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A B S T R A C T

Matrix completion is a challenging problem with a range of real applications. Many existing methods are based on
low-rank prior of the underlying matrix. However, this prior may not be sufficient to recover the original matrix
from its incomplete observations. In this paper, we propose a novel matrix completion algorithm by employing
the low-rank prior and a sparse prior simultaneously. Specifically, the matrix completion task is formulated as a
rank minimization problem with a sparse regularizer. The low-rank property is modeled by the truncated nuclear
norm to approximate the rank of the matrix, and the sparse regularizer is formulated as an 𝓁1-norm term based on
a given transform operator. To address the raised optimization problem, a method alternating between two steps
is developed, and the problem involved in the second step is converted to several subproblems with closed-form
solutions. Experimental results show the effectiveness of the proposed algorithm and its better performance as
compared with the state-of-the-art matrix completion algorithms.

1. Introduction

Matrix completion arising widely in many fields has attracted a great
deal of attention in recent years. Many problems in signal processing,
computer vision, and machine learning can be formulated as matrix
completion, for instance, image inpainting [1,2], video denoising [3],
classification [4,5], recommender systems [6,7], and so on. Given a
matrix with some of its entries missing, the goal of matrix completion
is to recover the missing entries so that the reconstructed matrix
approximates the original complete matrix. Obviously, this is inherently
an ill-posed problem as there are infinite possible completions and a
unique optimal solution cannot be determined. Prior information related
to the complete matrix data needs to be exploited to make this problem
well-defined.

In many real applications, the underlying matrix has low rank or
approximately low rank property. For instance, natural image data has
the low rank structure [8]. As a result, the low rank assumption of the
expected complete matrix is commonly used in matrix completion [8–
11]. Given a partially observed matrix 𝑀 ∈ R𝑚×𝑛, the general matrix
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completion problem can be formulated as a constrained rank minimiza-
tion problem, that is

min
𝑋

𝑟𝑎𝑛𝑘(𝑋)

𝑠.𝑡. 𝑋𝑖𝑗 = 𝑀𝑖𝑗 , (𝑖, 𝑗) ∈ 𝛺
(1)

where 𝑋 ∈ R𝑚×𝑛, 𝑟𝑎𝑛𝑘(⋅) denotes the rank of its operand, and 𝛺 ⊂
{1,… , 𝑚} × {1,… , 𝑛} is the set of indices corresponding to the observed
entries in 𝑀 .

However, the above problem is NP-hard in general due to the non-
convex and discontinuous nature of the rank function. It has been proven
theoretically that, under some general conditions, low rank matrices can
be recovered exactly from most sets of sampled entries by minimizing
the nuclear norm of the matrix [6]. Therefore, most existing methods
for matrix completion use the nuclear norm, i.e., the sum of singular
values of a matrix, as a convex surrogate of the rank function. Typical
examples are singular value thresholding (SVT) [11], robust princi-
pal components analysis [12,13], and nuclear norm regularized least
squares [14]. Unfortunately, these nuclear norm based methods may
lead to suboptimal results, since the nuclear norm may not approximate
the rank function well in practice. In particular, all of the nonzero
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singular values have equal contributions in the rank function while
they are treated differently in the nuclear norm when added together
and minimized simultaneously. Recently, the truncated nuclear norm
regularization (TNNR) method [15,8] was proposed by only minimizing
the sum of the min(𝑚, 𝑛)− 𝑟 minimum singular values, i.e., the truncated
nuclear norm, rather than the summation of all singular values as in
the nuclear norm based methods. A two-step optimization scheme was
proposed to address the truncated nuclear norm minimization problem.
The TNNR method outperforms the nuclear norm based methods as it
gives better approximation of the rank function.

Although these low-rank based approaches have obtained good
results, additional information should be considered for more accurate
reconstructions. A promising choice is to exploit the sparse property
of the complete matrix data in a certain domain, such as transform
domains where many signals have inherently sparse structures [16,17].
The sparse low-rank texture inpainting (SLRTI) method proposed in [18]
uses sparse structure obtained in transform domain to achieve better
results for matrix completion. However, the sparse prior employed in
this method is modeled using explicit bases in the form of matrix, which
requires the transform to be separable. The SLRTI method employs a
linearized approximation of the original objective function and thus only
obtains an approximate solution. In addition, the nuclear norm is used in
SLRTI to approximate the rank function, rather than the more accurate
truncated nuclear norm.

This paper focuses on the matrix completion problem and proposes a
novel method which simultaneously considers the low-rank and sparse
priors. In particular, the truncated nuclear norm is used as the surrogate
of the rank function, leading to a better approximation. The sparse
prior is formulated as an 𝓁1-norm regularizer in a more general way,
as compared with the SLRTI method. Instead of using explicit bases
to sparsify the underlying matrix, the sparse regularizer used in the
proposed method is formulated in a more general way by applying the
transform operator as an implicit function. As the proposed formulation
cannot be addressed by traditional optimization methods directly, a two-
step optimization method is proposed, which alternates between the
singular value decomposition of the estimated matrix and the update
of the matrix by solving a constrained optimization problem. To solve
the problem involved in the second step, a variable splitting technique
is used and a method following the alternating direction method of
multipliers (ADMM) framework [19] is developed.

The remainder of the paper is organized as follows. In the next
section, a brief review of the related work is provided. Our proposed
method is presented in Section 3. Section 4 provides experimental
results. Conclusions are drawn in Section 5.

