the maximal iteration number is not reached do
3: Update each column of A via (3.5) or (3.6).
4: for k = 1 to K do
5: Update Pk via (3.8).
6: Update Dk via (3.11).
7: Update uk and bk via the SVM solver in Yang et al. (2009).
8: end for
9: end while

10: // Classification based on the learned dictionary pair and SVM
classifiers:

11: Obtain the class label of a given test sample x via (3.12).

3.4. Computational complexity

In the training stage of the proposed algorithm, A, P, D, and
{U, b} are updated alternatively. The update of A, P and D mainly
involve matrix multiplications and inversions. In each iteration,
the time complexities of updating A, and P are O(m2K 2p+m3K 3)
and O(mnkp + p2nk + p3 + mp2), respectively. In the update of P,
the matrix inverse (λ1XkXT

k +λ2XkX
T
k +αI)−1 is not changed over

iterations and can be pre-computed to accelerate the training
process. The time complexity of updating D is O(T (m2nk + m3

+

nkp+pm2)), where T denotes the iteration number in ADMM for
updating D. We experimentally found that in most cases T is less
than 20. The update of {U, b} has a time complexity of O(nkK ).

In the testing stage, the classification is very efficient. The time
omplexities of computing the reconstruction error term and
VM-based term are O(mp) and O(m), respectively. As a result,
he total complexity of the testing stage to classify samples of K
ategories is O(Kmp).

. Simulation results

Experiments are performed to demonstrate the convergence of
he proposed algorithm, illustrate its the sensitivity with different
arameter settings, and compare its performance with existing
DL algorithms.
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Fig. 1. Samples of the AR database.

Fig. 2. Samples of the Extended YaleB database.

4.1. Databases introduction and settings

In the experiments, four widely used pattern classification
databases are utilized, i.e., AR (Martinez & Benavente, 1998), Ex-
tended YaleB (Georghiades, Belhumeur, & Kriegman, 2001), Cal-
tech101 (Li, Fergus, & Perona, 2004), Scene15 (Lazebnik, Schmid,
& Ponce, 2006a), and Isolet (Fanty & Cole, 1990). AR and Extended
YaleB are used for face recognition, Caltech101 is used for ob-
ject categorization and Scene15 is used for scene categorization.
Isolet is used for spoken letter recognition. The details of each
database, settings of training and test data, feature extraction of
databases, and parameter settings of the proposed algorithm are
presented as follows.

(1) AR: The AR database (Martinez & Benavente, 1998) involves
many variations such as illumination, expressions, sunglass, and
scarf occlusion. It contains face images of 100 people consisting
of 50 men and 50 women of size 165 × 120. Each individual
and each category contains no fewer than 26 images. Sample
images are shown in Fig. 1. In our experiments with AR, 20 images
per individual are randomly selected as training data and the
remanding 6 images are used as test data.

(2) Extended YaleB: The Extended YaleB database (Georghiades
et al., 2001) contains 2,414 front face images involving large
variations in illumination and expressions. The images are from
38 individuals and each individual has about 64 images cropped
to 168 × 192 pixels. Sample images from Extended YaleB are
shown in Fig. 2. For this database, we randomly select 32 images
per person as training data, and the remaining are used as testing
data.

(3) Caltech101: The Caltech101 database (Li et al., 2004) con-
tains 9,144 images from 102 object categories including 101
object classes and a background class. The object categories in-
clude animals, vehicles, flowers, plants, and so on. The number
of images in each category varies from 31 to 800. Moreover,
the images from each category have large shape variability in
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Fig. 3. Samples of objects from the Caltech101 dataset.

Fig. 4. Samples of scenes from the Scene15 database.

object size, pose, and location, which increases the difficulty of
classification. Some image samples from Caltech101 are shown
in Fig. 3. Following the experimental settings in Gu et al. (2014),
we randomly select 30 images per class for training and the
remaining for testing.

