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Abstract
We consider the robust principal component analysis (RPCA) problem where the
observed data are decomposed to a low-rank component and a sparse component.
Conventionally, the matrix rank in RPCA is often approximated using a nuclear norm.
Recently, RPCA has been formulated using the nonconvex �γ -norm, which provides
a closer approximation to the matrix rank than the traditional nuclear norm. However,
the low-rank component generally has sparse property, especially in the transform
domain. In this paper, a sparsity-based regularization term modeled with �1-norm is
introduced to the formulation. An iterative optimization algorithm is developed to
solve the obtained optimization problem. Experiments using synthetic and real data
are utilized to validate the performance of the proposed method.

Keywords Robust principal component analysis · �γ -norm · Sparse prior · Low-rank

1 Introduction

Many applications in signal processing and machine learning involve data of high
dimensions, and various dimensionality reduction methods have been developed
by projecting the original high-dimensional spaces to low-dimensional spaces [16].
Among these methods, robust principal component analysis (RPCA) is one of the
most efficient algorithms, and it reduces the dimensionality of the data based on the
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low-rank structure of the data and the sparsity of the outliers. RPCA is extended from
principal component analysis (PCA) [15] by enhancing the robustness to outliers and
is also known as low-rank and sparse decomposition (LRSD) [7,31]. RPCA has been
applied to various problems , such as pattern recognition [28], image processing [23],
video surveillance [5,7], background subtraction [8], and image alignment [24].

Assuming the observed data X ∈ R
m×n has an underlying low-rank structure,

RPCA aims to decompose the data matrix X to a low-rank component Z ∈ R
m×n and

a sparse component E ∈ R
m×n . Generally, this problem can be formulated as

min
Z ,E

rank(Z) + λ ‖E‖l
s.t. X = Z + E,

(1.1)

where rank(Z) denotes the function that returns the rank of the matrix Z , and ‖E‖l
denotes a regularization term like �0-norm [4], �1-norm [4], or �2,0-norm [21] for
promoting the sparsity of E . The parameter λ is employed to balance the low-rank
and sparse components in X . The optimization problem (1.1) is generally NP-hard as
the rank function is discrete and nonconvex. Thus, the rank function is usually relaxed
as a convex surrogate. In particular, the nuclear norm, which is defined as the sum of all
singular values of a matrix, can be employed as a convex relaxation to address the rank
minimization problem [4,6]. For example, using nuclear norm as the convex surrogate
of the rank of Z and �1-norm to promote the sparsity of E , the RPCA problem can
be reformulated as a convex optimization task [10,29], as both the nuclear norm and
�1-norm in the objective function are convex and the constraint X = Z + E is also
convex [3]. In this case, the RPCA problem can be addressed effectively using convex
optimization techniques [3], e.g., alternating direction augmented Lagrangian method
[10] and proximal gradient method [29].

The low-rank prior involved in RPCA is also widely used in the matrix completion
problem [9]; however, they are actually two different problems. Firstly, the aim of
matrix completion is to recover the original matrix from an incomplete observation,
while RPCA aims to recover both the low-rank component and the sparse compo-
nent from the observed data. Secondly, in low-rank matrix completion, the indices
corresponding to the observed entries of the low-rank matrix are given, while related
information about the low-rank component in RPCA is unknown.

It should be noted that when nuclear norm is used to approximate the matrix rank,
the summation of all singular values is minimized, and thus, the nonzero singular
values make different degrees of contributions to the rank of the matrix. In fact, all
nonzero singular values have the same degree of impact on matrix rank. This indicates
that the matrix rank cannot be well approximated by the nuclear norm [11], and
existing RPCA methods using the nuclear-norm-based relaxation may lead to biased
results. Variations of the nuclear norm have been proposed recently to approximate
the rank operator more accurately and improve the results of RPCA. For example, the
truncated nuclear norm, which is proposed originally formatrix completion [9,11], has
been employed to formulate the rank of amatrix in theRPCAproblem [7] and achieved
better results as compared with the nuclear-norm-based methods [4,6]. Kang et al. in
[16] present a nonconvex �γ -norm that can be used as a tighter approximation to the
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rank of a matrix than the nuclear norm. Although this approximation is nonconvex,
an iterative optimization method has been developed, which is shown theoretically to
converge to a stationary point.