2. Related work

As mentioned in the previous section, the matrix completion problem
is usually addressed by considering the low-rank prior and minimizing
the rank of the underlying matrix. Since the rank minimization problem
(1) cannot be solved directly, the rank function in the objective function
is relaxed to other forms that can be addressed more easily. The most
common way is to use the nuclear norm to approximate the rank
function [20,11], and thus the matrix completion problem (1) can be
recast as

min
𝑋

‖𝑋‖∗

𝑠.𝑡. 𝑃𝛺(𝑋) = 𝑃𝛺(𝑀)
(2)

where ‖𝑋‖∗ ∶=
∑𝑚𝑖𝑛(𝑚,𝑛)

𝑖=1 𝜎𝑖(𝑋) is the nuclear norm of the matrix 𝑋
and 𝜎𝑖 is the 𝑖th largest singular value of 𝑋. 𝑃𝛺 is the orthogonal
projection operator onto the span of matrices vanishing outside of 𝛺.
This formulation is first used for matrix completion in [20] where the
nuclear norm is proved to be the convex hull of the rank function.
The optimization problem (2) can be reformulated as a semi-definite
programming (SDP) problem which can be addressed by an interior-
point method. However, the usage of this method is limited for large

scale matrices, as the SDP problem cannot be solved efficiently for
matrices of very high dimensions.

To deal with the nuclear norm minimization problem more effi-
ciently, especially for matrices with high dimensions, the SVT method
was proposed in [11]. This method minimizes the approximation of the
nuclear norm, that is

min
𝑋

‖𝑋‖∗ + 𝜏 ‖𝑋‖

2
𝐹

𝑠.𝑡. 𝑃𝛺(𝑋) = 𝑃𝛺(𝑀)
(3)

with the parameter 𝜏 > 0. The above optimization problem can be solved
iteratively using a singular value shrinkage operator [11].

Different from the nuclear norm based approaches, the TNNR
method [8] minimizes the truncated nuclear norm to get a better
approximation of the rank function, i.e.,

min
𝑋

‖𝑋‖𝑟

𝑠.𝑡. 𝑃𝛺(𝑋) = 𝑃𝛺(𝑀)
(4)

where ‖𝑋‖𝑟 ∶=
∑𝑚𝑖𝑛(𝑚,𝑛)

𝑖=𝑟+1 𝜎𝑖(𝑋) denotes the truncated nuclear norm of
𝑋. The TNNR method solves this problem using a two-step iterative
scheme.

As the low-rank prior may not be sufficient to recover the original
matrix accurately, the SLRTI method [18] introduces a sparse prior
into the matrix completion task. Specifically, the underlying complete
matrix is assumed to have sparse representation using bases 𝐵1 and
𝐵2, i.e., 𝑋 = 𝐵1𝑊𝐵2 with 𝑊 being a sparse matrix. Incorporating this
sparse prior, the SLRTI method aims to solve the following optimization
problem

min
𝑋,𝑊

𝜆‖𝑊 ‖1 + ‖𝑋‖∗

𝑠.𝑡. 𝑃𝛺(𝑋) = 𝑃𝛺(𝑀)
𝑋 = 𝐵1𝑊𝐵𝑇

2

(5)

where ‖𝑊 ‖1 =
∑

𝑖𝑗 |𝑊𝑖𝑗 | denotes the 𝓁1-norm of 𝑊 . It is shown in [18]
that the introduction of the sparse prior can improve the accuracy
of recovery. Notice that, in the formulation of SLRTI, in order to
incorporate the sparse prior, the original matrix is represented in the
specific form 𝑋 = 𝐵1𝑊𝐵2 using two bases 𝐵1, 𝐵2. However, this is not
a general way to model the sparse property of a matrix, as it needs
the transform operator to be separable so that 𝑋 can be written in
the form of matrix multiplication. In addition, SLRTI uses a linearized
approximation of the objective function to address the optimization
problem, which degrades the accuracy of the solution inevitably.

Motivated by the truncated nuclear norm introduced in the TNNR
method [3] and the sparse prior used in SLRTI [18], we propose a novel
matrix completion method by simultaneously considering the truncated
nuclear norm and a sparse prior that is more general than the one used
in SLRTI.

3. Proposed method

In this section, the formulation of the proposed method is presented
first, and then the corresponding optimization framework is introduced
in detail.

3.1. Problem formulation

In the formulation of our proposed method, the low-rank and sparse
priors are both considered to restrict the ill-posed matrix completion
problem. Since the truncated nuclear norm is able to provide a better
approximation to the low rank function than the nuclear norm [8,3], it
is used to model the low-rank prior. For the sparse prior, a more general
model, rather than the specific sparse formulation used in SLRTI [18],
is employed. In particular, we assume the original matrix 𝑋 is sparse
in a transform domain. Let  (⋅) denote the forward transform operator,
and the transformed matrix 𝑊 =  (𝑋) is assumed to be sparse. This
formulation does not require the transform operator to be separable as
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in SLRTI, which improves the flexibility of the selection of potential
transforms. Specifically, we formulate the matrix completion problem
as follows
min
𝑋

‖𝑋‖𝑟 + 𝜆 ‖𝑊 ‖0

𝑠.𝑡. 𝑃𝛺(𝑋) = 𝑃𝛺(𝑀)

𝑊 =  (𝑋) ,

(6)

where 𝜆 > 0, ‖𝑊 ‖0 denotes the 𝓁0-norm of 𝑊 and it returns the number
of nonzero entries in 𝑊 . As this formulation uses the Truncated Nuclear
Norm and a Sparse Regularizer, the proposed method is named as TNN-
SR.

Since the truncated nuclear norm term ‖𝑋‖𝑟 and the 𝓁0-norm term
‖𝑊 ‖0 are not convex, it is challenging to solve (6). To address this issue,
the two non-convex terms in the objective function of (6) are converted
to other forms. In particular, the 𝓁0-norm can be relaxed as the 𝓁1-norm
which is convex [21]. The truncated nuclear norm term can be dealt
based on the following theorem which has been proven in [8].

