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Abstract—In this paper, we consider the dictionary learning
problem for the sparse analysis model. A novel algorithm is
proposed by adapting the simultaneous codeword optimization
(SimCO) algorithm, based on the sparse synthesis model, to the
sparse analysis model. This algorithm assumes that the analysis
dictionary contains unit -norm atoms and learns the dictionary
by optimization on manifolds. This framework allows multiple
dictionary atoms to be updated simultaneously in each iteration.
However, similar to several existing analysis dictionary learning
algorithms, dictionaries learned by the proposed algorithm may
contain similar atoms, leading to a degenerate (coherent) dictio-
nary. To address this problem, we also consider restricting the
coherence of the learned dictionary and propose Incoherent Anal-
ysis SimCO by introducing an atom decorrelation step following
the update of the dictionary. We demonstrate the competitive
performance of the proposed algorithms using experiments with
synthetic data and image denoising as compared with existing
algorithms.
Index Terms—Analysis dictionary learning, analysis model,

SimCO, sparse representation.

I. INTRODUCTION

M ANY problems in signal processing can be regarded
as inverse problems, for example, denoising [1], in-

painting [2] and super-resolution [3]. These problems aim to
reconstruct original signals from their observed measurements.
Some prior knowledge or assumptions about the signals are
required due to the lack of information or the presence of noise
in the observations. One assumption that has attracted extensive
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attention in the past decade is that the signals to be restored
are sparse in some domain. Two signal models to capture the
sparse property of the signals have been proposed, namely, the
sparse synthesis model [4] and sparse analysis model [5], [6].
More recently, the sparse analysis model has been extended
to a more generalized model, referred to as the sparsifying
transform model [7].

A. Sparse Synthesis Model

The most well-known model in sparse representation is the
sparse synthesis model [4], [8]–[10]. This model assumes that
a signal can be linearly represented with some atoms
(columns) of a synthesis dictionary , where the dic-
tionary is usually overcomplete with . The number of
atoms used to represent is much smaller than the total number
of atoms in the dictionary, which reflects the sparsity of the
signal . Mathematically, this model can be written as
with , where the -norm counts the number
of non-zero elements of its argument, and is the representa-
tion coefficient vector with being its sparsity. The atoms cor-
responding to the non-zero elements of are used to synthesize
the signal via their linear combination, which brings about the
term “synthesis” in the name of this model.
One challenge related to this model is the sparse coding

problem which aims to find the sparsest representation of
a given signal with respect to a given dictionary . In
order to tackle this problem, greedy algorithms have been
proposed, such as matching pursuit (MP) [11], orthogonal
matching pursuit (OMP) [12], stagewise orthogonal matching
pursuit (StOMP) [13] and subspace pursuit (SP) [14], as well
as relaxation methods such as basis pursuit (BP) [15] and focal
underdetermined system solver (FOCUSS) [16].
A second challenge is to design or learn an appropriate dic-

tionary to represent a set of signals as sparsely as possible.
Many analytical dictionaries have been developed, but dictio-
naries learned from a set of training signals have the potential
to fit these signals better than the analytical dictionaries [4]. As
a result, the dictionary learning problem for the sparse synthesis
model has become one of the most popular topics in sparse rep-
resentation. This problem aims to seek the dictionary that
leads to the best set of representations for a given set of training
signals. Many algorithms have been proposed to address this
problem, for example, method of optimal directions (MOD)
[9], K-SVD [4] and SimCO [10]. These algorithms typically
alternate iteratively between an update of the coefficients and
an update of the dictionary. For the update of the coefficients,
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sparse coding algorithms are often used while keeping the dic-
tionary fixed. The main difference between synthesis dictionary
learning algorithms is the way in which the dictionary is up-
dated.

B. Sparse Analysis Model and Sparsifying Transform Model

In contrast to the synthesis model, the sparse analysis model
uses an analysis dictionary with to “analyze”
the signal . Specifically, it assumes that the product of
and is sparse, i.e. with , where
is the number of zeros in . The matrix is usually

referred to as an analysis dictionary [17] or analysis operator
[18], [19], with each row of being an atom. The vector is
the analysis representation of the signal with respect to .
This model is also referred to as a co-sparse analysis model,
and the number of zeros is called the co-sparsity of the signal
with respect to [6]. Let denote the

index set of the rows in corresponding to the zero elements
in (thus, ) and let denote the sub-matrix of
containing only the rows indexed by . The set is called

the co-support of . For the analysis model, we have ,
meaning that the atoms indexed by are orthogonal to the
signal . From the subspace point of view, lies in the subspace
which is orthogonal to the subspace spanned by the rows of .
Even though the description of the sparse analysis model may
seem similar to its synthesis counterpart, these twomodels differ
significantly if the dictionaries are overcomplete [5].
If the signal is known, its analysis representation with re-

spect to a given can be obtained via multiplying by . How-
ever, when the observed signal is contaminated by noise, the
clean signal has to be estimated first in order to get its anal-
ysis representation, which leads to the analysis pursuit problem
[17]. Some algorithms like backward-greedy (BG) [17], opti-
mized-backward-greedy (OBG) [17], and greedy analysis pur-
suit (GAP) [6] have been proposed to address this problem.
In a similar way to the dictionary in the synthesis model, the

analysis dictionary also plays an important role in the analysis
representation of the signal , and the dictionaries learned from
a set of training signals show some advantages compared with
pre-defined dictionaries [17]. In the past few years, the analysis
dictionary learning (ADL) problem has begun to attract more at-
tention [17]–[19]. In this paper, we focus on this ADL problem.
Recently, the so-called sparsifying transform model, which

assumes that a signal can be approximately sparsified with an
analysis transform operator, was introduced in [7]. This model
can be regarded as a natural extension of the sparse analysis
model. Learning a sparsifying transform has been investigated
in [7], [20], [21]. These algorithms deal with the sparsification
error in the transform domain rather than in the original signal
domain as in the ADL algorithms [17], [18], by applying the
transform operator to the training signals even if the signals
contain noise. In the present paper, we intentionally ignore this
subtle difference between these two formulations and regard the
sparsifying transform learning algorithms as alternative solvers
of the ADL problem, since the results of sparsifying transform
learning can be regarded as dictionaries for the sparse analysis
model.