(4) Scene15: The Scene15 database contains 4,485 images from
5 natural scene categories. Each category contains at least 200
mages and the average image size is about 250 × 300 pixels. This
atabase includes kitchen, suburb, living, forest, coast, industrial,
ffice, highway, tall building, mountain, inside city, bedroom,
treet, room, open country, and store scene categories. Some
xamples from this database are illustrated in Fig. 4. Following
he experimental settings in Jiang et al. (2013), we randomly
elect 100 images per category for training and use the remaining
or testing.

(5) Isolet: Isolet is widely used for spoken letter recogni-
ion (Fanty & Cole, 1990). In this database, 150 speakers spoke
he name of each letter of the alphabet twice. Hence, one speaker
as 52 training examples. The speakers are grouped into sets of
0 speakers each and are referred to as isolet1, isolet2, isolet3,
solet4, and isolet5. The spoken letter database we use is provided
y Fanty and Cole (1990)1 and the dimension of data is 617.
(6) Feature extraction of databases: Following conventional ex-

erimental settings of DDL (Jiang et al., 2013), training and testing
f the algorithms are both based on feature vectors extracted
rom samples. For experiments with the AR and Extended YaleB
atabases, random face features are used as in Jiang et al. (2013).
pecifically, a sample image is projected into a feature vector of
ixed dimension by a random matrix, and the resulting feature
ector is then normalized. The dimensions of the extracted fea-
ures for AR and Extended YaleB are 540 and 504, respectively.
or Caltech101 and Scene15, features provided by Jiang et al.
2013)2 are used. In particular, spatial pyramid features (Lazeb-
ik, Schmid, & Ponce, 2006b) are extracted from dense scale-
nvariant feature transform (SIFT) descriptors of 16 × 16 patches

1 https://archive.ics.uci.edu/ml/datasets/ISOLET
2 http://www.zhuolin.umiacs.io/projectlcksvd.html
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from each image, and the feature dimension is reduced to 3,000
by principle component analysis. More details can be found
in Jiang et al. (2013). For experiments with the Isolet database,
the described features contain spectral coefficients, contour fea-
tures, sonorant features, pre-sonorant features, and post-sonorant
features.

(7) Parameter settings of SVM-DPPL: In the model of SVM-DDPL,
main parameters include regularization parameters λ1, λ2, λ3, α,
, the number of atoms m in each sub-dictionary in the process
f discriminative dictionary pair learning, and the parameter β
n the classification scheme. As the parameter selection issue
emains an open problem, the parameters of the proposed algo-
ithm are selected in a heuristic way. In particular, α is fixed as
e − 4, and C is fixed as 0.2. The number of atoms m in the sub-
ictionaries is set based on the number of training samples. For
xperiments with more training samples,m is set as larger values.
ther parameters are tuned using a grid search strategy, and the
etailed settings for each database are summarized in Table 1.

.2. Convergence of SVM-DDPL

The convergence of SVM-DDPL is illustrated in Fig. 5. It can be
een that with the increase of the iteration number, the objec-
ive function value decreases quickly on Caltech101 and Scene15
atabases. In our experiments, the proposed SVM-DDPL algo-
ithm converges in less than 20 iterations.

.3. Experiments with different parameters

Taking the Extended YaleB database as an example, different
alues of the parameters are tested to demonstrate the sensitivity
f SVM-DDPL. The results with different parameter settings are
resented in Fig. 6.
In particular, we test the different settings of λ1, λ2 and λ3

ith other parameters fixed as α = 1e − 4, C = 0.2 and β = 5.
Fig. 6(a)–(c) show the results with only one parameter of λ1, λ2
and λ3 being fixed. When λ3 is fixed, as shown in Fig. 6(a),
the recognition rate is not sensitive to λ1 compared to λ2. The
ecognition rate decreases seriously when λ2 is smaller than 1e−

. Fig. 6(b) shows the results with λ1 = 2e−2. It can be seen that
λ2 has a stronger influence on the classification accuracy of SVM-
DDPL than λ3. Fig. 6(c) shows the results with different settings
f λ1 and λ3 with λ2 = 2e − 3. In this case, recognition rates are
ll greater than 90% when λ1 is smaller than 1e−1, which shows
hat the algorithm is not sensitive with settings of λ1 and λ3.