Theorem 1. Let 𝑋 ∈ R𝑚×𝑛 be any given matrix and 𝑟 be any non-negative
integer with 𝑟 ≤ min(𝑚, 𝑛). For any matrices 𝐴 ∈ R𝑟×𝑚, 𝐵 ∈ R𝑟×𝑛 satisfying
𝐴𝐴𝑇 = 𝐼𝑟×𝑟 and 𝐵𝐵𝑇 = 𝐼𝑟×𝑟, we have

Tr(𝐴𝑋𝐵𝑇 ) ≤
𝑟
∑

𝑖=1
𝜎𝑖(𝑋),

where 𝐼𝑟×𝑟 denotes the identity matrix of size 𝑟 × 𝑟.

Suppose the singular value decomposition (SVD) of 𝑋 is 𝑋 = 𝑈𝛴𝑉 𝑇

with 𝑈 = (𝑢1, 𝑢2,… , 𝑢𝑚) ∈ R𝑚×𝑚, 𝑉 = (𝑣1, 𝑣2,… , 𝑣𝑛) ∈ R𝑛×𝑛, and
𝛴 ∈ R𝑚×𝑛. Let

𝐴 = (𝑢1, 𝑢2,… , 𝑢𝑟)𝑇 , 𝐵 = (𝑣1, 𝑣2,… , 𝑣𝑟)𝑇 , (7)

we have
Tr(𝐴𝑋𝐵𝑇 )

= Tr((𝑢1, 𝑢2,… , 𝑢𝑟)𝑇𝑈𝛴𝑉 (𝑣1, 𝑣2,… , 𝑣𝑟))

= Tr(diag(𝜎1(𝑋), 𝜎2(𝑋),… , 𝜎𝑟(𝑋)))

=
𝑟
∑

𝑖=1
𝜎𝑖(𝑋)

(8)

As 𝐴𝐴𝑇 = 𝐼𝑟×𝑟 and 𝐵𝐵𝑇 = 𝐼𝑟×𝑟, according to Theorem 1 and Eq. (8),
we have

max
𝐴𝐴𝑇 =𝐼,𝐵𝐵𝑇 =𝐼

Tr(𝐴𝑋𝐵𝑇 ) =
𝑟
∑

𝑖=1
𝜎𝑖(𝑋). (9)

Therefore, the truncated nuclear norm term ‖𝑋‖𝑟 can be rewritten
as

‖𝑋‖𝑟 =
min(𝑚,𝑛)
∑

𝑖=𝑟+1
𝜎𝑖(𝑋)

= ‖𝑋‖∗ − max
𝐴𝐴𝑇 =𝐼,𝐵𝐵𝑇 =𝐼

Tr(𝐴𝑋𝐵𝑇 )

(10)

Using the 𝓁1-norm as a convex surrogate of the 𝓁0-norm and Eq. (10),
the proposed formulation (6) can be recast as

min
𝑋

‖𝑋‖∗ − max
𝐴𝐴𝑇 =𝐼,𝐵𝐵𝑇 =𝐼

Tr(𝐴𝑋𝐵𝑇 ) + 𝜆 ‖𝑊 ‖1

𝑠.𝑡. 𝑃𝛺(𝑋) = 𝑃𝛺(𝑀)

𝑊 =  (𝑋) .

(11)

Even though this converted formulation has avoided the non-convex
truncated nuclear norm and 𝓁0-norm terms, it still cannot be addressed
directly by the existing methods.1

1 We have implemented the variant where 𝑊 is recovered directly without
𝑋 and 𝑋 is recovered by applying the inverse transform of  to 𝑊 . It turns out
that the results are very similar to those obtained by the proposed formulation
(11). For the reason, this variant and the results are not included in this paper.

3.2. Optimization framework

To solve the proposed optimization problem (11), an iterative ap-
proach alternating between two steps is developed. In the first step of
the 𝑙th iteration, the singular value decomposition is applied to the fixed
matrix 𝑋𝑙, i.e., 𝑋𝑙 = 𝑈𝑙𝛴𝑙𝑉𝑙, to calculate 𝐴𝑙 and 𝐵𝑙 based on 𝑈𝑙, 𝑉𝑙 and
(7). In the second step, 𝐴𝑙 and 𝐵𝑙 are fixed, and the matrix 𝑋𝑙 is updated
by solving the optimization problem as follows

min
𝑋

‖𝑋‖∗ − Tr(𝐴𝑙𝑋𝐵𝑇
𝑙 ) + 𝜆 ‖𝑊 ‖1

𝑠.𝑡. 𝑃𝛺(𝑋) = 𝑃𝛺(𝑀)

𝑊 =  (𝑋) .

(12)

The optimization framework to address the problem (11) is summarized
in Algorithm 1. The algorithm to solve the problem (12), i.e., the details
of Step 2 of Algorithm 1, will be introduced in the next subsection.

Algorithm 1 Proposed algorithm: TNN-SR
Input: Observed matrix 𝑀 ∈ R𝑚×𝑛, 𝜆 > 0, 𝑟 ≤ min(𝑚, 𝑛), 𝜖
Initialization:

Initialize the iteration counter 𝑙 = 1 and the recovered matrix
𝑋1 = 𝑀 . Perform the following steps iteratively.
Main Steps:

1. Calculate the singular value decomposition of 𝑋𝑙:
[𝑈𝑙 , 𝛴𝑙 , 𝑉𝑙] = SVD(𝑋𝑙)

where 𝑈𝑙 = (𝑢1, 𝑢2, ..., 𝑢𝑚) ∈ R𝑚×𝑚,
𝑉𝑙 = (𝑣1, 𝑣2, ..., 𝑣𝑛) ∈ R𝑛×𝑛.