The existing algorithms for RPCA consider the low-rank property of data in
high-dimensional space to model its underlying low-dimensional structure. Note
that data in real applications are generally sparse [13,14,30], which also reflects the
low-dimensional characteristic of the data. The employment of the sparse prior has
been demonstrated to be effective in rank minimization-related problems, including
low-rank matrix completion [9] and RPCA [31]. In this paper, we propose a novel
formulation for RPCA by introducing an additional sparsity-based regularizer. In par-
ticular, the sparsity-based regularizer promotes the underlying sparse structure of the
low-rank component, and �γ -norm is utilized to model the rank of the matrix to pro-
vide a more accurate approximation to matrix rank than the traditional nuclear norm.
In addition, we develop an iterative optimization algorithm to solve the nonconvex
optimization problem resulting from the proposed formulation.

The rest of this paper is organized as follows: Section 2 introduces the related
work. Section 3 provides the details of the proposed formulation and the corresponding
optimization algorithm. Experimental results are presented in Sect. 4, and conclusions
are drawn in Sect. 5.

2 RelatedWork

In general, a typical formulation of the RPCA problem uses the nuclear norm as the
convex relaxation of matrix rank, i.e.,

min
Z ,E

‖Z‖∗ + λ ‖E‖1
s.t. X = Z + E .

(2.1)

Here ‖Z‖∗ = ∑
i σi (Z) denotes the nuclear norm of Z where σi (Z) is the i th

largest singular value of Z , and ‖E‖1 = ∑
i j |Ei j | represents the �1-norm of E .

Many existing RPCA algorithms are based on this formulation, and various optimiza-
tion approaches have been developed to solve this problem. Based on a fast iterative
shrinkage-thresholding (FIST) algorithm [1], an accelerated proximal gradient (APG)
algorithm is proposed in [26]. The inexact augmented Lagrange multipliers (IALM)
method proposed in [20] achieves a trade-off on time and precision. In [32] and [25],
the alternating direction method (ADM) is also utilized to solve the RPCA problem
via updating the variables alternately.

Since the nuclear-norm-based formulationmay lead to biased solutions as explained
in Sect. 1, variations of the nuclear norm have been proposed or employed to formu-
late the RPCA problem. In [7], Cao et al. apply the truncated nuclear norm (TNN)
to the RPCA problem and propose a novel method named as low-rank and sparse
decomposition using truncated nuclear norm (LRSD-TNN), whose formulation is as
follows
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min
Z ,E

‖Z‖r + λ ‖E‖1
s.t. X = Z + E,

(2.2)

where ‖Z‖r denotes the truncated nuclear norm of the matrix Z , defined as the
summation of the smallest min(m, n)−r singular values of Z . This truncated nuclear-
norm-based method can obtain better results than the nuclear-norm-based methods.

Based on the LRSD-TNN algorithm [7] and our previous work on low-rank matrix
completion [9], we have also introduced the sparse assumption to the formulation of
LRSD-TNN, i.e., Eq. (2.2), and proposed an RPCA algorithm named as low-rank and
sparse decomposition using truncated nuclear norm and sparse regularizer (LRSD-
TNNSR) [31]. In particular, the low-rank component Z is assumed to be sparse in a
transform domain, and the formulation of LRSD-TNNSR is

min
Z ,E

‖Z‖r + λ ‖E‖1 + γ ‖G(Z)‖1
s.t. X = Z + E,

(2.3)

where the truncated nuclear norm is used to model the rank of the matrix, G(·) denotes
the transform operator, and ‖G(Z)‖1 promotes the sparsity of Z in the transform
domain. This algorithm provides better performance than LRSD-TNN in many cases.

As mentioned in Sect. 1, the truncated nuclear norm approximates the rank of a
matrix more accurately than the traditional nuclear norm by only considering the sum-
mation of a few smallest singular values and suppressing the influence of the remaining
larger singular values on the matrix rank. However, as the truncated nuclear norm is
also based on the summation of singular values, larger singular values considered in
the summation will still make higher degrees of contributions to the rank of the matrix.
Thus, the truncated nuclear-norm-based methods [7,9] cannot completely overcome
the shortcomings of nuclear-norm-based methods [4,6].