The influence of α is presented in Fig. 6(d) with λ1 = 2e − 2,
2 = 2e − 3, λ3 = 2e − 6, β = 5 and C = 0.2 fixed. The

recognition accuracy decreases substantially when α > 1e − 3.
Fig. 6(e) shows the influence of β with other parameters fixed as
1 = 2e−2, λ2 = 2e−3, λ3 = 2e−6, α = 1e−4, and C = 0.2, and

the recognition rate reaches the maximum with β = 5. Results
with different settings of C are presented in Fig. 6(f), where other
parameters are set as λ1 = 2e − 2, λ2 = 2e − 3, λ3 = 2e − 6,
α = 1e − 4 and β = 5. It can be seen that the results with
various C are all above 97.3%, which shows that the algorithm
is not sensitive to the change of parameter C.

The parameter β is to balance the effect of the terms in the
classification scheme and the value of β is tuned to achieve the
best performance. For an individual database, the employment of
larger values of β indicates that the reconstruction error has a
greater impact than the cases with smaller β ’s. However, it does
not mean the reconstruction error term dominates the classifi-
cation results, as the reconstruction error and SVM responses are
obtained based on different principles and the values of these two
terms are not comparable. For different databases, the values of β
can be different. In the experiments, β is tuned for each database

to achieve the best results.

https://archive.ics.uci.edu/ml/datasets/ISOLET
http://www.zhuolin.umiacs.io/projectlcksvd.html
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Fig. 5. Convergence curve of SVM-DDPL on Caltech101 and Scene15.

Fig. 6. Recognition rates obtained via SVM-DDPL with different settings of λ1 , λ2 , λ3 , α, β and C on the Extended YaleB database.
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Table 1
Parameter settings of SVM-DDPL in each database.
Parameters AR Extended

YaleB
Caltech101 Scene15 Isolet

λ1 8e−1 2e-2 3e−2 8e−2 1e-1
λ2 1e−3 2e-3 1e−5 1e−5 1e-3
λ3 1e−5 2e-6 1e−5 1e−5 1e-5
m 6 10 10 20 10
β 0.1 5 1 7 1
4.4. Comparison with other algorithms

To verify the performance of SVM-DDPL, it is compared with
ther DDL methods in terms of classification accuracy as well as
raining time and testing time. All simulations were performed in
atlab 2020a with an Intel Core i5 CPU at 2.90 GHz and 16 GB
emory. The testing time is defined as the average processing

ime to classify a single image. We measure the performance of
ach algorithm by repeating the experiment over 5 realizations
nd report the averaged results.

.4.1. Competing algorithms
The competing algorithms are Fisher Discrimination Dictio-

ary Learning (FDDL)3 (Yang et al., 2011), LC-KSVD4 (Jiang et al.,
013), SVGDL5 (Cai et al., 2014), SADL6 (Tang et al., 2019),
ADL7 (Wang et al., 2017), and DPL8 (Gu et al., 2014) algorithms.
mong these algorithms, FDDL, LC-KSVD, and SVGDL are synthe-
is dictionary learning based algorithms, SADL and CADL learn a
tructured analysis dictionary, while DPL is based on dictionary
air learning. We have also used two latest dictionary-learning-
ased algorithms as baselines, i.e., relaxed block-diagonal dictio-
ary pair learning with a locality constraint (RBD-DPL)9 (Chen,
u, & Kittler, 2021) and twin-incoherent self-expressive latent
PL (SLatDPL)10 (Zhang et al., 2021). RBD-DPL introduces relaxed
lock-diagonal structures to representations to enhance the dis-
riminability of dictionaries. SLatDPL integrates the coefficient
earning and salient feature extraction into a unified model and
ses a self-expressive adaptive locality-preserving framework
ith a twin-incoherence constraint.
Note the DPL algorithm can be seen as an ablation version of