Compute 𝐴𝑙 and 𝐵𝑙:
𝐴𝑙 = (𝑢1, 𝑢2, ..., 𝑢𝑟)𝑇 ,
𝐵𝑙 = (𝑣1, 𝑣2, ..., 𝑣𝑟)𝑇 .

2. Solve the following constrained optimization problem:

𝑋𝑙+1 =argmin
𝑋

‖𝑋‖∗ − Tr(𝐴𝑙𝑋𝐵𝑇
𝑙 ) + 𝜆 ‖𝑊 ‖1

𝑠.𝑡. 𝑃𝛺(𝑋) = 𝑃𝛺(𝑀)

𝑊 =  (𝑋) .

3. If ‖𝑋𝑙+1 − 𝑋𝑙‖𝐹 ≤ 𝜖, let 𝑋⋆ = 𝑋𝑙+1 and quit the iteration.
Otherwise, increase the iteration counter 𝑙 = 𝑙+ 1 and go back
to step 1.

Output:
The recovered matrix 𝑋⋆.

3.3. Optimization method to solve the problem (12)

In this section, we propose a new method to solve the optimization
problem (12). In the original problem, the variable 𝑋 is involved in
multiple terms of the objective function and both of the two constraints,
which makes it difficult to address this problem directly. To make the
objective function separable with respect to the variables, a variable
splitting technique is used. After that, the ADMM framework [19] is
adapted to convert the problem to a sequence of subproblems.

By introducing a variable 𝑁 , the problem (12) can be converted to
the equivalent optimization task as follows

min
𝑋,𝑁,𝑊

‖𝑋‖∗ − Tr(𝐴𝑙𝑁𝐵𝑇
𝑙 ) + 𝜆 ‖𝑊 ‖1

𝑠.𝑡. 𝑃𝛺(𝑋) = 𝑃𝛺(𝑀)

𝑁 = 𝑋

𝑊 =  (𝑋) .

(13)

Notice that 𝑋’s presented in Tr(𝐴𝑙𝑋𝐵𝑇
𝑙 ) of the original objective func-

tion is replaced with 𝑁 . An additional constraint 𝑁 = 𝑋 is also
introduced to enforce the equivalence to the original problem (12).

78



J. Dong et al. Signal Processing: Image Communication 68 (2018) 76–87

Due to the introduction of the variable 𝑁 and the correspond-
ing changes in the problem formulation, (13) can be handled with
ADMM [19]. Using dual parameters 𝑌 and 𝑍, the augmented Lagrangian
function of (13) can be written as

 (𝑋,𝑁,𝑊 , 𝑌 ,𝑍) = ‖𝑋‖∗ − Tr(𝐴𝑙𝑁𝐵𝑇
𝑙 ) + 𝜆‖𝑊 ‖1

+ ⟨𝑌 ,𝑁 −𝑋⟩ +
𝛽
2
‖𝑁 −𝑋‖

2
𝐹

+ ⟨𝑍,𝑊 −  (𝑋)⟩ +
𝛽
2
‖𝑊 −  (𝑋)‖2𝐹 ,

(14)

where 𝛽 > 0 is a penalty parameter. Based on the framework of
ADMM, the optimization problem (13) can be solved by alternatively
updating one variable with the others being fixed. Specifically, in the
𝑘th iteration, the variables are updated via the following scheme

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑋𝑘+1 = argmin
𝑋


(

𝑋,𝑁𝑘,𝑊 𝑘, 𝑌 𝑘, 𝑍𝑘) , (a)
𝑊 𝑘+1 = argmin

𝑊

(

𝑋𝑘+1, 𝑁𝑘,𝑊 , 𝑌 𝑘, 𝑍𝑘) , (b)
𝑁𝑘+1 = argmin

𝑁

(

𝑋𝑘+1, 𝑁,𝑊 𝑘+1, 𝑌 𝑘, 𝑍𝑘) , (c)
𝑌 𝑘+1 = 𝑌 𝑘 + 𝛽

(

𝑁𝑘+1 −𝑋𝑘+1) , (d)
𝑍𝑘+1 = 𝑍𝑘 + 𝛽

(

𝑊 𝑘+1 −  (𝑋𝑘+1)
)

. (e)

(15)

In this scheme, the update of 𝑋, 𝑊 , 𝑁 involves solving subprob-
lems (15)(a)–(15)(c). Fortunately, these subproblems have closed-form
solutions as will be detailed as follows.

3.3.1. Update 𝑋𝑘+1

In this part, we derive the closed-form solution for calculating
𝑋𝑘+1. Specifically, the subproblem as indicated in (15)(a) needs to be
addressed, i.e.,

𝑋𝑘+1 =argmin
𝑋


(

𝑋,𝑁𝑘,𝑊 𝑘, 𝑌 𝑘, 𝑍𝑘)

=argmin
𝑋

‖𝑋‖∗ + ⟨𝑌 ,𝑁 −𝑋⟩ +
𝛽
2
‖𝑁 −𝑋‖

2
𝐹

+ ⟨𝑍,𝑊 −  (𝑋)⟩ +
𝛽
2
‖𝑊 −  (𝑋)‖2𝐹

=argmin
𝑋

‖𝑋‖∗ +
𝛽
2
‖

‖

‖

‖

𝑁 −𝑋 + 𝑌
𝛽
‖

‖

‖

‖

2

𝐹

+
𝛽
2
‖

‖

‖

‖

𝑊 −  (𝑋) + 𝑍
𝛽
‖

‖

‖

‖

2

𝐹
.