More recently, Kang et al. in [16] propose a nonconvex function, i.e., γ -norm, as
a surrogate of the rank function and present a new nonconvex RPCA (noncvxRPCA)
method. In this method, the RPCA problem is formulated as

min
Z ,E

‖Z‖γ + λ ‖E‖l
s.t. X = Z + E,

(2.4)

where ‖Z‖γ denotes the γ -norm of Z and it is defined as

‖Z‖γ =
∑

i

(1 + γ )σi (Z)

γ + σi (Z)
, γ > 0. (2.5)

It is clear that lim
γ→0

‖Z‖γ = rank(Z) and lim
γ→∞ ‖Z‖γ = ‖Z‖∗. With a small value of

γ , the γ -norm approximates the rank function more closely than the nuclear norm.
In fact, γ -norm can be seen as a scaled version of the traditional nuclear norm. The
employment of the factor γ in its definition helps balance the contributions of different
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singular values. The noncvxRPCA approach is demonstrated to outperform state-of-
the-art RPCA algorithms in recovery accuracy [16].

3 ProposedMethod

3.1 Problem Formulation

As inherent sparse structures have been revealed in real data under many circum-
stances, we introduce a sparse prior to the low-rank component of RPCA. In particular,
the low-rank component Z is assumed to be sparse in a transform domain, and the
proposed formulation for the RPCA problem is as follows:

min
Z ,E

‖Z‖γ + λ ‖E‖1 + β‖W‖1
s.t. X = Z + E

W = G(Z),

(3.1)

where G denotes the forward transform and W = G(Z) is the transformed data. The
sparsities ofW and E are both promoted using the �1-norm, and the γ -norm is utilized
as an approximation to the rank of Z .

It should be noted that this proposed formulation is different from the formulation
of the LRSD-TNNSR algorithm [9]. In particular, the proposed formulation (3.1)
employs the nonconvex γ -norm as the approximation of matrix rank, while in LRSD-
TNNSR, the truncated nuclear norm is utilized instead as shown in Eq. (2.3). As the
γ -norm has the potential to balance the contributions of different singular values to
matrix rank better than the truncated nuclear norm, it is used as the surrogate of the
rank function in the proposed formulation.

3.2 OptimizationMethod

The proposed formulation (3.1) is nonconvex, and it is not trivial to obtain the opti-
mal solution. To address this problem, an efficient optimization method based on the
framework of the alternating direction method of multipliers (ADMM) is developed.
By introducing twomultipliers Y and P and the quadratic penalty terms corresponding
to the constraints in (3.1), the augmented Lagrangian function of (3.1) can be obtained,
that is

L (Z , E,W ,Y , P, μ) = ‖Z‖γ + λ‖E‖l + β ‖W‖1
+ 〈Y , Z + E − X〉 + μ

2
‖Z + E − X‖2F

+ 〈P,W − G (Z)〉 + μ

2
‖G (Z) − W‖2F ,

(3.2)

whereμ is the positive penalty parameter, 〈·, ·〉 returns the inner-product of two matri-
ces, and ‖ · ‖F denotes the Frobenius norm of a matrix.
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Based on ADMM, the solution to problem (3.2) can be obtained in an iterative way,
by only updating one variable at a time and keeping the others fixed. Specifically, in
the kth iteration, the variables and the penalty parameter are updated based on the
following steps

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Zk+1 = argmin
Z

L (Z , Ek,Wk,Yk, Pk, μk) ,

Ek+1 = argmin
E

L (Zk+1, E,Wk,Yk, Pk, μk) ,

Wk+1 = argmin
W

L (Zk+1, Ek+1,W ,Yk, Pk, μk) ,

Yk+1 = Yk + μk (Zk+1 − X + Ek+1) ,

Pk+1 = Pk + μk
[
Wk+1 − G(Zk+1)

]
,

μk+1 = ρμk,

(3.3)

where ρ > 1 is a constant. The details for updating the variables Z , E , and W will be
presented in the following subsections.

3.2.1 Update Z

The update of Z involves solving the subproblem as follows:

Zk+1 = argmin
Z

L (Z , Ek,Wk,Yk, Pk, μk)

= argmin
Z

‖Z‖γ + 〈Yk, Z + Ek − X〉

+ μ

2
‖Z + Ek − X‖2F + 〈Pk,Wk − G (Z)〉

+ μ

2
‖G (Z) − Wk‖2F

= argmin
Z

‖Z‖γ + μk

2

∥
∥
∥
∥Z −

(

X − Ek − 1

μk
Yk

)∥
∥
∥
∥

2

F

+ μk

2

∥
∥
∥
∥Wk − G (Z) + 1

μk
Pk

∥
∥
∥
∥

2

F
,

(3.4)

whereG(·) is assumed to be a unitary transformand its corresponding inverse transform
is denoted asS(·). According to Parseval’s theorem [22], a unitary transformH(·) (e.g.,
discrete Fourier transform, discrete cosine transform, and Hadamard transform) can
conserve the energy of the original matrix u, that is ‖H(u)‖2F = ‖u‖2F . Therefore,
applying the inverse transform S to