he proposed algorithm without the coding coefficient discrimi-
ative term, and the comparison with DPL aims to validate the
mpact of the coding coefficient discriminative term introduced
n the proposed algorithm. The proposed SVM-DDPL algorithm
ointly learns the dictionary pairs and SVM classifiers so that
he training process can comprehensively exploit dictionaries and
VM classifiers. In contrast, training SVM after the dictionary
air learning separates dictionary learning and SVM training into
wo independent stages. With this framework, the discriminative
apability of the representation coefficients in dictionary learning
s not fully exploited and the SVM parameters are optimized
ased only on the fixed coefficients. As a result, this framework
s not as flexible as the joint learning paradigm used in the
roposed algorithm. To compare the performance of these two
raining schemes, we perform experiments by training SVM after
earning the dictionary pair, which is referred to as DPL+SVM.
he numbers of dictionary atoms are the same as those used in

3 https://github.com/JumperWang/FDDL
4 http://www.zhuolin.umiacs.io/projectlcksvd.html
5 http://www4.comp.polyu.edu.hk/~cslzhang/code/SVGDL.zip
6 https://github.com/wtang0512/
7 https://github.com/eeGuoJun/SPL2017
8 http://www4.comp.polyu.edu.hk/~cslzhang/code/DPL_NIPS14.zip
9 https://github.com/chenzhe207/RBD-DPL

10 https://github.com/Daitu/SLatDPL
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the proposed algorithm, and other parameters follow the original
settings of DPL. The classification is also based on the proposed
fusing classification scheme.

The results of the competing algorithms are from the origi-
nal papers of the algorithms or obtained based on the released
implementation. Specifically, for the experiments that have been
performed in the original papers under the same experimental
settings as ours, the results reported in the original papers are
presented. For other experiments, the parameters of the compet-
ing algorithms are tuned carefully as suggested in their original
papers and the best results are presented.

4.4.2. Results on AR
The averaged recognition rates on AR are reported in Table 2.

The accuracy of the proposed algorithm is slightly higher than
that of the previous algorithms and achieves the best result on
the AR database. SVM-DDPL achieves 98.7% accuracy on the AR
database, which has 0.4% improvements over DPL. The training
time of SVM-DDPL is longer than DPL as SVM classifiers are
trained together with dictionary learning.

4.4.3. Results on Extended YaleB
The recognition rates on Extended YaleB are presented in

Table 3. For Extended YaleB, as shown in Table 3, the proposed
algorithm performs better than FDDL, LC-KSVD, SADL, SVGDL, and
DPL, and achieves 97.6% accuracy. The training time of this algo-
rithm is shorter than that of SVGDL when it obtains the maximum
accuracy, which may be because it has a shorter encoding time.

4.4.4. Results on Caltech101
The experimental results on the Caltech101 database of dif-

ferent algorithms are listed in Table 4. It can be seen that the
recognition rate of the SVM-DDPL algorithm on the Caltech101
database is better than other algorithms. The recognition rate
of this algorithm is 3.6% higher than that of the DPL algorithm.
This further shows that the simultaneous introduction of SVM
classifiers and structural dictionary pair is helpful to improve the
classification accuracy.

In addition, we randomly select 5, 10, 15, 20, 25, and 30 sam-
ples per category as training samples and test on the remaining.
The comparison results with other DDL methods are shown in
Table 5.

As we can seen from Table 5, the classification rate on the
Caletch101 database will be improved with the increase in the
number of training samples per class. In general, with different
numbers of training samples, the proposed algorithm outper-
forms DPL. The best result is obtained by the proposed algorithm
when the number of training samples per class is 30.

4.4.5. Results on Scene15
The classification accuracies obtained by different algorithms

are shown in Table 6. Our proposed algorithm outperforms all
competing algorithms except for SADL. It achieves 0.8% improve-
ment as compared with DPL. The confusion matrix of SVM-DDPL
is shown in Fig. 7. It can be seen that the recognition accuracy of
our algorithm for the scenes of the bedroom and living room can

reach 100%.

https://github.com/JumperWang/FDDL
http://www.zhuolin.umiacs.io/projectlcksvd.html
http://www4.comp.polyu.edu.hk/~cslzhang/code/SVGDL.zip
https://github.com/wtang0512/
https://github.com/eeGuoJun/SPL2017
http://www4.comp.polyu.edu.hk/~cslzhang/code/DPL_NIPS14.zip
https://github.com/chenzhe207/RBD-DPL
https://github.com/Daitu/SLatDPL
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Table 2
Recognition rates (%) on the AR database.
Methods Classification accuracy (%) Training time (s) Testing time (s)