(16)

Note that 𝑋 cannot be directly separated from the other variables due
to the existence of the transform operator  in the last term of (16).
Therefore, we cannot solve it with the classical singular value shrinkage
operator [11] for the nuclear norm minimization problem.

Nevertheless, the Parseval’s theorem [22] can be applied here to
reformulate the problem, so that the variable 𝑋 can be isolated from the
operator  (⋅). In particular, Parseval’s theorem indicates that, a unitary
transform (e.g., Discrete Fourier Transform (DFT), Discrete Cosine
Transform (DCT), Hadamard Transform and Haar-Wavelet Transform)
can be energy-conservation, i.e., ‖𝒗‖2𝐹 = ‖𝒖‖2𝐹 , with 𝒗 = (𝒖) and
(⋅) being a unitary transform [23]. Based on this theorem, assume
 (⋅) is a unitary transform and let (⋅) denote its corresponding inverse
transform. By applying (⋅) to the last term of (16), we can get

‖

‖

‖

‖

𝑊 −  (𝑋) + 𝑍
𝛽
‖

‖

‖

‖

2

𝐹
=
‖

‖

‖

‖

‖


(

𝑊 + 𝑍
𝛽

)

−𝑋
‖

‖

‖

‖

‖

2

𝐹
.

Hence, we have

𝛽
2
‖

‖

‖

‖

𝑁 −𝑋 + 𝑌
𝛽
‖

‖

‖

‖

2

𝐹
+

𝛽
2
‖

‖

‖

‖

𝑊 −  (𝑋) + 𝑍
𝛽
‖

‖

‖

‖

2

𝐹

=
𝛽
2
‖

‖

‖

‖

𝑁 −𝑋 + 𝑌
𝛽
‖

‖

‖

‖

2

𝐹
+

𝛽
2

‖

‖

‖

‖

‖


(

𝑊 + 𝑍
𝛽

)

−𝑋
‖

‖

‖

‖

‖

2

𝐹

= 𝛽
‖

‖

‖

‖

‖

𝑋 − 1
2

[

𝑁 + 𝑌
𝛽

+ 
(

𝑊 + 𝑍
𝛽

)]

‖

‖

‖

‖

‖

2

𝐹
+ 𝜉,

where 𝜉 is a term not related to 𝑋.

The update of 𝑋𝑘+1 in (16) can be further rewritten as

𝑋𝑘+1 =argmin
𝑋

‖𝑋‖∗

+ 𝛽
‖

‖

‖

‖

‖

𝑋 − 1
2

(

𝑁 − 𝑌
𝛽

+ 
(

𝑊 + 𝑍
𝛽

))

‖

‖

‖

‖

‖

2

𝐹
.

The above problem has the closed-form solution as follows

𝑋𝑘+1 =  1
2𝛽

{

1
2

[

𝑁 + 𝑌
𝛽

+ 
(

𝑊 + 𝑍
𝛽

)]}

, (17)

where 𝜏 (⋅) is the singular value shrinkage operator [11] defined as

𝜏 (𝑋) = 𝑈𝜏 (𝛴)𝑉 𝑇 (18)

with the singular value decomposition of 𝑋 being 𝑋 = 𝑈𝛴𝑉 𝑇 , 𝛴 =
diag({𝜎𝑖}) with 1 ≤ 𝑖 ≤ min{𝑚, 𝑛}, and 𝜏 (𝛴) = diag(max{𝜎𝑖 − 𝜏, 0}).

Considering the constraint 𝑃𝛺(𝑋) = 𝑃𝛺(𝑀) in (13), we fix the
observed entries of 𝑀 and obtain

𝑋𝑘+1 = 𝛺𝑐 (𝑋𝑘+1) + 𝛺(𝑀), (19)

where 𝛺𝑐 denotes the indices of the missing entries.

3.3.2. Update 𝑊 𝑘+1

To update 𝑊 𝑘+1, the following subproblem needs to be addressed

𝑊 𝑘+1 =argmin
𝑊


(

𝑋𝑘+1, 𝑁𝑘,𝑊 , 𝑌 𝑘, 𝑍𝑘)

=argmin
𝑊

𝜆‖𝑊 ‖1 + ⟨𝑍,𝑊 −  (𝑋)⟩ +
𝛽
2
‖𝑊 −  (𝑋)‖2𝐹

=argmin
𝑊

𝜆 ‖𝑊 ‖1 +
𝛽
2
‖

‖

‖

‖

𝑊 −  (𝑋) + 𝑍
𝛽
‖

‖

‖

‖

2

𝐹
.

This problem has a closed-form solution given by

𝑊 𝑘+1 =  𝜆
𝛽

(

 (𝑋) − 𝑍
𝛽

)

. (20)

Here 𝜏 (⋅) represents the element-wise soft thresholding operator [24]
defined by

𝜏 (𝑥) = sgn(𝑥) ⋅ (|𝑥| − 𝜏), (21)

where the function sgn(⋅) returns the sign of its operand.

3.3.3. Update 𝑁𝑘+1

The update of 𝑁𝑘+1 involves solving a quadratic minimization
problem as follows

𝑁𝑘+1 = argmin
𝑁


(

𝑋𝑘+1, 𝑁,𝑊 𝑘+1, 𝑌 𝑘, 𝑍𝑘)

= argmin
𝑁

−Tr(𝐴𝑙𝑁𝐵𝑇
𝑙 ) + ⟨𝑌 ,𝑁 −𝑋⟩ +

𝛽
2
‖𝑁 −𝑋‖

2
𝐹

= argmin
𝑁

−Tr(𝐴𝑙𝑁𝐵𝑇
𝑙 ) +

𝛽
2
‖

‖

‖

‖

𝑁 −𝑋 + 𝑌
𝛽
‖

‖

‖

‖

2

𝐹

= argmin
𝑁

𝛽
2

‖

‖

‖

‖

‖

𝑁 −𝑋 + 𝑌
𝛽

−
𝐴𝑇
𝑙 𝐵𝑙

𝛽

‖

‖

‖

‖

‖

2

𝐹
.