∥
∥
∥Wk − G (Z) + 1

μk
Pk

∥
∥
∥
2

F
, (3.4) can be recast as

Zk+1 = argmin
Z

‖Z‖γ + μk

2

∥
∥
∥
∥Z −

(

X − Ek − 1

μk
Yk

)∥
∥
∥
∥

2

F

+ μk

2

∥
∥
∥
∥Z − S

(

Wk + 1

μk
Pk

)∥
∥
∥
∥

2

F
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= argmin
Z

‖Z‖γ + μk

∥
∥
∥
∥Z − 1

2

[(

X − Ek − 1

μk
Yk

)

+S
(

Wk + 1

μk
Pk

)]∥
∥
∥
∥

2

F
. (3.5)

To address the γ -norm minimization problem (3.5), the following theorem can be
used [16].

Theorem 1 Let A = Udiag(σA)V T denote the SVD of A ∈ R
m×n, and F(Z) = f ◦σZ

denote a unitarily invariant function, where σA and σZ denote the singular values of
A and Z, respectively. The optimal solution to the problem

argmin
X

F(X) + μ

2
‖X − A‖2F (3.6)

is X∗ = Udiag(σ ∗)V , where σ ∗ = prox f ,μ(σA) is the proximity operator of f with
penalty μ, defined as

prox f ,μ(σA) := argmin
σ�0

f (σ ) + μ

2
‖σ − σA‖22 . (3.7)

Based on the theorem above, the optimal solution to (3.5) is

Zk+1 = Udiag(σ ∗)V , (3.8)

where σ ∗, the solution to (3.7), can be approximated by linearizing the concave term
f (σ ) iteratively. Specifically, in the (l + 1)th inner iteration, σ can be updated as
follows:

σl+1 = argmin
σ�0

〈∇σ f (σ l), σ 〉 + μ

2
‖σ − σA‖22

= max

{

σA − ∇σ f (σ l)

μ
, 0

}

,

(3.9)

where

A = 1

2

[(
X − Ek − 1

μk
Yk

)
+ S

(

Wk + 1

μk
Pk

)]

, (3.10)

∇σ f (σ l) is the gradient of f at σ l , and μ = 2μk .
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3.2.2 Update E

The variable E is updated by solving the problem as follows:

Ek+1 = argmin
E

L (Zk+1, E,Wk,Yk, Pk, μk)

= argmin
Z

λ‖E‖1 + 〈Yk, Zk+1 + E − X〉 + μ

2
‖Zk+1 + E − X‖2F

= argmin
E

λ‖E‖1 + μk

2

∥
∥
∥
∥E −

(

X − Zk+1 − 1

μk
Yk

)∥
∥
∥
∥

2

F
.

(3.11)

The solution to this problem is [2]

Ek+1 = ST λ
μk

[

X − Zk+1 − 1

μk
Yk

]

, (3.12)

and here ST λ
μk

denotes the element-wise soft-thresholding operator which is defined
as

STτ (x) = sgn(x) · max{|x | − τ, 0}, (3.13)

with the function sgn(·) returning the sign of the given operand.

3.2.3 UpdateW

Based on the steps given in (3.3), W is updated by addressing the following problem

Wk+1 = argmin
W

L (Zk+1, Ek+1,W ,Yk, Pk, μk)

= argmin
Z

β ‖W‖1 + 〈Pk,Wk − G (Zk+1)〉 + μ

2
‖G (Zk+1) − Wk‖2F

= argmin
W

β‖W‖1 + μk

2

∥
∥
∥
∥W − G (Zk+1) + 1

μk
Pk

∥
∥
∥
∥

2

F
.

(3.14)

Similar to (3.11), the above problem has the closed-form solution as follows [2]

Wk+1 = ST β
μk

[

G (Zk+1) − 1

μk
Pk

]

. (3.15)

3.2.4 Summary of the Optimization Method

The complete procedure to solve the proposed model (3.1) is summarized in Algo-
rithm 1.
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Algorithm 1 Optimization method to address the proposed model (3.1)
Input: X , λ, β, γ, μ1, ρ, ε.