C. Analysis Dictionary Learning

Several algorithms have been proposed for the ADL problem.
The Analysis K-SVD algorithm [17] assumes that the training
samples are noisy signals and minimizes the error between the
training samples and the signals estimated using the learned dic-
tionary. It applies the OBG [17] analysis pursuit algorithm to
detect the co-support of each training signal with respect to an
initial dictionary, and employs the singular value decomposition
(SVD) to update the dictionary atoms one-by-one. After the up-
date of all atoms, similar atoms, determined with inner-product
of two atoms, are replaced by new randomly generated atoms.
However, these new atoms cannot preserve the information of
the atoms to be replaced because of the randomness. Besides,
the computational complexity of Analysis K-SVD is quite high
due to the involvement of the analysis pursuit problem [17].
The learning overcomplete sparsifying transforms (LOST)

algorithm [20] minimizes the so-called sparsifying error which
is defined in the transform or analysis domain rather than the
original signal domain as in the formulation of Analysis K-SVD.
As a result, the time consuming algorithm OBG is not used
any more. Two penalty terms are added to the objective func-
tion of LOST to apply two constraints on the learned dictionary
respectively, i.e. the full column rank constraint and the con-
straint on the correlation between the atoms. The coefficients
of the penalty terms play an important role in the performance
of LOST, but selecting proper coefficients is a practical chal-
lenge [20].
Transform K-SVD proposed recently in [21] combines the

sparsifying error formulation of LOST with the dictionary up-
date approach of Analysis K-SVD. This algorithm uses the same
method as in Analysis K-SVD to avoid similar atoms, but over-
comes its computational complexity issue with a formulation
used in LOST. We have found that Transform K-SVD performs
well in recovering a reference dictionary, but its denoising per-
formance is relatively limited, as shown in our simulations (see
Section VI-B later).
The analysis operator learning (AOL) algorithm reported in

[18] addresses the ADL problem using a constrained optimiza-
tion framework. In this algorithm, the -norm is used as the
co-sparsity measurement. It restricts the dictionary to be a uni-
form normalized tight frame (UNTF) which is the intersection
of uniform normalized (UN) frames manifold and tight frames
(TF) manifold. The AOL algorithm learns a dictionary by com-
bining an optimization framework with projection of the dic-
tionary onto the UNTF set. The algorithms (NL)AOL (noiseless
AOL) and (NA)AOL (noise-aware AOL) have been developed
for learning with noiseless and noisy training samples respec-
tively. However, random dictionaries cannot be recovered by
the AOL algorithms since the UNTF constraint limits the pos-
sible dictionaries to be learned (see Section VI later). We will
see that the denoising performance of (NA)AOL is also limited
when the noise level is relatively high.
The GeOmetric Analysis operator Learning (GOAL) algo-

rithm [19] employs the -norm as the co-sparsity
measurement, which is different from the algorithms reviewed
above. Similar to the LOST algorithm, the objective function
of GOAL also incorporates two additional penalty terms to ad-
dress the full rank and the correlation constraints, leading to the
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difficulty of setting the weights for the penalties. The conjugate
gradient method on manifolds [22] is applied for the optimiza-
tion of the cost function in GOAL.

D. Contributions
In this work, we propose two new algorithms which can

partly address the limitations of the ADL algorithms mentioned
above. Firstly, we adapt the synthesis model based SimCO
algorithm [10] to the analysis model and develop a new ADL
algorithm which is referred to as the Analysis SimCO algo-
rithm. In SimCO, the optimization method on manifolds is
applied to update multiple dictionary atoms simultaneously,
leading to a better performance compared with K-SVD where
the atoms are updated one-by-one. Thus, we adapt the frame-
work of SimCO to the ADL problem to enable the simultaneous
update of multiple atoms via the optimization on manifolds.
The preliminary results of this work have been presented
in [23]. This dictionary update method is different from the
methods used by the existing algorithms. Analysis K-SVD and
Transform K-SVD only allow one atom to be updated in one
iteration. In LOST, the dictionary is updated as a whole matrix
by the standard conjugate gradient method. Compared with
the AOL algorithms, the updated dictionary in our proposed
method is more general without projection onto the UNTF set.
Notice that the GOAL algorithm also employs an optimization
method on manifolds, however, the objective function of our
proposed algorithm is different from that of GOAL due to
the different co-sparsity measure based on -norm, and the
fewer penalty terms used. Besides, our proposed algorithm
employs the gradient descent method on manifolds rather than
the conjugate gradient method as in GOAL.
Secondly, we propose the Incoherent Analysis SimCO al-

gorithm to avoid similar atoms appearing in the dictionaries
learned by Analysis SimCO. In the Incoherent Analysis SimCO
algorithm, a constraint restricting the correlations of two distinct
atoms of the dictionary is considered and an atom decorrelation
step is applied to enforce this constraint by rotating the highly-
correlated atom pairs. In this way, the correlation of any two
distinct atoms can be restricted to be below a given threshold
explicitly. Compared with the methods used in existing ADL al-
gorithms to avoid similar atoms, the decorrelation step applied
in the Incoherent Analysis SimCO algorithm has some advan-
tages. For example, this method avoids the coefficient selection
problem of LOST since the constraint is tackled directly rather
than applied as a penalty term of the objective function. Besides,
the new atoms obtained by the decorrelation step are more likely
to be closer to the atoms replaced than the atoms that are gener-
ated randomly in Analysis K-SVD and Transform K-SVD.

E. Notations
Bold capital letters are used to represent matrices. In partic-

ular, denotes the identity matrix whose dimension can be de-
cided from the context. The notation is used to specify the
th row of the matrix and represents its th column. Bold
lowercase letters represent vectors. Scalars are either capital or
lowercase letters. The norms and denote the -norm
and the Frobenius norm respectively. The notation returns
the absolute value of a scalar. The notation is used to rep-
resent the canonical inner-product of two vectors.

F. Organization of the Paper
The remainder of the paper is organized as follows. In

Section II the original SimCO algorithm is reviewed. In
Section III we present our formulation for the ADL problem and
the optimization framework.More details of our proposed Anal-
ysis SimCO algorithm and the discussions of its convergence
and computational complexity are provided in Section IV.
Section V introduces Incoherent Analysis SimCO where an
atom decorrelation step is involved. Section VI provides exper-
imental results of learning dictionaries with synthetic data and
for image denoising. Conclusions are drawn in Section VII.