Therefore, we have

𝑁𝑘+1 = 𝑋𝑘+1 − 𝑌 𝑘

𝛽
+

𝐴𝑇
𝑙 𝐵𝑙

𝛽
. (22)

3.3.4. Summary of the optimization algorithm
The algorithm to solve the problem (12) is summarized in Algorithm

2.

79



J. Dong et al. Signal Processing: Image Communication 68 (2018) 76–87

Fig. 1. Test images.

Algorithm 2 Optimization algorithm to solve the problem (12)
Input: Input matrix 𝑀 , error support 𝛺, parameters 𝜆, 𝛽, tolerance 𝜖.
Initialization:

Initialize the iteration counter 𝑘 = 1, 𝑋𝑘 = 𝑁𝑘 = 𝑀 , 𝑊 = 0, 𝑌𝑘 as
random matrix of size 𝑚 × 𝑛.
Main Steps:

1. Update 𝑋𝑘+1 using equations (17), (18) and (19).

2. Update 𝑊 𝑘+1 using equations (20) and (21).

3. Update 𝑁𝑘+1 using equation (22).

4. 𝑌 𝑘+1 = 𝑌 𝑘 + 𝛽
(

𝑁𝑘+1 −𝑋𝑘+1).

5. 𝑍𝑘+1 = 𝑍𝑘 + 𝛽
(

𝑊 𝑘+1 −  (𝑋𝑘+1)
)

.

6. If ‖𝑋𝑘+1 − 𝑋𝑘
‖𝐹 ≤ 𝜖, let 𝑋 = 𝑋𝑘+1 and quit the iteration.

Otherwise, increase the iteration counter 𝑘 = 𝑘 + 1 and go
back to step 1.

Output: 𝑋.

3.4. Computational complexity

The proposed algorithm involves the SVD of a matrix of size 𝑚 × 𝑛
in the first step, and addresses the constrained optimization problem
(12) iteratively in the second step. The computational complexity of
the first step is dominated by the SVD operation whose complexity
is (min(𝑚𝑛2, 𝑚2𝑛)). In the second step of TNN-SR, the variables are
updated alternatively and the time complexity is related to the compu-
tational complexity of the transform operator  . If a transform whose
complexity is higher than SVD, e.g. DCT, is used, the update of 𝑋 and 𝑊
will be the dominant parts of the second step. In this case, let 𝑡 denote
the number of the iterations of step 2, and the complexity of the second
step is (𝑚2𝑛2𝑡). As a result, the total time complexity of each iteration
of the proposed method is dominated by the second step and scales as
(𝑚2𝑛2𝑡).

4. Experimental results

In this section, several experiments are conducted to demonstrate the
effectiveness of the proposed TNN-SR algorithm for matrix completion.2

Three state-of-the-art algorithms are used as the baselines: TNNR [8],
SLRTI [18], and a recently proposed method named deep matrix factor-
ization (DMF) [25].3 The DMF method formulates the low-rank matrix
completion problem as a deep-structure neural network and recovers
the matrix by approximating a nonlinear latent variable model. Eight
color images of size 300 × 300 named Img1, Img2, … , Img8, as shown
in Fig. 1, are employed as test images in our experiments. The TNNR,
SLRTI, and TNN-SR algorithms are applied to each channel separately
and the final results are obtained by combining the results of the three
channels. In the DMF algorithm, each image is unfolded to a matrix of
300 × 900 as in [25].

In the proposed algorithm, unitary transforms that promote the
sparsity of the original matrix can be used as the transform operator
 , and DCT is employed as an example in the experiments. It should
be noted that although the SLRTI algorithm also uses DCT as the
transform to sparsify images, the subproblems of SLRTI is solved by
approximating the original objective functions while the subproblems
of the proposed TNN-SR algorithm are addressed with closed-form
solutions. This difference leads to more effective employment of the
transform operator in the proposed algorithm, and more accurate results
for matrix completion.

The Peak Signal-to-Noise Ratio (PSNR) is used to evaluate the quality
of the recovered images, which is defined by

PSNR = 10 log10
2552
MSE

, (23)

where MSE denotes the mean squared error between the original
image and the recovered image. Higher PSNR indicates better recovery
performance.

4.1. Random mask

First, experiments for completing matrices with randomly missing
entries are performed. In particular, some pixels of the test images
are covered randomly and the algorithms are employed to recover the
original images. The ratios of the missing entries are varied from 10%
to 90%.

2 The code of the proposed method has been uploaded to https://github.com/
jd0710/TNN-SR.

3 The code of TNNR is downloaded from https://sites.google.com/site/
zjuyaohu/. The code of SLRTI is implemented by ourselves, as it is not available
online. We thank the authors of [25] for sharing the code of DMF via email.
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Fig. 2. The PSNR values (in dB) obtained by the proposed TNN-SR algorithm
using different 𝜆′𝑠 and 𝑟′𝑠 with 𝛽 being fixed. Specifically, 𝛽 = 10−3, 𝜆 =
{0.001, 0.01, 0.1, 0.5, 1, 5}, and 𝑟 = {1, 3, 9, 15, 25, 50, 100, 200}. (a) Img1, Missing
Ratio = 70%; (b) Img2, Missing Ratio = 20%.