Initialization: Initialize the iteration number k = 1, Z1 = X and E1, Y1,W1, P1 as zero matrices.

Repeat

1. Update Z :
Obtain σ∗ iteratively based on Eq. (3.9), and update Z using Zk+1 = Udiag(σ∗)V .

2. Update E :

Ek+1 = ST λ
μk

(
X − Zk+1 − Yk

μk

)
.

3. Update W :

Wk+1 = ST β
μk

[
G (

Zk+1
) − Pk

μk

]
.

4. Update Y : Yk+1 = Yk + μk (Zk+1 − X + Ek+1).

5. Update P: Pk + μk [Wk+1 − G (
Zk+1

)].
6. Update μ: μk+1 = ρμk .

Until ‖Zk+1 − Zk‖F ≤ ε, or ‖Ek+1 − Ek‖F ≤ ε

Return Z and E

4 Simulation Results

Experiments with synthetic data and real data are performed to demonstrate the effec-
tiveness of the proposed approach. The applications to real data contain face image
shadow removal, singing voice separation, and video background subtraction. The
proposed algorithm is compared with several state-of-the-art algorithms including
LRSD-TNNSR [31], noncvxRPCA [16], LRSD-TNN [7], and IALM [20].1

4.1 Experiments with Synthetic Data

In this experiment, randomly generated matrices are used to evaluate the performance
of the proposed algorithm. Each synthetic matrix X0 of size m × n is composed of a
low-rank matrix Z0 and a sparse matrix E0, i.e., X0 = Z0 + E0, where the rank of Z0
is r and the sparse ratio of E0 is spr. In particular, the low-rank matrix Z0 is generated
based on equation Z0 = LRT where the matrices L ∈ R

m×r and R ∈ R
n×r are

randomly generated usingGaussian distributionwith zeromean and unit variance. The
nonzero entries of the sparse matrix E0 are independently and uniformly distributed in
the range [−t, t], where t denotes the maximum of the absolute values of all elements
in Z0.

The performances of the algorithms are measured with total reconstruction error
(Totalerr), low-rank reconstruction error (LRerr), and sparse reconstruction error
(Sperr). These measurements are computed as follows:

1 The codes of noncvxRPCA were downloaded from the Web site https://github.com/sckangz/noncvx-
PRCA. As the codes of the LRSD-TNN algorithm are not available, we implemented this algorithm
by ourselves. The codes of IALM were downloaded from http://perception.csl.illinois.edu/matrix-rank/
sample_code.html.

https://github.com/sckangz/noncvx-PRCA
https://github.com/sckangz/noncvx-PRCA
http://perception.csl.illinois.edu/matrix-rank/sample_code.html
http://perception.csl.illinois.edu/matrix-rank/sample_code.html
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Table 1 m = n = 200, rank(Z0) = 5, sparse ratio = 0.01mn

Algorithm Totalerr LRerr Sperr Iteration Time

Proposed 1.63 × 10−7 1.96 × 10−7 9.36 × 10−8 46 0.6516

LRSD-TNNSR 1.96 × 10−10 2.27 × 10−10 3.40 × 10−10 68 0.7329

noncvxRPCA 4.48 × 10−7 5.51 × 10−7 3.24 × 10−7 20 0.2622

LRSD-TNN 1.21 × 10−10 1.50 × 10−10 9.30 × 10−11 38 0.3544

IALM 8.81 × 10−6 2.43 × 10−6 1.83 × 10−5 8 0.7678

Totalerr = ‖X − X0‖F
‖X0‖F , (4.1)

LRerr = ‖Z − Z0‖F
‖Z0‖F , (4.2)

Sperr = ‖E − E0‖F
‖E0‖F , (4.3)

where X0, Z0, and E0 denote the ground-truth matrices in the generated synthetic
data, and X , Z , and E denote the matrices recovered using the algorithms.