II. THE SIMCO ALGORITHM

The SimCO algorithm [10] was proposed to learn a synthesis
dictionary from a set of signals so that the signals can each be
represented by a few atoms of the dictionary. Let
denote the matrix of the training signals, where each column
of is one training signal. In SimCO, the dictionary learning
problem is formulated as

(1)

where the columns of are the representation coeffi-
cient vectors and is the dictionary to be learned. In
this formulation, is assumed to contain unit -norm columns,
which is addressed by the constraint with representing
the set of all matrices that contain unit -norm columns. The
positions of the non-zero elements of the coefficient matrix
are fixed, achieved with the constraint .
To solve the optimization problem (1), SimCO follows the

conventional two-stage optimization process—a sparse coding
stage and a dictionary update stage. The sparse coding stage
determines the sparse representations of the signals in for
a given dictionary . Various sparse coding algorithms such as
OMP [8] can be employed in this stage.
In the dictionary update stage, SimCO applies optimization

methods on manifolds [24] to update the dictionary under
the unit -norm constraints on the columns of . According to
the updated , the coefficient matrix is also updated, while
the positions of the non-zero elements are kept unchanged.
This framework is able to update multiple atoms and the cor-
responding coefficients simultaneously, which gives rise to the
term simultaneous codeword optimization (SimCO).

III. PROBLEM FORMULATION AND OPTIMIZATION
FRAMEWORK

Given a set of training signals , the ADL problem
can be written as [7]

(2)

This is a general formulation without any additional constraint
on apart from the co-sparsity constraints .
However, this formulation has ambiguities caused by scaling.
In one case, when the training data admits exact sparse rep-
resentations, there exists a dictionary with which the anal-
ysis representations of , i.e. , satisfy the co-sparsity
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constraints. If the dictionary is scaled by multiplying a scalar
, the corresponding representations will

also satisfy the constraints. Thus, the problem (2) has infinite op-
timal solutions and . This may introduce difficulty in
optimization. In the other case, if the data admits approxima-
tion representations and , the value of the cost
function with scaled and , i.e. , can be
arbitrarily small. In other words, the cost function is unbounded
from below, which makes it impossible to find an optimal so-
lution. In addition, (2) has trivial solutions where contains
all-zero rows.
In order to avoid these problems, we apply the unit -norm

constraints on the rows of , leading to the following formula-
tion of the ADL problem

(3)

The unit -norm constraints on the rows of are able to elimi-
nate the scaling ambiguity mentioned above. Besides, the trivial
solutions where has zero rows can be excluded. The formu-
lation (3) is different from that of Analysis K-SVD [17] which
minimizes the error in the signal domain. It also differs from the
objective function of LOST [20] where the penalty terms as de-
scribed earlier in Section I are included.
The problem (3) can be addressed by an optimization frame-

work alternating between two stages: analysis sparse coding and
dictionary update. Given a dictionary , the first stage finds
satisfying the co-sparsity constraints . In the
dictionary update stage, is updated assuming known and fixed

obtained in the first stage.
Here we attempt to update the dictionary using a similar

method as in SimCO and refer to our proposed algorithm as
Analysis SimCO. The optimization framework of Analysis
SimCO is presented in Algorithm 1. In our original algorithm
SimCO, the use of the term “simultaneous” comes from the
following two facts: (1) multiple dictionary atoms are updated
simultaneously, and (2) their corresponding coefficients are also
updated simultaneously with these atoms. In the analysis case,
we borrow the term “SimCO” mainly because in the proposed
algorithm the dictionary atoms are updated simultaneously.

Algorithm 1: Optimization Framework of Analysis SimCO

Input: , ,
Output:
Initialization:
Initialize the iteration counter and the analysis dictionary

. Perform the following steps.
Main Iterations:
1) Analysis sparse coding: Compute the representations

with the fixed dictionary and the training
signals in .

2) Dictionary update: Update the dictionary .
3) If the stopping criterion is satisfied, and quit

the iteration. Otherwise, increase the iteration counter
and go back to step 1).

A common problem with the popular analysis dictionary
learning algorithms, such as Analysis K-SVD [17], is that
the learned dictionary may contain similar atoms. Such a
dictionary is regarded as a degenerate solution [7], [21]. This
issue is also observed in the dictionary learned from (3) with
the Analysis SimCO algorithm, as will be shown in Section VI.
Thus, we develop an extended version of Analysis SimCO
to avoid this kind of degenerate dictionary, which will be
presented in Section V in detail.

IV. ANALYSIS SIMCO ALGORITHM

As the dictionary update stage in our algorithm is based on
optimization on matrix manifolds, we begin this section with
a brief introduction to the optimization on matrix manifolds
to make this paper self-contained. The details of the analysis
sparse coding and dictionary update are then presented respec-
tively, followed by the convergence and computational com-
plexity analysis of our proposed algorithm.

A. Optimization on Matrix Manifolds
The Stiefel manifold is defined as

[24, pp. 26]. For ,
the Stiefel manifold reduces to the unit sphere, i.e.,

. At each point , there exists
a tangent space which consists of all vectors orthogonal
to in , i.e. . The vectors in

are tangent vectors to at the point . The tangent space
can be regarded as a vector space approximation of the

manifold at the point [24, pp. 34].
Before dealing with the optimization problem on manifolds,

we consider a more general class of problems, i.e., the uncon-
strained optimization problem, from which the optimization
methods on matrix manifolds can be adapted,

(4)

where and is a differentiable func-
tion. This problem can be addressed by the standard line search
method. In the th iteration, the standard line search method se-
lects a descent direction along which the current point is
moved to a new point leading to a smaller or equal objec-
tive function value, i.e.

(5)

with . Here is the scalar step size which
can be selected carefully to guarantee the reduction of the cost
function [25]. In order to determine the search direction , the
value and the derivatives of the objective function can be used.
The most obvious choice is the steepest descent direction

along which the objective function value decreases
most rapidly among all the directions [25, pp. 20].
Now we consider the optimization problem where the vari-

able is restricted on the manifold , i.e.

(6)

Analogous line search methods on manifolds have been devel-
oped by generalizing the standard line search methods for the
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unconstrained optimization problem (4). Specifically, in the th
iteration, the search direction should be chosen as a tangent
vector to at , i.e., . Thus the search direction
is the projection of the search direction of the unconstrained
optimization methods to the tangent space [24, pp. 49],
that is

(7)

The new point obtained by moving in the direction
of should stay on . As a result, the line search path (5) is
replaced by a curve on [24, pp. 103], i.e.