4.1.1. Simulations with different parameters of TNN-SR
As the settings of the parameters 𝜆, 𝛽 and 𝑟 are important to

the performance of the proposed TNN-SR algorithm, simulations with
different parameters are performed to investigate the influence of the
settings of these parameters.

Firstly, the settings of 𝜆 = {0.001, 0.01, 0.1, 0.5, 1, 5} and 𝑟 =
{1, 3, 9, 15, 25, 50, 100, 200} are tested with 𝛽 fixed as 10−3. The PSNR
results for recovering Img1 and Img2 with random masks are plotted in
Fig. 2. It can be found that proper settings of 𝜆 are critical to obtain good
results, and 0.1 is a favorable choice in most cases. Proper settings of 𝑟
are integers between [1, 20]. The singular values of the three channels of
Img1 and Img2 are shown in Fig. 3. As can be seen, the top 20 singular

Fig. 4. The PSNR values (in dB) obtained by the proposed TNN-SR algorithm
using different 𝜆′𝑠 and 𝛽′𝑠 with 𝑟 being fixed. Specifically, 𝑟 = 15, 𝜆 =
{0.001, 0.01, 0.1, 0.5, 1, 5}, and 𝛽 = {10−5, 10−4, 10−3, 10−2, 0.1, 1, 10, 100, 1000}. (a)
Img1, Missing Ratio = 70%; (b) Img2, Missing Ratio = 20%.

values dominate the information, which is consistent with the proper
settings of 𝑟 in the proposed algorithm.

The value of 𝑟 is then fixed as 15, and different values of
𝜆 and 𝛽 are tested to demonstrate the influence of these two
parameters. Specifically, 𝜆 = {0.001, 0.01, 0.1, 0.5, 1, 5} and 𝛽 =
{10−5, 10−4, 10−3, 10−2, 0.1, 1, 10, 100, 1000} are tested. The results for
Img1 and Img2 are shown in Fig. 4. It can be observed that the trends of
the results with varying 𝛽′𝑠 are consistent for different 𝜆′𝑠, and proper
settings of 𝛽 are between [10−3, 10−2].

The parameters 𝛽 and 𝑟 are fixed as 𝛽 = 10−3 and 𝑟 = 15 respectively,
the results of the test images with different 𝜆 = {0.001, 0.01, 0.1, 0.5, 1, 5}
are shown in Fig. 5, where ‘‘MR’’ in the legends is short for ‘‘Missing

Fig. 3. The singular values of the red channel, the blue channel and the green channel.
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Fig. 5. The PSNR values (in dB) obtained by the proposed TNN-SR algorithm using different 𝜆′𝑠 with 𝛽 = 10−3 and 𝑟 = 15. 𝜆 = {0.001, 0.01, 0.1, 0.5, 1, 5}.

Ratio’’. We can see that for most images 𝜆 = 0.1 can achieve the best
performance, and for Img6 and Img7 𝜆 = 0.01 obtains the best results.

4.1.2. Simulations with adaptive penalty parameter
In the proposed TNN-SR algorithm, the penalty parameter 𝛽 in

the Lagrangian function (14) is fixed as in the traditional ADMM
approach [19]. However, in real applications, a dynamical 𝛽 is usually
preferred to speed up the convergence of the algorithm [8,26]. Based
on this, an adaptive penalty (AP) is used to replace the fixed 𝛽 in the
TNN-SR algorithm, which results in a modified version referred to as
TNN-SR-AP. In particular, the following adaptive update step [8] for the

penalty parameter 𝛽 is added after the update of all variables, i.e., step
5 of Algorithm 2

𝛽𝑘+1 = min(𝛽𝑚𝑎𝑥, 𝛾𝛽𝑘) (24)

where 𝛽𝑚𝑎𝑥 is an upper bound of 𝛽𝑘 and 𝛾 ≥ 1 is the coefficient to increase
𝛽. The value of 𝛾 is given as

𝛾 =

⎧

⎪

⎨

⎪

⎩

𝛾0, if
𝛽𝑘max{‖𝑋𝑘+1 −𝑋𝑘

‖𝐹 , ‖𝑁𝑘+1 −𝑁𝑘
‖𝐹 }

‖𝑀‖𝐹
< 𝜅

1, otherwise
(25)
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Fig. 6. The PSNR values (in dB) obtained by TNN-SR-AP where an adaptive penalty parameter is adapted based on Eqs. (24) and (25). The parameters are set as:
𝑟 = 15, 𝜆 = 0.1, 𝛽1 = 10−3, 𝛽𝑚𝑎𝑥 = 1010, 𝜅 = 10−3, and 𝛾0 = {1, 1.01, 1.02, 1.04, 1.06, 1.08, 1.1, 1.2, 1.5}.

Fig. 7. The number of outer iterations (top) and the number of inner iterations (bottom) used by the TNN-SR-AP algorithm with respect to the choice of 𝛾0. Left
column: Img1. Right column: Img2.

where 𝛾0 > 1 and 𝜅 > 0 are constants. Using this adaptive update
strategy, if the difference between (𝑋𝑘+1, 𝑁𝑘+1) and (𝑋𝑘, 𝑁𝑘) is small
enough, 𝛽 is updated as 𝛾0𝛽𝑘 in the (𝑘 + 1)-th iteration for accelerating
the speed of convergence. Note that the TNN-SR algorithm can be seen
as a special case of TNN-SR-AP with 𝛾0 = 1.