FDDL (Yang et al., 2011) 96.9 91.0 3.5e−3
LC-KSVD (Jiang et al., 2013) 97.8 39.7 2e−4
SVGDL (Cai et al., 2014) 96.7 760.0 2.0e−5
SADL (Tang et al., 2019) 97.2 32.6 1.3e−5
CADL (Wang et al., 2017) 98.6 107.9 7.1e−5
DPL (Gu et al., 2014) 98.3 11.3 3.9e−4
RBD-DPL (Chen et al., 2021) 97.6 2.84 1.6e−5
SLatDPL (Zhang et al., 2021) 98.8 54.8 2.0e−3
DPL+SVM 98.4 12.0 5.8e−5

SVM-DDPL 98.7 120.2 1.8e−4
Table 3
Recognition rates (%) on the Extended YaleB database.
Methods Classification accuracy (%) Training time (s) Testing time (s)

FDDL (Yang et al., 2011) 95.8 23.0 7.3e−3
LC-KSVD (Jiang et al., 2013) 96.7 6.8 3.2e−5
SVGDL (Cai et al., 2014) 96.1 220.0 7.9e−6
SADL (Tang et al., 2019) 96.3 39.2 7.6e−6
CADL (Wang et al., 2017) 97.3 120.3 1.9e−5
DPL (Gu et al., 2014) 97.5 4.4 1.7e−4
RBD-DPL (Chen et al., 2021) 97.3 2.98 1.8e−4
SLatDPL (Zhang et al., 2021) 98.8 36.8 1.1e−3
DPL+SVM 97.1 6.1 2.5e−5

SVM-DDPL 97.6 69.5 1.5e−4
Table 4
Recognition rates (%) on the Caltech101 database.
Methods Classification accuracy (%) Training time (s) Testing time (s)

FDDL (Yang et al., 2011) 73.1 529.8 5.7e−3
LC-KSVD (Jiang et al., 2013) 73.6 373.9 1.8e−4
SVGDL (Cai et al., 2014) 76.7 1500.0 1.2e−5
SADL (Gu et al., 2014) 74.5 847.5 4.8e−5
CADL (Wang et al., 2017) 75.0 2501.1 4.2e−4
DPL (Tang et al., 2019) 73.9 134.6 1.3e−3
RBD-DPL (Chen et al., 2021) 72.8 58.6 1.2e−4
SLatDPL (Zhang et al., 2021) 74.6 740.3 6.6e−2
DPL+SVM 76.1 139.2 2.2e−4

SVM-DDPL 77.5 1913.2 1.3e−3
Table 5
Recognition rates (%) on Caltech101 with different numbers of training samples per class.
# of training
samples per class

5 10 15 20 25 30

FDDL 53.6 63.6 66.8 69.8 71.7 73.1
LC-KSVD 54.0 63.1 67.7 70.5 72.3 73.6
SVGDL 55.3 64.3 69.6 72.3 75.1 76.7
SADL 48.6 59.8 63.8 66.1 71.2 74.5
CADL 49.7 60.2 66.9 70.1 73.7 75.0
DPL 47.2 57.7 63.2 66.3 68.8 73.9
RBD-DPL 46.6 56.2 62.4 67.0 69.1 72.8
SLatDPL 47.9 57.2 63.8 68.3 71.2 74.6
DPL+SVM 47.9 60.1 65.3 68.9 70.6 76.1

SVM-DDPL 48.8 62.3 67.5 71.5 73.5 77.5
Table 6
Recognition rates (%) on the Scene15 database.
Methods Classification accuracy (%) Training time (s) Testing time (s)