(8)

B. Analysis Sparse Coding Stage
The purpose of the analysis sparse coding stage is to get the

sparse representations of the training signals in based on
a given dictionary . Unlike the corresponding problem of the
synthesis model, here the exact representations can be cal-
culated directly by simply multiplying the signals in by the
dictionary , that is

(9)

Since the initial dictionary is an arbitrary one, the representa-
tions obtained in this way may not satisfy the co-sparsity con-
straints on in (3). A hard thresholding operation is therefore
applied to enforce the co-sparsity

(10)

where is the non-linear operator that sets the smallest
elements (in magnitude) of each column of to zero. The

representations obtained via (10) are the best approximation
of the exact representations in terms of the error in Frobe-
nius norm among all the matrices satisfying the co-sparsity con-
straints.

C. Dictionary Update Stage
The dictionary update stage aims at optimizing the following

problem (by fixing in (3))

(11)

The cost function can be rewritten as a function of the rows of .
Besides, the constraint that only contains unit -norm rows
restricts the transposes of the rows of to lie on the unit sphere
, i.e. . Thus the problem (11) can be rewritten as

(12)
As a result, the “line” search methods on manifolds can be uti-
lized in this stage. Here we use the first order optimization pro-
cedures as in SimCO [10], i.e. the gradient descent line search
method. We explain below the key points of this method in-
cluding search direction, line search path, and step size respec-
tively. The dictionary update stage is summarized in Algorithm
2.

Algorithm 2: Dictionary Update Stage
Input: , ,
Output:
Main Steps:
1) Calculate the search direction, based on (13) and (14).
2) Find a proper step size using golden section search.
3) Update the dictionary , based on (15).

1) Search Direction: We use the steepest descent direction as
the search direction, i.e. the negative gradient of the objective
function with respect to as follows

(13)

2) Line Search Path: The search direction of the th row of
, i.e. the projection of each row of onto the tangent space

of , is [24, pp. 49]
(14)

According to (8), the line search path for the th row of can
be written as

(15)

where is the step size.
3) Step Size: In order to find a proper step size , we apply

the golden section search method [10]. This method consists of
two stages. In the first stage, it finds a range which contains a
local minimum and within which the objective function is uni-
modal. In the second stage, the golden section ratio is used to
successively narrow the range until the minimizer is located and
thus is determined.

D. Convergence
Our proposed algorithm alternates between the analysis

sparse coding stage and the dictionary update stage. For a
fixed dictionary , obtained in the analysis sparse coding
stage is the optimal solution under the constraint of co-sparsity.
Thus, the cost function can only decrease in this stage. In
the dictionary update stage, since the update of is along a
descent direction and the step size is chosen to guarantee that
the updated will not increase the cost function. Thus, the
cost function is decreasing monotonically in our proposed al-
gorithm. In addition, the cost function of our formulation (3) is
lower bounded by zero, i.e. . According to the
monotone convergence theorem [26], given the cost function
decreases monotonically and is lower bounded, the algorithm
must converge. The convergence will also be demonstrated
experimentally in Section VI-A.

E. Computational Complexity
The time complexity of the Analsysis SimCO algorithm

can be analyzed as follows. The time complexity of the
sparse coding stage is dominated by the calculation of ,
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at , in terms of the analysis in [20]. In the dictio-
nary update stage, the calculation of is the dominant part.
Computing the product requires operations.
The time complexity of is with pre-com-
puted . As a result, the dictionary update stage requires

operations with the usual case . The total time
complexity of each iteration of the Analysis SimCO algorithm
thus scales as .
The computational complexity of Analysis SimCO, similar

to those of LOST [20], (NL)AOL [18], and Transform K-SVD
[21], shows a reduction compared with those of Analysis
K-SVD and (NA)AOL. The complexity of Analysis K-SVD is

using BG or using OBG, and (NA)AOL
requires operations with being the number of
dictionary update per iteration. The running time of these
algorithms in practice will be given in Section VI.

V. INCOHERENT ANALYSIS SIMCO
As mentioned in Section III, dictionaries learned by the ex-

isting ADL algorithms may contain similar atoms, which can
degrade the representation performance for signal recovery. To
address this problem, several methods have been proposed. For
example, in Analysis K-SVD and Transform K-SVD, the sim-
ilar atoms are replaced by randomly generated atoms, as men-
tioned in Section I. In LOST [20] and GOAL [19], a penalty
term is used in the objective function to restrict the correla-
tions between atoms. As will be observed in the experiments
of Section VI, Analysis SimCO has the same issue, where some
of the atoms in the learned dictionary may appear similar. Here,
we present an alternative solution to this problem based on [27].
The method in [27] was developed to mitigate the correlations
between atoms learned by a synthesis model. Here we adapt this
method to our model and optimization problem.
In the context of the sparse synthesis model, the coherence of

the dictionary has been defined as a measure of the similarities
between the atoms [28].We extend this definition for an analysis
dictionary and define the coherence in a row-wise way
as

(16)

From this definition, we have . With the unit
-norm constraints on the rows of , the coherence can

be simplified as

(17)

The coherence reflects the maximum correlation of two
distinct atoms in . If is close to 1, it means that there are
very similar rows in , which is the case we attempt to avoid.
Thus, we add a coherence constraint to the formu-
lation (3), i.e.

(18)

where is the coherence limit for the learned dictionary .

To enforce the incoherence constraint, we add an extra step in
the dictionary update stage, aiming to find the closest dictionary
to in Frobenius norm, with the coherence of the dictionary
bounded by a threshold , that is

(19)

Here the unit -norm constraints for the atoms in the dictionary
are also applied to ensure that the transposes of the atoms in the
output dictionary are still on the manifold. This problem is ad-
dressed by applying the decorrelation method [27] in a row-wise
fashion, as presented in Algorithm 3. The general idea is to de-
termine the atom pairs whose correlations are greater than ,
via a labeling process (from line 5 to line 9 of Algorithm 3), and
decorrelate these atom pairs, via a decorrelation process (from
line 10 to line 20). This method keeps alternating between the
two processes until the coherence of the estimated dictionary
reaches the threshold . Although this is a heuristic algorithm,
it typically involves only a few loops to output an incoherent
dictionary. The convergence and the effectiveness of this algo-
rithm will be numerically demonstrated in Section VI.