In this adaptive update approach, the selection of 𝛾0 is critical. We set
𝑟 = 15, 𝜆 = 0.1, 𝛽1 = 10−3, 𝛽𝑚𝑎𝑥 = 1010 and 𝜅 = 10−3, and test different
values of 𝛾0 = {1, 1.01, 1.02, 1.04, 1.06, 1.08, 1.1, 1.2, 1.5}. The results of
TNN-SR-AP are shown in Fig. 6. It can be seen that proper settings of 𝛾0
lead to similar results of TNN-SR, but too large values of 𝛾0 may degrade
the performance. Recommended range of 𝛾0 is [1, 1.1].

To investigate the improvement of the convergence speed resulting
from the adaptive update strategy in TNN-SR-AP, the numbers of the
outer iterations and the inner iterations of TNN-SR-AP for recovering
Img1 and Img2 are shown in Fig. 7. Note that the outer iteration is in
the main framework to address the main problem (11) and the inner
iteration refers to the process to address the subproblem (12) involved
in the second step of the main process. From Fig. 7, it can be seen that
with the increase of 𝛾0 the numbers of the inner iterations required
decrease while the numbers of the outer iterations remain similar. This

demonstrates the speedup of the convergence due to the employment of
the adaptive update strategy.

4.1.3. Results as compared with baseline algorithms
The parameters of TNN-SR are set as 𝜆 = 0.1, 𝛽 = 10−3, 𝑟 = 15,

and 𝜖 = 10−3. The parameters of TNN-SR-AP are set as 𝛾 = 1.1, 𝛽1 =
10−3, 𝛽𝑚𝑎𝑥 = 1010 and 𝜅 = 10−3 with the common parameters remaining
the same as in TNN-SR. The parameters of the baseline algorithms are
tuned empirically to achieve the best performance.

The PSNR values of the images recovered by different algorithms are
shown in Fig. 8. Some recovery examples with 90% and 70% missing
ratios are shown in Fig. 9 and Fig. 10, respectively.4 From Fig. 8,
it can be found that the results of TNN-SR and TNN-SR-AP are very
similar in different cases, and the images recovered by the proposed
algorithms have much higher PSNR values, as compared with the results
of the baseline algorithms, especially for images with large pixel missing
ratios. For example, with missing ratio 90%, both TNN-SR and SLRTI

4 Note that as the recovery images of TNN-SR-AP are very similar to the results
of TNN-SR, the recovery samples of TNN-SR-AP are not presented.
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Fig. 8. The PSNR values of the recovered images under different missing pixel ratios (random mask) using different algorithms.

algorithms obtain higher PSNR values than the TNNR algorithm, which
indicates that the sparse regularizer plays a great role for repairing the
missing entries. The DMF algorithm outperforms TNNR and SLRTI in
some cases, but its performance is not as good as the proposed algorithm.
The recovery results shown in Figs. 9 and 10 also demonstrate the
superiority of the proposed algorithm in terms of visual effect.

The running time of the compared algorithms for recovering Img1
and Img2 with random masks at different missing ratios is shown in
Fig. 11. It can be seen that the running time of the proposed TNN-SR

and TNN-SR-AP algorithms is comparable to the baselines, and TNN-
SR-AP is faster than TNN-SR as fewer iterations are required. The DMF
algorithm requires more time than other algorithms.

4.2. Text mask

In this part, we would like to test the performance of the algorithms
for removing text mask. It is hard to deal with text mask, as the cor-
ruptions of the pixels are not randomly distributed and some important
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Fig. 9. The completion results with 90% pixels missing. (a) Masked image. (b)–(e) Recovered images by TNNR, SLRTI, DMF, and the proposed TNN-SR algorithm,
respectively.

Fig. 10. The completion results with 70% pixels missing. (a) Masked image. (b)–(e) Recovered images by TNNR, SLRTI, DMF, and the proposed TNN-SR algorithm,
respectively.
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Fig. 11. Running time of the compared algorithms for recovering the images with random masks at different missing ratios. (a) Img1. (b) Img2.

Fig. 12. The completion results with text mask. (a) Noisy image. (b)–(e) Recovered images by TNNR, SLRTI, DMF, and the proposed TNN-SR algorithm, respectively.
The PSNR values (in dB) are in the parentheses.

texture information may be covered by the text. The experiments for
text removal are performed on Img1 and Img3.

The recovered images are shown in Fig. 12. It can be seen that the
proposed algorithm can recover the missing pixels caused by text mask
noise very well, and it achieves better visual effect than the baseline
algorithms. Furthermore, we can also observe that higher PSNR values
are obtained by the proposed TNN-SR method, as compared to the
baseline algorithms. Specifically, for Img1, the PSNR values obtained
by TNNR, SLRTI, DMF, and TNN-SR are 27.38 dB, 28.40 dB, 26.47 dB,
and 29.57 dB, respectively. For Img3, the PSNR values obtained by these
algorithms are 25.12 dB, 24.15 dB, 23.91 dB, and 25.58 dB, respectively.
From both the visual effect and the numerical PSNR values, it can be
demonstrated that the performance of the proposed algorithm is better
than the baseline algorithms.

5. Conclusion

In this paper, we have proposed a novel matrix completion algorithm
based on low-rank and sparse priors. Specifically, the truncated nuclear
norm is employed to approximate the rank of the matrix, rather than
the nuclear norm used in most existing approaches, to obtain a more
accurate approximation. The sparse prior is exploited by an 𝓁1-norm
regularizer based on a transform operator, which is a general form
to model the sparse property of the underlying matrix. We have also
proposed an optimization method consisting of two steps, and the
ADMM framework is adapted to solve the subproblem in the second step.
Experimental results for recovering images corrupted by random mask
and text mask have shown the superiority of the proposed algorithm in
comparison with two baseline algorithms.
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