FDDL (Yang et al., 2011) 92.3 5.5 3.3e−3
LC-KSVD (Jiang et al., 2013) 92.9 3.4 2.3e−5
SVGDL (Cai et al., 2014) 96.8 66.3 2.7e−6
SADL (Tang et al., 2019) 98.5 174.2 2.4e−5
CADL (Wang et al., 2017) 97.3 523.1 2.6e−4
DPL (Gu et al., 2014) 96.9 12.2 2.0e−4
RBD-DPL (Chen et al., 2021) 98.0 24.6 2.2e−4
SLatDPL (Zhang et al., 2021) 94.5 807.6 1.1e−2
DPL+SVM 97.2 14.7 3.2e−4

SVM-DDPL 97.7 153.1 2.1e−4
506



J. Dong, L. Yang, C. Liu et al. Neural Networks 155 (2022) 498–511

(
a
f
o
t
a
a

i
s
a
o
c
S
c
f

4

s
s
t
a
b
b
b

S
t
S
S
E
w
t
r

c
f
b
b
n
f

Fig. 7. Confusion matrix of SVM-DDPL on the Scene15 database.

4.4.6. Results on Isolet
Following the settings in Zhang, Li, Chow, Zhang, and Yan

2016) and Wang, Yang, and Li (2019), the experiments on Isolet
re performed by varying the number of labeled spoken letters
rom 3 to 30 with interval 3. We first tune the optimal parameters
f each method on Isolet5 and perform experiments on Isolet2
o Isolet4 with the same parameters. The results of different
lgorithms with varying numbers of labeled samples in each class
re shown in Fig. 8.
As we can see, the recognition rates obtained by all algorithms

ncrease with the increase of the number of labeled training
amples. The proposed SVM-DDPL algorithm outperforms other
lgorithms in most cases. As compared with original DPL meth-
ds, SVM-DDPL improves recognition rates by at least 0.5% in all
ases. The experimental results on the Isolet database show our
VM-DDPL of imposing SVM response constraint on sparse coding
oefficients can produce considerable performance improvement
or spoken letter recognition.

.5. Evaluation of classification scheme

In the proposed algorithm, we employ a fusion classification
cheme by considering both reconstruction error and SVM re-
ponses of the coding coefficients. If only the reconstruction error
erm or the SVM-related term is considered in classification, the
dvantages offered by the dictionary pair learning stage cannot
e fully utilized, and the final classification performance may not
e as good as that of the proposed classification scheme based on
oth terms.
To compare different classification schemes, the proposed

VM-DDPL and DPL+SVM are tested using different classifica-
ion schemes while keeping the same dictionary learning stage.
pecifically, classification schemes using reconstruction error,
VM, and the fusion of these two are referred to Err, SVM and
rr+SVM, respectively. The results of SVM-DDPL and DPL+SVM
ith different classification schemes are shown in Fig. 9. Note
hat DPL+SVM using the Err classification scheme is actually
educed to the DPL algorithm (Gu et al., 2014).

From Fig. 9, it can be seen that for DPL+SVM the SVM classifi-
ation scheme performs better than the Err classification scheme
or AR and Caltech101 while the Err classification scheme obtains
etter results for the remaining two databases. This is proba-
ly because that the reconstruction error and SVM classifier are
ot balanced jointly in the training process as the SVM classi-

ier in DPL+SVM is trained independently after the dictionary is
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learned in DPL. For the SVM-DDPL algorithm, the SVM classifi-
cation scheme achieves better results than the Err classification
scheme on all databases except for Extended YaleB, which illus-
trates the effectiveness of the SVM classifier in SVM-DDPL. We
can also see that the fusion classification scheme (i.e. Err+SVM)
helps improve the accuracies of classification as compared with
the other two classification schemes, i.e. Err and SVM. For exam-
ple, for the algorithm DPL+SVM, the fusion classification scheme
obtains better results on AR, Caltech101, and Scene15 than the
individual classification schemes Err and SVM. Similarly, for SVM-
DDPL, the fusion classification scheme performs better on all the
databases than the individual classification schemes Err and SVM.
On all the datasets, the SVM-DDPL achieves the best performance
when using the fusion classification scheme.