Algorithm 3: Atom Decorrelation Step

1: Input: ,
2: Output:
3: Initialization: , , ,

4: while do
5: //line 5–9: labeling process
6:
7: while do

8:

end while //line 10–20: decorrelation process
10: for do
11:
12:
13: if then
14:
15:
16: else
17:
18:
19: end if
20: end for
21: end while
22: return
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In the labeling process, the atoms of are labeled as either
the atom pairs to be decorrelated or atoms that do not need to
be modified. An index-pair set is used to store the index pairs
of atom pairs labeled to be decorrelated and an index set is
employed to save the indices of the remaining atoms. rep-
resents the submatrix of only containing the rows indexed by
the set . In each iteration, the correlations of any two distinct
rows belonging to are calculated to determine the most cor-
related pair. The indices of these two atoms will be saved, as
an index-pair, into the set , i.e., , indicating
that these two atoms are labeled as an atom pair to be decorre-
lated in the following decorrelation process. Their indices will
be removed from to avoid being detected again, i.e.

.
In the decorrelation process, the atom pairs indexed by the

members of are decorrelated successively. The decorrelation
of each atom pair is achieved by rotating the two atoms sym-
metrically with respect to their mean so that their correlation
reaches [27]. The rotated atoms are determined based on
the orthonormal basis developed using the atoms to
be decorrelated (lines 11 and 12) and the angle determined by
the coherence limit , i.e., [27]. Specifically,
each atom pair is updated as lines 14, 15 or lines
17, 18, leading to that with

and as given in line 3. Therefore, the unit
-norm constraints in (19) are satisfied and the transposes of

the atoms in the incoherent dictionary obtained by Algorithm 3
are still on the manifold.
In order to address the problem (18), the atom decorrelation

step is inserted after the dictionary update stage in the loop of
Analysis SimCO (Algorithm 1), as summarized in Algorithm
4. We referred to this extended version of Analysis SimCO as
Incoherent Analysis SimCO. Actually, Analysis SimCO can be
regarded as the special case of Incoherent Analysis SimCO if

.

Algorithm 4: Incoherent Analysis SimCO

Input: , , ,
Output:
Initialization:
Initialize the iteration counter and the analysis

dictionary . Perform the following steps.
Main Iterations:
1) Analysis sparse coding: Compute the representations

with the fixed dictionary and the training signals in
, based on (9) and (10).

2) Dictionary update: Update the dictionary ,
using Algorithm 2.

3) Atom decorrelation: Decorrelate the atoms
, using Algorithm 3.

4) If the stopping criterion is satisfied, , quit the
iteration. Otherwise, increase the iteration counter

and go back to step 1).

It is worth noting that other alternative methods could also
be used to promote incoherent dictionaries. As mentioned ear-
lier, Analysis K-SVD replaces the similar atoms with vectors

generated in a random way. Compared with this method, the
decorrelation step applied in Incoherent Analysis SimCO can
better preserve the information in the dictionary atoms since
the new atoms are generated by rotating the existing atoms to
be replaced. The method in Incoherent K-SVD (IK-SVD) [29],
proposed for the synthesis model, can also be used to decorre-
late the atoms of the analysis dictionary, which can be achieved
by minimizing after the update of the dictionary.
However, this method cannot directly control the degree of the
coherence of the dictionary. For comparison, we modify the In-
coherent Analysis SimCO algorithm by replacing the decorre-
lation step (i.e. step 3 in Algorithm 4) with these two decorre-
lation methods, which we refer to as Analysis SimCO-Random
(ASimCO-Random) and Analysis SimCO-IKSVD (ASimCO-
IKSVD) respectively.

VI. SIMULATION RESULTS

In this section we present two categories of experiments to
demonstrate the performance of our proposed algorithms. The
first category contains experiments with synthetic data, and the
second one provides image denoising results using the dictio-
naries learned with different ADL algorithms.

A. Experiments With Synthetic Data

Now we test the ADL algorithms with synthetic data. First
of all, the approach to generating the synthetic data sets and
the performance metrics employed are introduced. Second, we
test our proposed algorithms with different initial dictionaries,
showing their convergence and robustness to initializations.
Third, the effect of the atom decorrelation step of the Inco-
herent Analysis SimCO algorithm is demonstrated. Fourth,
experiments with different parameters are conducted to provide
a more comprehensive comparison between our proposed
algorithms and other ADL algorithms.
1) Synthetic Data Generation and Performance Metrics: A

set of synthetic data consists of a reference analysis dictionary
and a set of signals in that is sparse

with respect to with co-sparsity . The reference dictionary
is generated as detailed in the settings of the experiments.

The generation of the signals in is based on the fact that the
sparse analysis model can be used as a generative model with
a given dictionary [6]. For generating each signal, rows of
are selected randomly and a basis for the null space of these
rows is determined. Multiplying this basis by a random vector
gives a vector which can be one member of the signal set, i.e.
one column of . In the following experiments, and its noisy
version will both be used as the training samples. The noisy
training signals are obtained by adding Gaussian noise with zero
mean and standard deviation 0.04 to , set as in [17]. Learning
with the original signals is referred to as the noiseless case
and learning with the noisy signals as the noisy case.
An advantage of using synthetic data is that the reference dic-

tionary which can sparsify the signals exactly is available, and
therefore the quality of a learned dictionary can be evaluated
by comparing it with the reference dictionary. We use the re-
covery rate of the atoms to measure the performance of the al-
gorithms for recovering the reference dictionary, following the



424 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 2, JANUARY 15, 2016

experiments in [17]. An atom of the reference dictionary is
regarded as recovered if

(20)

where are the atoms of the learned dictionary and is the
threshold value to determine whether the atoms are recovered.
The value of is typically set as 0.01 [17].
Another way for evaluating a learned dictionary is to consider

the average co-sparsity of the original signals in with respect
to this dictionary since the final goal of ADL is to acquire a
dictionary with which the analysis representations of the signals
are sparse. We introduce an operator counting the number
of the elements of , which are below the threshold , i.e.