In the proposed algorithm, the regularization parameters are set as λ = 0.4 and β =
0.1. The initial penalty parameter of the quadratic penalty terms is set as μ1 = 0.63
empirically, and the coefficient for updating μ is set as ρ = 1.1. The parameters of
noncvxRPCA are empirically set as λ = 0.1, μ1 = 0.9, and ρ = 1.1. The parameter
γ in the γ -norm term in both the proposed algorithm and noncvxRPCA is set as 0.01.
In the LRSD-TNNSR method, the parameters are set as λ = 0.9/

√
max(m, n) and

γ = 0.9/
√
max(m, n). The parameters of the LRSD-TNN and IALM algorithms are

set as the values suggested in the original papers, respectively.
Various parameters related to the synthetic matrices are used for illustrating the

performances of the algorithms in different situations. Specifically, the size of the
matrices is set asm = n ∈ {200, 500}, the rank of the low-rank component Z0 is r = 5
or 10, and the sparse ratio of the sparse component E0 is 0.01mn or 0.05mn. The results
obtained by different algorithms are summarized in Tables 1, 2, 3, and 4. In general,
all algorithms can obtain good results in decomposing the low-rank component and
the sparse component. The LRSD-TNNSR algorithm achieves the best performance
in most cases, except when spr = 0.05mn. The proposed algorithm outperforms
noncvxRPCA and IALM in all cases, which demonstrates the effectiveness of the
proposed method.

4.2 Face Image Shadow Removal

Face images of the same subject under different illumination conditions generally lie
in a low-dimensional subspace, while the outliers resulting from lighting variations
can be assumed to be sparse [4,29]. Therefore, RPCA algorithms can be used to deal
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Table 2 m = n = 500, rank(Z0) = 5, sparse ratio = 0.01mn

Algorithm Totalerr LRerr Sperr Iteration Time

Proposed 1.93 × 10−7 2.34 × 10−7 8.20 × 10−8 44 4.1578

LRSD-TNNSR 9.34 × 10−11 1.11 × 10−10 1.97 × 10−11 69 4.9170

noncvxRPCA 3.49 × 10−7 4.31 × 10−7 1.97 × 10−7 11 1.2281

LRSD-TNN 4.35 × 10−11 4.96 × 10−11 1.56 × 10−11 36 2.2404

IALM 7.35 × 10−6 2.44 × 10−6 1.39 × 10−5 8 1.4911

Table 3 m = n = 200, rank(Z0) = 5, sparse ratio = 0.05mn

Algorithm Totalerr LRerr Sperr Iteration Time

Proposed 1.14 × 10−7 2.23 × 10−7 6.67 × 10−8 52 0.7194

LRSD-TNNSR 1.21 × 10−11 0.89 0.61 215 2.0218

noncvxRPCA 9.27 × 10−7 3.85 × 10−2 2.64 × 10−2 61 1.0188

LRSD-TNN 1.17 × 10−10 1.54 1.06 210 1.6060

IALM 1.93 × 10−6 1.76 × 10−6 2.60 × 10−6 11 0.8309

Table 4 m = n = 200, rank(Z0) = 10, sparse ratio = 0.01mn

Algorithm Totalerr LRerr Sperr Iteration Time

Proposed 8.49 × 10−8 1.09 × 10−7 7.50 × 10−8 53 0.7187

LRSD-TNNSR 3.51 × 10−10 4.11 × 10−10 6.50 × 10−11 65 0.7331

noncvxRPCA 6.80 × 10−7 1.10 × 10−2 1.81 × 10−2 60 1.0462

LRSD-TNN 1.07 × 10−10 1.26 × 10−10 1.80 × 10−10 197 1.6446

IALM 7.03 × 10−6 3.86 × 10−6 1.49 × 10−5 10 0.6963

with the task of face shadow image removal [7,29]. In this subsection, we use this
application of RPCA to evaluate the performances of the algorithms.

Face images from the Extended Yale B dataset [18] are used in our experiments.
This dataset contains face images of 39 subjects, and for each subject there are 64
images with resolution 192× 168 captured with various environmental illuminations.
In the experiments, each sample of a subject is reshaped as a column vector of size
32,256×1, and amatrix of size 32,256×64 corresponding to this subject is constructed
by using each of the samples as one column. This matrix is assumed to be composed
of a low-rank matrix corresponding to the face images without shadows and a sparse
matrix reflecting shadows in the images, andRPCAalgorithms are employed to remove
shadows by recovering the low-rank component from the observed data.

The parameters in the proposed algorithm are set as λ = 10−3, β = 10−4 and
μ1 = 0.3. The parameters in noncvxRPCA method are empirically set as λ = 10−3

and μ1 = 0.5. The parameters ρ and γ in these two algorithms are the same as in
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(a) (b)

Proposed

LRSD-TNNSR

noncvxRPCA

LRSD-TNN

IALM

Fig. 1 Experimental results of shadow removal for face images of subject yaleB01. The subfigures a
and b are two sample images of yaleB01. The subfigures below the samples are the low-rank and the
sparse components recovered from the corresponding samples, using the proposedmethod, LRSD-TNNSR,
noncvxRPCA, LRSD-TNN, and IALM, respectively

experiments with synthetic data. The parameters of LRSD-TNNSR, LRSD-TNN, and
IALM algorithm are set as in the original papers.