4.6. Discrimination of the proposed model

The goal of classification is to classify samples into their cor-
rect categories, and discrimination is the key point to achieving
this goal. In particular, discrimination refers to the ability to
improve intraclass similarities and interclass differences by map-
ping the original samples or features to other spaces. In the
proposed algorithm, discrimination of both dictionary pairs and
representation coefficients is exploited. In the training process,
a structured dictionary pair is learned so that a sample can
be represented more accurately by the sub-dictionary pair cor-
responding to its class, which improves the discrimination of
dictionary pairs. The discrimination of representation coefficients
is promoted via the SVM-based regularizer where hyperplanes
are trained in an embedding way to separate the coefficients
corresponding to different classes. In the training process, the
learned dictionary pair and representation coefficients are both
utilized to classify samples by fusing reconstruction error based
on sub-dictionary pairs and SVM responses in the classification
scheme.

As the final purpose of promoting discrimination is to perform
the classification task, discrimination can be evaluated in terms
of classification accuracies. The comparison of the proposed al-
gorithm and other baselines in Section 4.4 can demonstrate the
superiority of the proposed algorithm in terms of discrimination.
In addition, the discrimination can be evaluated by observing
the intraclass similarities and interclass differences directly. For
the proposed algorithm, representation error and SVM responses
can reflect the discrimination of the learned dictionary pair and
representation coefficients, respectively. Taking Scene15 and Cal-
teh101 as examples, Figs. 10–11 illustrate the representation
error, SVM responses, and the fusion of them for testing samples.
It can be seen that all matrices are block-diagonal. The blocks of
the representation error matrices show the representation error
of the samples using the sub-dictionary pair of the associated
class tends to be smaller than the representation error obtained
by sub-dictionary pairs of other classes, which illustrates the
discrimination of the learned dictionary pair. The blocks in SVM
response matrices can illustrate the discrimination of the rep-
resentation coefficients. By comparing subfigures (c) with the
associated subfigures (a) and (b), it can be observed that the
blocks tend to be clearer in subfigures (c) for both databases,
which demonstrates that the fusion of representation error and
SVM response can improve the overall discrimination capability.

4.7. Comparison with deep learning methods

In particular, we further compare the proposed method with
some well-known convolutional neural networks, namely,
AlexNet (Krizhevsky et al., 2012), GoogLeNet (Szegedy et al.,

2015), VGGNet (Simonyan & Zisserman, 2015), ResNet-18 (He
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Fig. 8. Recognition results of different algorithms with varying numbers of labeled samples in each class.
Fig. 9. Recognition rates (%) obtained by DPL+SVM and SVM-DDPL using different classification schemes.
et al., 2016) and PCANet (Chan et al., 2015). For VGGNet, the
architecture with 16 layers is used, and for PCANet, the two-
stage version is used. For the deep neural networks including
AlexNet, GooLeNet, VGGNet, and ResNet-18, both the network
models with random initialization and the models pre-trained on
ImageNet database (Deng et al., 2009) are tested. The numbers
of training and testing samples are the same as those used
in the proposed SVM-DDPL algorithm. Experimental results are
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summarized in Table 7, where the results in parentheses are
obtained with randomly initialized network models.

From the results, it can be seen that deep neural networks,
such as AlexNet, GoogLeNet, VGGNet, and ResNet-18 do not per-
form well if they are not pre-trained on the large-scale database.
Using pre-trained models can improve the results of deep learn-
ing methods significantly. For the Caltech101 database, deep
learning methods with pre-trained models achieve better results.
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l

Fig. 10. Discrimination for Caltech101.
Fig. 11. Discrimination for Scene15.
Fig. 12. Training time and testing time of SVM-DDPL and deep learning methods.
Table 7
The recognition rates (%) as compared with deep learning methods.
Algorithms AR Extended YaleB Caltech101 Scene15

AlexNet (Krizhevsky et al., 2012) 85.3 (81.1) 61.7 (57.1) 79.6 (49.1) 81.2 (60.3)
GoogLeNet (Szegedy et al., 2015) 89.3 (85.9) 78.2 (69.2) 85.5 (53.7) 87.7 (67.5)
VGGNet (Simonyan & Zisserman, 2015) 85.1 (79.1) 86.9 (56.2) 87.8 (39.5) 88.8 (52.1)
ResNet-18 (He et al., 2016) 98.6 (86.2) 85.4 (72.3) 89.4 (58.6) 92.3 (74.9)
PCANet (Chan et al., 2015) 95.6 98.2 68.5 87.2