(21)

where denotes the th element of and . The threshold
value should be close to zero and it is set as
throughout our experiments. The co-sparsity of a signal can be
obtained by applying this operator to the product of the learned
dictionary and this signal. The average co-sparsity of all sig-
nals are used as the second metric to evaluate the learned dic-
tionaries.
2) Convergence of the Proposed Algorithms: Different ini-

tial dictionaries are used to demonstrate the convergence of our
proposed algorithms. The reference dictionaries were generated
with the random variables satisfying the i.i.d. Gaussian distribu-
tion with zero mean and unit variance and then the rows of the
dictionaries were normalized. The size of the reference dictio-
naries was 50 25 (i.e. , ). The number of
training signals was 50000 (i.e. ) and their co-spar-
sity was 21 (i.e. ) set as in [17]. Analysis SimCO and
Incoherent Analysis SimCO were applied to learn analysis dic-
tionaries respectively. The co-sparsity parameters of these two
algorithms were both set as the reference co-sparsity. The coher-
ence limit of Incoherent Analysis SimCO was set as ,
based on our empirical tests.
Three types of matrices were used as initial dictionaries, fol-

lowing the experiments of [7]. The first type is the random ma-
trix consisting of i.i.d. zero mean and unit variance Gaussian el-
ements. The other two types are vertical concatenations of two
matrices. One type is the vertical concatenations of two 25 25
2D DCT matrices (defined as the Kronecker product of two 5
5 1D DCT matrix), and the other is composed of two 25 25
identity matrices. We have used 100 independent runs to test the
proposed algorithms, and the change of the objective function
in (3) shows similar patterns in different runs. Fig. 1 shows the
objective function value averaged from ten independent tests of
the proposed algorithms over the iterations in noiseless case and
noisy case. The objective function decreases monotonically for
all the initializations in both the noiseless case and noisy case.
Though the dictionaries were initialized in different ways, the
algorithms converge to a similar final value. This indicates that
our proposed algorithms can converge robustly with different
initializations.
3) Effect of the Atom Decorrelation Step: Now we compare

the correlations of the atoms in the dictionaries learned by Anal-
ysis SimCO and Incoherent Analysis SimCO to show the effect

Fig. 1. Objective function value with different initializations in the noiseless
case (top) and the noisy case (bottom). Left column: Analysis SimCO. Right
column: Incoherent Analysis SimCO.

Fig. 2. The histograms of the elements in the mutual correlation matrices of
the dictionaries learned in the noiseless case (top) and the noisy case (bottom).
Left column: Analysis SimCO. Right column: Incoherent Analysis SimCO.

of the atom decorrelation step. The initial dictionaries were set
as random Gaussian matrices with normalized rows. Other set-
tings were the same as those in the experiments of Fig. 1.
In order to observe the correlations of the atoms of a learned

dictionary , we define its mutual correlation matrix as
follows

(22)

where operator takes the element-wise absolute value of
a matrix. The non-diagonal elements of represent the
correlations between atoms of and thus the coherence of
is the maximum value of all the elements of , i.e.

. The histograms of themutual correlationmatrices
of the dictionaries learned by Analysis SimCO and Incoherent
Analysis SimCO in one test are presented in Fig. 2, in both the
noiseless case and noisy case. In the mutual correlation matrix
obtained by Analysis SimCO, there are some elements close to
1, which means that highly-correlated atoms exist in the learned
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Fig. 3. Recovery Rate and Average Co-sparsity over iterations in the noiseless
case (top) and the noisy case (bottom).

dictionary. These highly-correlated atoms disappear in the dic-
tionary learned by Incoherent Analysis SimCO, as shown in the
right plot of Fig. 2. This demonstrates that the atom decorrela-
tion step can effectively avoid the highly-correlated atoms in the
learned dictionary.
The recovery rate and average co-sparsity averaged from ten

independent tests are shown in Fig. 3. It can be seen that the re-
covery rate is higher in both the noiseless case and noisy case,
when the Incoherent Analsysis SimCO algorithm is applied.
The average co-sparsity in the noisy case also increases due to
the atom decorrelation step. In the noiseless case, the average
co-sparsity obtained by Incoherent Analysis SimCO is lower
than that obtained by Analysis SimCO. This is because some
atoms which can sparsify the training signals with high co-spar-
sity are replaced because of their high correlation. Even though
the dictionaries learned by Analysis SimCO can reach higher
average co-sparsity, Incoherent Analysis SimCO can learn the
dictionaries without highly-correlated atoms.
4) Simulations With Different Parameters: Our proposed

algorithms are compared with seven baseline algorithms:
ASimCO-Random, ASimCO-IKSVD, Analysis K-SVD [17],
LOST [20], AOL [18], Transform K-SVD [21] and GOAL
[19].1
The algorithms were tested with different parameters, i.e.

co-sparsity , the number of training signals and the number
of atoms . In each test, one parameter was changed while
the others were fixed, as shown in Table I. These parameters
are selected empirically to show the trends of the learning
results of the algorithms in terms of recovery rate and average
co-sparsity. The reference dictionaries were generated with
random variables satisfying i.i.d. Gaussian distribution with
zero mean and unit variance and their rows are normalized.
The initial dictionaries used in all the algorithms were also
generated in the same way.
Analysis SimCO and Incoherent Analysis SimCO were ap-

plied for 2500 iterations. For Incoherent Analysis SimCO, the

1The code of GOAL was downloaded from http://www.gol.ei.tum.de/index.
php?id=25&type=98.

TABLE I
PARAMETERS USED IN THE COMPARISON OF DIFFERENT ADL

ALGORITHMS WITH SYNTHETIC DATA

coherence limit was . The parameters of Analysis
K-SVD were set as the experiments with synthetic data in [17].
We found that the LOST algorithm fails to recover any atom
of the reference dictionary if the parameters as in the original
paper [20] are used. This may be because the experiments with
synthetic data scale differently from the experiments with image
patches in [20]. Extensive experiments were conducted to find
good parameters of LOST for the experiments with synthetic
data. The coefficients of the penalty terms in the objective func-
tion were chosen as 50 and the index parameter in the correla-
tion penalty term was 20. The step size and the iteration number
of the inner gradient conjugate algorithm were and 30
respectively. The number of iterations for LOST was fixed to
1000. For the AOL algorithms, its noiseless version (NL)AOL
and noise-aware version (NA)AOL were applied to the noise-
less case and the noisy case respectively. The iteration numbers
of (NL)AOL and (NA)AOLwere 50000 and 10 respectively, ac-
cording to the settings in [18]. The coefficient of the objective
function of (NA)AOL was . Other parameters of these
two algorithms were the same as suggested in [18]. The param-
eters of Transform K-SVD were set at their default values as in
[21]. The parameters of GOAL were set as in the original code.2
The threshold used to replace similar rows in ASimCO-Random
is also set as to be consistent with the coherence limit of In-
coherent Analysis SimCO. The parameters for the decorrelation
method in ASimCO-IKSVD are set as recommended in [29].
The recovery rate and average co-sparsity averaged from

five independent tests with different , and are presented
in Figs. 4, 5 and 6 respectively. Abbreviations are used in the
legends because of space limitation (IN-ASimCO, ASimCO,
AKSVD and TKSVD are short for Incoherent Analysis SimCO,
Analysis SimCO, Analysis K-SVD and Transform K-SVD
respectively). In general, our proposed algorithms, Analysis
K-SVD, LOST and Transform K-SVD show similar trends over
the varying parameters. This may result from the same mea-
surements used for co-sparsity, i.e. -norm, and their similar
optimization procedure which alternates between the update of
the analysis representation and the update of the dictionary. For
these five algorithms, better dictionaries can be learned with
larger co-sparsities (cf. Fig. 4) and more training samples (cf.
Fig. 5). With the increase of the number of atoms, the recovery
rates obtained by these algorithms decrease (cf. Fig. 6). The
results of Incoherent Analysis SimCO are similar to the results