Experimental results for subjects yaleB01 and yaleB05 in the Extended Yale B
dataset are shown in Figs. 1 and 2, respectively. We can find that both LRSD-TNN and
IALM can only remove light shadows, as shown in the first samples of yaleB01 and
yaleB05. For strong shadows in face images, as the second samples of the subjects, the
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(a) (b)

Proposed

LRSD-TNNSR

noncvxRPCA

LRSD-TNN

IALM

Fig. 2 Experimental results of shadow removal for face images of subject yaleB05. The subfigures a
and b are two sample images of yaleB05. The subfigures below the samples are the low-rank and the
sparse components recovered from the corresponding samples, using the proposedmethod, LRSD-TNNSR,
noncvxRPCA, LRSD-TNN, and IALM, respectively

proposed algorithm, LRSD-TNNSR and noncvxRPCA outperform LRSD-TNN and
IALMsignificantly. For the subject yaleB05 shown in Fig. 2, the results of the proposed
algorithm are similar to those of the noncvxRPCA and LRSD-TNNSR algorithms. For
the subject yaleB01 in Fig. 1, the proposed algorithm can achieve much better results
than noncvxRPCA. This demonstrates the superiority of the proposed algorithm as
compared with the baselines.
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4.3 SingingVoice Separation

Music accompaniment in a song can be assumed to lie in a low-rank subspace due to
the repetition structure, and singing voices with more variations can be considered to
be sparse. Based on this assumption, RPCA can be used to solve the singing voice
separation problem [12].

In the experiment, MIR-1K2 database is employed as test data. The singing voice
and the music accompaniment are mixed at 5 dB signal-to-noise ratio (SNR). Fol-
lowing the experiments in [12], the spectrogram of the mixture is computed via the
short-time Fourier transform (STFT) with window size being 1024 and hop size being
256, and the RPCAmethods are applied to the obtained spectrogrammatrix to estimate
the singing voice component.

In order to evaluate the separation results of the algorithms, we compute energy
ratios utilizing BSS-EVAL [12,27] in terms of source-to-distortion ratio (SDR),
source-to-interference ratio (SIR), source-to-artifacts ratio (SAR) [17], and the nor-
malized SDR (NSDR), which are defined as:

SDR = 10 log 10
‖Starget‖2

‖einterf + enoise + eartif‖2 , (4.4)

SI R = 10 log 10
‖Starget‖2
‖einterf‖2 , (4.5)

SAR = 10 log 10
‖Starget + einterf + enoise‖2

‖eartif‖2 , (4.6)

NSDR(v̂, v, x) = SDR(v̂, v) − SDR(x, v). (4.7)

Here Starget denotes the energy of the true component of target signal from the sep-
aration results, einterf , enoise, and eartif are the interference, noise, and artifact error
terms, respectively. v̂ and v denote the reconstructed singing voice and the original
clean singing voice, respectively, and x denotes the mixture. In addition, the Totalerr,
which has been used in the experiments with synthetic data, is employed to evaluate
the overall performance of the algorithms.

The parameters in the proposed algorithm are set as λ = 28/
√
max(m, n), β =

0.3, and μ1 = 0.003. The parameters in the LRSD-TNNSR method are set as λ =
0.0095/

√
max(m, n) and γ = 0.003/

√
min(m, n). The parameters in noncvxRPCA

method are set as λ = 1/
√
max(m, n) and μ1 = 0.1. The parameters ρ and γ in

these two algorithms are the same as in the previous experiments. The parameters of
LRSD-TNN and IALM algorithm are set as suggested in the original papers.