SVM-DDPL 98.7 97.6 77.5 97.7
This is because the contents of this database are similar to Ima-
geNet which is used to pre-train the models. For face databases
AR and Extended YaleB, and scene database Scene15, as their
contents are quite different from the contents of ImageNet, the
improvement of the pre-trained models is limited. For these
three databases, the proposed algorithm obtains better results
than deep networks including AlexNet, GoogLeNet, VGGNet, and
ResNet-18. The shallow network PCANet achieves the highest
accuracy on Extended YaleB, but its performance on the other
databases is not as good as the proposed algorithm. In sum-
mary, as compared with deep learning approaches, the proposed
method does not rely on a large-scale training set and can obtain
promising results for datasets of small sizes without pre-training.

The training time and testing time of SVM-DDPL and deep
earning methods are shown in Fig. 12. It can be seen that deep
509
learning methods need more time to reach the current accuracies
than the proposed algorithm, in terms of both training time and
testing time.

5. Conclusions

We have proposed a novel discriminative dictionary pair learn-
ing model by introducing a differentiable SVM term to the orig-
inal DPL model. The additional discriminative term is associated
with coding coefficients and can further improve the discrim-
ination of coding coefficients in the process of dictionary pair
learning. Based on this model, a pair of structured synthesis–
analysis dictionary together with a set of SVM classifiers can
be learned jointly. The corresponding optimization problem is
addressed by updating optimal variables alternatively. In the
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lassification stage, the reconstruction residual and the support
ector machine classifier are used collaboratively to determine
he categories of samples. Simulations on the AR, Extended YaleB,
altech101, Scene15, and Isolet databases were performed and
he results have demonstrated the superiority of the proposed
PL-SVM as compared with other state-of-the-art DDL methods.
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ppendix

In this appendix, the derivation of Eq. (3.5) is detailed.
Based on Eqs. (3.3) and (3.4), when 1 − yki (u

T
kai + bk) > 0,

the update of ai corresponds to solving the following optimization
problem

argmin
ai

∥xi − Dai∥2
2 + λ1∥Pxi − ai∥2

2

+ λ3C
K∑

k=1

∥1 − yki (u
T
kai + bk)∥2

2.
(A.1)

The closed-form solution to this problem can be obtained by
taking the derivative of (A.1) with respect to ai and setting it to
zero. In particular, the gradient of (A.1) with respect ai can be
written as

∇ai = − 2DT (xi − Dai) − 2λ1(Pxi − ai)

+ λ3C
K∑

k=1

[−2yki uk(1 − yki u
T
kai − yki bk)]

= − 2DTxi + 2DTDai − 2λ1Pxi + 2λ1ai − 2λ3C
K∑

k=1

yki uk

+ 2λ3C
K∑

k=1

ukuT
kai + 2λ3C

K∑
k=1

ukbk

=2

[
DTD + λ1I + λ3C

K∑
k=1

(yki )
2ukuT

k

]
ai

− 2

[
Dxi + λ1Pxi + λ3C

K∑
k=1

yki uk − λ3C
K∑

k=1

ukbk

]
.

(A.2)

Let ∇ai = 0, and the closed-form solution can be obtained, that
is

ai =

[
DTD + λ1I + λ3C

K∑
k=1

(yki )
2ukuT

k

]−1

∗

[
Dxi + λ1Pxi + λ3C

K∑
yki uk − λ3C

K∑
ukbk

]
.

(A.3)
k=1 k=1

510
As yki = 1 or −1, the solution can be simplified as

ai =

(
DTD + λ1I + λ3C

K∑
k=1

ukuT
k

)−1

∗

(
Dxi + λ1Pxi + λ3C

K∑
k=1

yki uk − λ3C
K∑

k=1

ukbk

)
.

(A.4)
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