2We should note that, in GOAL the values of the parameters set in the code
downloaded are different from those presented in the original paper. Therefore,
we tested both sets of parameters, the values of the parameters set in the code
were used in our experiments as we observed that they usually lead to better
results.
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Fig. 4. Recovery Rate (left) and Average Co-sparsity (right) with different
co-sparsities in the noiseless case (top) and the
noisy case (bottom).

Fig. 5. Recovery Rate (left) and Average Co-sparsity (right) with different
numbers of training samples ) in the noiseless
case (top) and the noisy case (bottom).

of Analysis K-SVD and Transform K-SVD, which are better
than the results of LOST. The recovery rates of the dictionaries
obtained by Incoherent Analysis SimCO are higher than Anal-
ysis SimCO in all cases due to the restriction of the coherence
of the learned dictionary. The average co-sparsities obtained by
Analysis SimCO are closer to the reference co-sparsities than
those obtained by Incoherent Analysis SimCO in the noiseless
case, but the Incoherent Analysis SimCO algorithm shows
advantage for the average co-sparsity in the noisy case. The
results of (NL)AOL, (NA)AOL and GOAL appear to be quite
different from the other methods compared. This might be due
to the “ -norm” or “ -norm” used to estimate the
co-sparsity of the coefficients, as opposed to the “ -norm” used
in the other algorithms. The relatively limited performances of
(NL)AOL and (NA)AOL may result from the application of the
UNTF constraint to the learned dictionaries, that the reference

Fig. 6. Recovery Rate (left) and Average Co-sparsity (right) with different
numbers of atoms in the noiseless case (top)
and the noisy case (bottom).

dictionaries do not satisfy. The results of Incoherent Analysis
SimCO and ASimCO-Random are very similar to each other,
and they both outperform the ASimCO-IKSVD algorithm.
The time (in seconds) of one test with different parameters is

presented in Table II.3 From Table II, we can see that our pro-
posed algorithms are faster than Analysis K-SVD, LOST and
(NL)AOL, but slower than Transform K-SVD and GOAL. It
seems that Transform K-SVD is the best choice to learn dictio-
naries with synthetic data considering its good performance and
efficient computation. However, for the application to image
denoising, our proposed algorithm outperforms Transform
K-SVD, which will be presented in the next two subsections.
The running time of (NA)AOL changes substantially in dif-
ferent cases since sometimes the subgradient algorithm applied
to update the dictionary requires longer time to converge.
(NA)AOL seems to be faster than our proposed algorithms
as shown in Table II. It should be noted that the running time
presented here is the time for one test, however, the conditions
for terminating the iterations in the algorithms compared are
different. For each iteration, our proposed algorithms are faster
than (NA)AOL which is consistent with the analysis of the
computational complexities in Section IV-E.

B. Experiments for Image Denoising

We apply the learned dictionaries to image denoising which
has become a common application for demonstrating ADL al-
gorithms [17], [20], [21]. In this section, the image denoising
framework, the performance evaluation index, and the param-
eter selection are introduced first. After that, the denoising re-
sults for face images and natural images are presented.
1) Image Denoising Framework: The image denoising

framework employed in our experiments consists of dictionary
learning and image recovering, which are both based on small
image patches [4], [17]. To denoise a large image of size

, small image patches of size with

3All algorithms were implemented in Matlab R2012a and performed with an
Intel Core i5 CPU at 3.30 GHz and 8 GB memory.
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TABLE II
TIME OF ONE TEST WITH DIFFERENT PARAMETERS (IN SECONDS)

are used as the training signals to learn an analysis dic-
tionary . These training patches are extracted from
the image to be denoised or from other clean images. In the
image recovering process, the noisy image is also handled as
overlapping patches of the same size. Specifically,
patches extracted from the noisy image are reshaped as column
vectors which are concatenated as a matrix , where
is the number of patches. The recovering operation is directly

applied to using the learned dictionary , resulting in a
noiseless estimation . Overlapping patches are used
to mitigate the blockiness artifacts caused by this patch-based
framework. The denoised image can be obtained by reshaping
the columns of as image patches and averaging these over-
lapping patches.
The key idea of estimating is to solve an optimization

problem where the learned analysis dictionary serves in the
regularization term reflecting the co-sparsity prior of , that is

(23)

where is the Lagrangian multiplier to balance the data fidelity
term and the regularization term . The alter-
nating direction method of multipliers (ADMM) [18], [30] is
applied to tackle this problem.
It should be noted that the methods used for image recovery

in the experiments of LOST [20], Analysis K-SVD [18], Trans-
form K-SVD [21] and GOAL [19] are different, which makes
it difficult to evaluate the dictionaries learned by different algo-
rithms consistently. To make a fair comparison, the same image
recovering method, formulated as (23), is used in our experi-
ments. This method is selected because of its high computa-
tional efficiency.
2) Denoising Performance Evaluation and Parameter Selec-

tion: The images to be denoised were artificially corrupted by
additive white Gaussian noise with the standard deviation being
either or , choosing empirically to represent
the case of a relatively low or high level of noise respectively.
Peak signal to noise ratio (PSNR) was used to measure the de-
noising performance. For an -pixel noise-free image ,
the PSNR in decibels (dB) of its denoised version is
defined as