Table 5 shows the results of the proposed method, the LRSD-TNNSR, noncvxR-
PCA, LRSD-TNN, and IALM algorithms on singing voice separation. Figure 3 shows
the waveform of the original signing voice and waveforms of singing voices recov-
ered by different algorithms. In terms of SDR, SIR, SAR, and NSDR, the proposed
method outperforms the baseline algorithms, and it also achieves a higher reconstruc-

2 http://perception.i2r.astar.edu.sg/bk_model/bk_index.html.

http://perception.i2r.astar.edu.sg/bk_model/bk_index.html


3100 Circuits, Systems, and Signal Processing (2020) 39:3086–3104

Table 5 Experimental results for singing voice separation

Algorithm SDR SIR SAR NSDR Totalerr

Proposed 8.18 18.32 8.69 10.74 9.10 × 10−9

LRSD-TNNSR 4.14 12.08 5.16 6.70 3.30 × 10−6

noncvxRPCA 3.75 7.73 6.66 6.32 8.46 × 10−8

LRSD-TNN 6.06 14.36 6.91 8.62 2.61 × 10−4

IALM 6.33 12.74 7.67 8.89 2.72 × 10−6
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Fig. 3 Results for singing voice separation. Subfigure a shows the original singing voice, subfigures b–f
present waveforms of the singing voice separated by the proposed method, LRSD-TNNSR, noncvxRPCA,
LRSD-TNN, and IALM, respectively

tion accuracy according to Totalerr. From Fig. 3, it can be seen that the voice waveform
separated by the proposed method is much closer to the original waveform.

4.4 Video Background Subtraction

Video background subtraction is another important application of RPCA algorithms,
as video frames captured by a fixed camera can be regarded as the sum of low-
rank background and sparse foreground [16]. Two scenes escalator and hall from
Perception Test Images Sequences [19] are used as the test data in this experiment. The
video data of scene escalatorwhich consists of 3417 frames of resolution 160×130 are
converted to an observed matrix of size 20,800 × 3417, and the video data of scene
hall containing 3584 frames of resolution 192 × 144 are converted to an observed
matrix of size 27,648 × 3584.
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(a) (b)

Proposed

LRSD-TNNSR

noncvxRPCA

LRSD-TNN

IALM

Fig. 4 Results of background subtraction for scene escalator. The subfigures a and b are two sample frames
of the video. The subfigures below the samples are the low-rank background components and the sparse
foreground components of the corresponding samples, which are decomposed by the proposed method,
LRSD-TNNSR, noncvxRPCA, LRSD-TNN, and IALM, respectively

The parameters of the proposed algorithm are set as λ = 0.2, β = 0.1, and μ1 =
0.39. The parameters of noncvxRPCA are set as λ = 10−3 and μ1 = 0.5. Other
parameters of these two algorithms are the same as the settings of experiments in
the previous subsections. The parameters of LRSD-TNNSR, LRSD-TNN, and IALM
algorithm are set as in the original papers.

The results of video background subtraction using different algorithms are given
in Figs. 4 and 5. It can be observed that all algorithms can decompose the video
frames into two distinct parts. In the results for the scene escalator as shown in
Fig. 4, the background reconstructed by the proposed algorithm has better quality as
compared with those from the baselines which still contain some contents from the
foreground, e.g., people on the escalator. For the results of scenehall, in the background
components obtained by LRSD-TNNSR, noncvxRPCA andLRSD-TNN for the frame
(a), as shown in Fig. 5, there is a person with a suitcase near the reception desk, which
does not exist in the original sample frame to be decomposed. This probably results
from the influence of other frames, e.g., sample frame (b), in the video. The results
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(a) (b)

Proposed

LRSD-TNNSR

noncvxRPCA

LRSD-TNN

IALM

Fig. 5 Results of background subtraction for scene hall. The subfigures a and b are two sample frames
of the video. The subfigures below the samples are the low-rank background components and the sparse
foreground components of the corresponding samples, which are decomposed by the proposed method,
LRSD-TNNSR, noncvxRPCA, LRSD-TNN, and IALM, respectively

obtained by IALM for the frame (a) of hall also have been affected by other frames,
and there contain some foreground in the background component extracted from the
frame (b). The proposed algorithm does not introduce any extra contents that do not
exist in the original frame and achieves the best performance in general.

5 Conclusion

We have proposed a novel formulation for the RPCA problem and the corresponding
optimization method. By exploiting the sparse property of the low-rank component, a
sparse regularizer represented as the form of �1-norm is introduced to the formulation.
Simultaneously, �γ -norm is applied to approximate to the rank function. To address
the proposed optimization problem, we have developed an optimization algorithm
by introducing dummy variables and updating variables alternatively. Experimen-
tal results on synthetic and real applications including face image shadow removal,
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singing voice separation, and video background subtraction have demonstrated the
superiority of the proposed method as compared with several baseline RPCA meth-
ods.
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