(24)

where is the mean squared error between the original
image and its denoised version.
Throughout our experiments, we followed the same set up

as in [18], [21] and fixed the size of the image patches to 8
8, i.e. . The overlap of the patches was set as 7. The
size of the learned dictionaries was 128 64, i.e. .
In the image recovering process, the proper selection of the
Lagrangian multiplier is related to the noise level. In gen-
eral, needs to be smaller when the noise level is higher. The
method to choose optimal is out of the scope of our work.
Herein a set of different ’s was tested, and only the results of

are presented to show the
trends of the denoising results.
We still compare our proposed algorithms with the baseline

algorithms as employed in the experiments for the synthetic
data. The parameters about co-sparsity were set as follows. For
Analysis SimCO and Incoherent Analysis SimCO, the co-spar-
sities were set as either or . The corresponding
parameters of the baseline algorithms were set based on the
value of , in order to ensure the equal co-sparsity. For Anal-
ysis K-SVD, only the case was tested since cannot
be greater than the signal dimension in its parameter set-
tings [17]. There is no parameter related to the co-sparsity
in (NA)AOL and GOAL. Other parameters were set as those
employed in their original papers except for GOAL whose pa-
rameters are the same as in the experiments for the synthetic
data. The coherence limit of Incoherent Analysis SimCO and the
correlation threshold of ASimCO-IKDVD were both set as 0.2,
which was lower than the value used in the experiments with
synthetic data, since we found that, in general, the image dictio-
naries learned have a relatively lower coherence, as compared
with that in the synthetic case. The same initial dictionaries, gen-
erated with i.i.d. Gaussian distribution with zero mean and unit
variance, were used for different algorithms.
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Fig. 7. Face images. (a) Original face. (b) Noisy face with
. (c) Noisy face with .

Fig. 8. Face image denoising . Top row: training patches are ex-
tracted from 13 other clean face images, with the co-sparsity (left) and

(right). Bottom row: training patches are extracted from the face image
to be denoised, with the co-sparsity (left) and (right).

3) Face Image Denoising: Now we denoise face images
using the learned analysis dictionaries, following the experi-
ments in [18]. The face images are centred and cropped [31] and
can be modelled as piecewise smooth signals approximately.
The original face and the noisy face images are shown in Fig. 7.
Two types of training data were tested: Type I consists of the
patches extracted from 13 other clean face images [18]; Type
II includes the patches extracted from the face image to be de-
noised. 16384 patches were randomly selected as training data
in both cases [18].
The PSNR (in dB) values of the denoised face images aver-

aged from five independent tests with varying are presented
in Fig. 8 and Fig. 9 . In each of these two
figures, the top and bottom sub-figures show the results using
the Type I and Type II training data, respectively. The left and
right sub-figures present the denoising results with and

, obtained by our proposed algorithms, LOST and Trans-
form K-SVD. The results of Analysis K-SVD are only shown in
the left sub-figures. The results of (NA)AOL and GOAL, which
are not related to the co-sparsity setting, are plotted without
modifications in both the left and right sub-figures. The best de-
noising results obtained via different algorithms with varying ,
i.e. the peak PSNR values of the lines in Fig. 8 and Fig. 9, are
summarized in Table III.

Fig. 9. Face image denoising . Top row: training patches are ex-
tracted from 13 other clean faces, with the co-sparsity (left) and
(right). Bottom row: training patches are extracted from the face image to be
denoised, with the co-sparsity (left) and (right).

TABLE III
THE BEST FACE IMAGE DENOISING RESULTS (PSNR IN DECIBELS)

Fig. 8 and Fig. 9 reveal that the denoising results change
considerably with various . The best of the set tested in
the case is smaller than that of the case
due to the increase of the noise level. Some common features
of the ADL algorithms can also be observed from Table III.
The dictionaries learned with higher co-sparsity per-
form better in general. In terms of the types of training data,
the image patches from the noisy face image itself (Type II
training data) seem to be more suitable to be the training data.
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Fig. 10. Test images for natural image denoising.

Fig. 11. Training images used for learning analysis dictionaries.

Fig. 12. Natural image denoising . Top row: training patches are
extracted from the images in Fig. 11, with the co-sparsity (left) and

(right). Bottom row: training patches are extracted from the natural image
to be denoised, with the co-sparsity (left) and (right).

As shown in Table III, the performance of GOAL is competitive,
compared with other baseline algorithms. For the lower noise
level with Type I training data, it obtains the best result. How-
ever, our proposed algorithms can obtain better results in other
cases. Incoherent Analysis SimCO is able to get higher PSNR
than Analysis SimCO in some cases. The Incoherent Analysis
SimCO outperforms ASimCO-Random and ASimCO-IKSVD
in all cases, except for the cases when Type I training data is
applied with co-sparsity being 40.
4) Natural Image Denoising: Now we examine the de-

noising of the natural images shown in Fig. 10. The size of the
images is 256 256. Similar to the denoising of face images,
two types of training data are tested: Type I contains image
patches extracted from 5 other clean images shown in Fig. 11;
Type II includes the patches of the image to be denoised. The
number of training patches is 20000 [17]. The results (PSNR
in dB) averaged from the denoised versions of the four test
images are plotted in Fig. 12 and Fig. 13 ,
and the peak results of each curve are listed in Table IV.
According to Fig. 12 and Fig. 13, the best is bigger for the

lower noise level, which is consistent with the objective func-
tion (23). Table IV indicates that the patches extracted from

Fig. 13. Natural image denoising . Top row: training patches are
extracted from the images in Fig. 11, with the co-sparsity (left) and

(right). Bottom row: training patches are extracted from the natural image
to be denoised, with the co-sparsity (left) and (right).

TABLE IV
THE BEST NATURAL IMAGE DENOISING RESULTS (PSNR IN DECIBELS)

other clean natural images are preferred to the patches of the
image to be denoised. In the lower noise level case, for Type
I training data (NA)AOL and GOAL gives slightly better re-
sults than our proposed algorithms and for Type II training data
ASimCO-Random performs better. Our proposed algorithms
outperform the baseline algorithms in other cases. The results
obtained by Analysis SimCO and Incoherent Analysis SimCO
are similar to each other.
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VII. CONCLUSION
In this paper we have proposed an analysis dictionary learning

algorithm: Analysis SimCO. The dictionary learning process
is formulated as an optimization problem with the co-sparsity
and unit -norm constraints on the atoms of the dictionary. This
algorithm iteratively solves this problem by hard thresholding
and the gradient descent method on manifolds. We have also
presented an extension of Analysis SimCO: Incoherent Analysis
SimCO, by incorporating an atom decorrelation step after the
dictionary update step. Extensive experiments on synthetic data,
face and natural image data have confirmed the competitive
performance of our proposed algorithms. The applications of
learned analysis dictionaries in other signal processing tasks
merit more study, which we leave for future work.
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